D. Richard Brown lli
Associate Professor

Worcester Polytechnic Institute
lectrical and Computer Engineering Department
drb@ece.wpi.edu

Lectures 6-7

ECE4703 REAL-TIME DSP
TMS320C6713 ARCHITECTURE

OVERVIEW AND ASSEMBLY
LANGUAGE PROGRAMMING

Efficient Real-Time DSP

Data types
Memory usage (linker command file)
Letting CCS optimize your code for you

Still not fast enough!?
Assembly language programming for the Céx
Best results achieved when you take full advantage of Céx
architecture:
o Registers
o Functional units
o Pipelining

o Fetch/execute packets

Data Types and Memory Usage

Double-precision floating point
Single-precision floating point [

Fixed point Faster

SDRAM (off chip)
SRAM (on chip) [

Faster

Page
2 ~f

Optimizing Compiler

type filter text C/C++ Build

Info

Builders Active configuration

C/C++ Build Project Type: | C6000
C/C++ Documentatior
C/C++ File Types
C/C++ Indexer

CCS Build

CCS Debug Tool Settings I Build Settings | Build Steps | Error Parsers I Binary Parser I Environment I Macrosl
Project References
Refactoring History

Configuration: [Debug

Configuration Settings

(22 Tool-chain Settings 4 | Target processor version (--silicon_version, -mv) 6700
4) C6000 Compiler
(22 Basic Options
(2 Symbolic Debug Option Optimization level (--opt_level, -0) [3
(2 Language Options

(2 Language Options: MISF

Debugging model [Full symbolic debug (--symdebug:dwarf, -g)

Optimize for code size (--opt_for_space, -ms) [

(23 Parser Preprocessing Op
(2 Predefined Symbols
2 Include Options
(% Diagnostic Options
22 Runtime Model Options|~
(2 Optimizations
(2 Entry/Exit Hook Options,
(%3 Feedback Options
(3 Library Function Assum|
(23 Assembler Options
(22 File Type Specifier
(%3 Directory Specifier
(23 Default File Extensions
(23 Dynamic Linking Suppo
2 Command Files

4 %) C6000 Linker
(2 Basic Options
@2 Commeand File Preproce
(22 Diagnostics

A Cila Canesbh Nkl
< | " [

[Restore Defaults] [Apply

OK] [Cancel

LI\

Typical speed gains of 2x to 5x with compiler optimization.

%

Assembly Language Programming on the
TMS320C6713

To achieve the best possible performance, sometimes you
have to take matters into your own hands...

Three options:
Linear assembly (.sa)
o Compromise between effort and efficiency
o Typically more efficient than C

o Assembler takes care of details like assigning “functional
units’, registers, and parallelizing instructions

ASM statement in C code (.c)
o asm(“assembly code”)

C-callable assembly function (.asm)

o Full control of assigning functional units, registers,
parallelization, and pipeline optimization

C-Callable Assembly Language Functions

Basic concepts:

Arguments are passed in via registers A4, B4,A6, B6, ... in
that order. All registers are 32-bit.

Result returned in A4 also.

Return address of calling code (program counter) is in B3.
Don’ t overwrite B3!

Naming conventions:

o In C code: label

o In ASM code: label (note the leading underbar)
Accessing global variables in ASM:

o .ref _variablename

O %7
‘3} 5% @R’Nu/v/(\’

s ASmy T
® ‘o -

o A =
@ ‘I - 8

Skeleton C-Callable ASM Function

: header comments
; passed in parameters in registers A4, B4,A6, ... in that order

.def _myfunc ; allow calls from external
ACONSTANT .equ 100 ; declare constants

.ref _aglobalvariable ; refer to a global variable
_myfunc: NOP ; instructions go here

B B3 ; return (branch to addr B3)

; function output will be in A4
NOP 5 ; pipeline flush
.end

YTEC,
QO“ '74,/
/§ VAN O’
g o g

Example C-Callable Assembly Language Program (Chassaing)
int fircasmfunc(short x[], short h[], int N);

;FIRCASMfunc.asm ASM function called from C to implement FIR
;A4 = Samples address, B4 = coeff address, A6 = filter order
;Delays organized as:x(n-(N-1))...x(n);coeff as h[0]...h[N-1]

def _fircasmfunc
_fircasmfunc: ;ASM function called from C
MV Ab,Al ;setup loop count
MPY Ab,2,AB ;since dly buffer data as byte
ZERO AB ;init A8 for accumulation
ADD Ab,B4,B4 ;since coeff buffer data as byte
=UB B4,1,B4 ;Bd=bottom coeff array h[N-1]
;start of FIR loop
LDH ®hd++ A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1
LDH *B4--,B2 ;B2=h[N-1-1]
NOP 4
MPY AZ2,B2,AB ;A6=x[n-(N-1)+1i]*h[N-1-1]
NOP
ADD Ab,AG,AD ;accumlate in AS
LDH *A4 ,A7 ;A7=x[(n-(N-1)+i+1]update delays
NOP 4 using data move "up"
=TH A7,%-A4[1] ;:-->x[(n-{N-1)+1] update sample
=UB Al,1,A1 ;decrement loop count
[A1] B loop ;branch to loop if count # O
NOP 5

AB,A4 ;result returned in A4

B3 ;return addr to calling routine
4

Writing Efficient Assembly Language
Programs for the Céx

O %7
‘3} 5% @M%O’
L1

A T 2
s e
@ II'/ ™ IS

Need to become familiar with:

Specific architecture, capabilities, and limitations of
the Céx

o Registers

o Functional units

o Pipeline

o Parallelization

o Other miscellaneous constraints ...

Instruction set

o for single precision floating
point, double precision floating point, and integer
math

TMS320C67x Block Diagram

CB2x/CB4x/C67x device

Program cache/program memory
32-bit address
256-bit data

CB62x/C64x/C67x CPU

Program fetch

Instruction dispatch (See Note) Control

- registers
Instruction decode g

Data path A Data path B
DMA, EMIF Confrol
Register file A Register file B logic

Additional
peripherals:

Timers,
serial ports,
efc.

Data cache/data memory
32-bit address

8-, 16-, 32-bit data (64-bit data, C64x only)

One instruction is 32
bits. Program bus is 256 bits
wide.

= Can execute up to 8

instructions per clock cycle
(225MHz->4.4ns clock cycle).

8 independent functional units:
- 2 multipliers
- 6 ALUs

Code is efficient if all 8
functional units are always busy.

Register files each have 16

general purpose registers, each
32-bits wide (A0-Al5, B0-BI5).

C6713 Data Paths and Functional Units

Two data paths (A & B)

Data path A
Multiply operations (' ')

Logical and arithmetic operations ()
Branch, bit manipulation, and arithmetic operations (=)
Loading/storing and arithmetic operations (')

Data path B
Multiply operations ()

Logical and arithmetic operations ()
Branch, bit manipulation, and arithmetic operations (=)
Loading/storing and arithmetic operations (')

All data (not program) transfers go through and

Fetch & Execute Packets

C6713 fetches 8 instructions at a time (256 bits)

Definition: “Fetch packet” is a group of 8 instructions
fetched at once.

Coincidentally, C6713 has 8 functional units.

|deally, all 8 instructions are executed in parallel.

Often this isn’ t possible, e.g.:
3 multiplies (only two .M functional units)

Results of instruction 3 needed by instruction 4 (must wait for
3 to complete)

‘\CESrf
4© R,
AT PN
5 =
S ‘I'/ WA

Execute Packets

5
&
27 \! 5.{3
%

Do

Definition: “Execute Packet” is a group of (8 or less)

consecutive instructions in one fetch packet that can be
executed in parallel.

fetch packet
A
~ I
L1 [2 | 3 4 5 6 7 8
. N A _/
Y YT YT
execute packet | execute packet 2 execute packet 3

C compiler provides a flag to indicate which
instructions should be run in parallel.

You have to do this manually in Assembly using the
double-pipe symbol “||".

C6713 Instruction Pipeline Overview

All instructions flow through the following steps:

PG: Program address Generate

[N
h

PS: Program address Send

(o
SN

PW: Program address ready Wait
d) PR:Program fetch packet Receive

a) DP:Instruction DisPatch
b) DC:lInstruction DeCode

a) 10 phases labeled EI-EI0
b) Fixed point processors have only 5 phases (E|-E5)

Figure 7-5. Floating-Point Pipeline Phases
4— Fetch ——— >4 Decode Execute

each step
= | clock cycle

Pipelining: Ideal Operation

Clock cycle

* At clock cycle | I, the pipeline is “full”
* There are no holes (“bubbles”) in the pipeline in this example

NTE
QO“ C'Y/‘,/
& #5aS O’
w7z
VoY S
. A’s

T 1865 °

Q‘0‘\Clisr£
w

Pipelining: “Actual” Operation

Clock cycle

Fetch Execute
packet packet
(FP) (EP) 1 2 3 4 5 6 11 12 13 14

n k PG PS PW PR |[DP ©DC | E1 ES E6 E7 E8

n k+1 DP- DC E4 E5 E6 ET
n k+2 E3 E4 ES5 ESB

3 — = o = e
+4 — = o
+5 — R

k+6 oc | E1 E2

k+7 PS PW PR | DP DC | E1

k+8 PG Ps Pw PR [DP |DC

* Fetch packet n has 3 execution packets
* All subsequent fetch packets have | execution packet
* Notice the holes/bubbles in the pipeline caused by lack of parallelization

NTE
QO\‘ C'Y/y/
& #5aS Y
no Z

VLN 5'

V »

186

Q‘0‘\Clisr£

@

Fetch Phases of Cé6713 Pipeline

Figure 7-2. Fetch Phases of the Pipeline
CPU

@) ®) Functiona

units

PG: Program Address Generate Registers
PS: Program Address Send

PW: Program Address Ready Wait

PR: Program Fetch Packet Receive

()

)
Q

Q\o‘\CES 17y %

Decode Phases of C6713 Pipeline

(instruction dispatch) phase
Fetch packets (FPs) are split into execute packets (EPs)
Instructions in an EP are assigned to appropriate functional units for decoding

(instruction decode) phase: convert instruction to microcode for appropriate
functional unit

Figure 7-3. Decode Phases of the Pipeline

" [orfee

A 5 SV

T NOP is not dispatched to a functional unit.

)

¥

78
e ?

s L
S50
v
=

.
‘2

-
®
=
@

Q\o‘\CESrf %

Execute Phases of Cé6/713 Pipeline

Figure 7—4. Execute Phases of the Pipeline and Functional Block Diagram of the
TMS320C67x

Data address 1 Data address 2

Internal data memory
(byte addressable)

-

YTEC”W
7

i
Y

O

;

* s L
> L
s\

g e

Execute Phases of C6713 Pipeline

e IR
i % 5
«BgS

‘\CESrf
«© O
AN
be -]
g €l
LIS

C67x has 10 execute phases (floating point)

Figure 7-5. Floating-Point Pipeline Phases

44— Fetch ——— >4 Decode

Execute

1 2 0 0 0 0 A G

C62x/Cé4x have 5 execute phases (fixed point)

Different types of instructions require different numbers of
execute phases to complete

Anywhere between | and all 10 phases

Most instruction tie up their functional unit for only one phase (El)

Execute Stage: Delay Slots

Most instructions’ results are available at the end of El
(called “single-cycle” instructions)
o Examples:
ABSSP (single precision absolute value)
RCPSP (single precision reciprocal approximation)
Some instructions take more time to produce results

o Examples:

MPYSP (single precision multiply): Results available at the end of
E4 (3 delays slots)

ADDSP (single precision addition): Results available at the end
of E4 (3 delay slots)

5
¢
S \L! jg
2,

WCESTg,
«© O
& o= 3
aeb B
Do

Execute Stage: Functional Latency

Most instructions tie up the functional unit for only one
pipeline stage (El)

o Examples:

All single-cycle instructions
Most multicycle instructions, including, for example, ADDSP (single

precision addition)
Some instructions tie up the execution unit for more than one

pipeline stage

o Examples:
MPYDP (double precision multiply): .M execution unit is tied up for 4

pipeline stages (El-E4). Can’ t use this functional unit until E4

completes.

OWTEC,
Q—Q M@"%&MO
J LT L]

Q\0‘\CES 17y
&
&

S

Dy

Execution Stage Examples (I)

ABSSP Single-Precision Floating-Point Absolute Value

Syntax ABSSP (.unit) src2, dst

unit=.S1o0r.S2

Opcode map field used... For operand type...

src2 XSp
dst sp

results available after E| (zero
delay slots)

Pipeline Pipeline
Stage

Read
Functional unit free after E|

Written (I functional unit latency)

Unit in use

Instruction Type Single-cycle

Execution Stage Examples (2)

ADDSP

Syntax

Pipeline

Instruction Type
Delay Slots

Functional Unit
Latency

Single-Precision Floating-Point Addition

ADDSP (.unit) sre1, src2, dst

unit=.L1or L2

Pipeline
Stage

Read

Written

Unit in use

4-cycle =—mMe—— o am@ @ @¥m

3 . .
Functional unit free after E|

1 «— (I functional unit latency)

results available after
E4 (3 delay slots)

Execution Stage Examples (3)

MPYSP Single-Precision Floating-Point Multiply

Syntax MPYSP (.unit) src1, src2, dst

unit= .M1 or .M2

Pipeline Pipeline
Stage

Read

Written

Unit in use M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Results available after
— E4 (3 delay slots)

Functional unit free after E|

Functional Unit (1 functional unit latency)
Latency

Instruction Type 4-cycle

Delay Slots

Execution Stage Examples (4)

MPYDP Double-Precision Floating-Point Multiply

Syntax MPYDP (.unit) sre1, src2, dst

unit=_M1 or M2

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1 | src1_ | src1_h srcl_h
src2 | src2_ h src2 | src2_h

Pipeline

Written dst | dst h
Unit in use M M M M

If dst i1s used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type MPYDP Results available after E10 (9

/ delay slots)
9

Functional unit free after E4

Functional Unit 4 < (4 functional unit latency)
Latency

Delay Slots

Delay Slots & Functional Latency

IMPORTANT: are not the same as
Example:

MPYSP .MI| Al,A2,A3 ‘A3 = Al xA2
MPYSP .MI| A4, A5,A6 ‘A6 = A4 x A5
MPYSP M| A7,A8,A9 ‘A9 = A6 x A7
MPYSP .MI| AIOQ,AIll,Al2 Al2 =AI0 x Al

Is this code ok!?

YTEC,
QO“ '74,/
/§ VAN O’
Zmom g

Delay Slots & Functional Latency

What about this code?

MPYSP M| Al,A2,A3 ;A3 =Al xA2
MPYSP M| A3,A4,A5 ;AS = A3 x A4

° ,:c‘z}? -
¥ =\
g @l ¢t 3

Delay Slots & Functional Latency

You are probably going to get strange results here because

the result in A3 is not available until E4 completes for the
first MPYSP instruction

“Data hazard” due to the in MPYSP

How to “fix” the last example

MPYSP .MI Al,A2,A3 ;A3 = Al xA2
N[O] 3 ;insert 3 delay slots

; results of first multiply now in A3
MPYSP .M1 A3,A4,A5 ;A5 = A3 x A4

Delay Slots & Functional Latency

® What about this code!

MPYDP .MI Al:A0,A3:A2,A5:A4
MPYDP .MI A7:A6,A9:A8,Al |:AlO0

° ,:'v“«\\l; ko
A = 173
a g_:llw.; o=

Delay Slots & Functional Latency

fe. ot

This last example won’ t work because the
functional unit M1 is tied up for 4 clock
cycles (EI-E4) by MPYDP

“Resource conflict” due to the
in MPYDP

How to fix it;
MPYDP M| AIl:A0,A3:A2, A5:A4

NOP 3 ; 3 NOPs for func latency
MPYDP M| A7:A6,A9:A8,Al |:Al0

Delay Slots & Functional Latency

® What about this code!

MPYDP .MI Al:A0,A3:A2,A5:A4
MPYDP .MI A5:A4,A8:A7,Al |:AlOQ

° ,:'v“«\\l; ko
A = 173
a g_:llw.; o=

Delay Slots & Functional Latency

Two problems now!
Resource conflict for .M I unit (E2-E4)
Data hazard for result in A5:A4 (E2-E10)

The “fix’:

MPYDP .MI Al:A0,A3:A2,A5:A4

NOP 9
MPYDP .MI| A5:A4,A8:A7,Al |:Al0

Note: Could use M1 after E4, but A5:A4 not
available until after EIO.

oW TEC,
‘3} 5% @R%N/‘//O’

& i
5 5
A ‘Ii/ - 5
o S

Functional Latency & Delay Slots

: How long must we wait for
the functional unit to be free!?

: How long must we wait for the result
of a calculation to be available?

General remarks:
Functional unit latency <= Delay slots

Strange results will occur in ASM code if you don’ t pay
attention to delay slots and functional unit latency

All problems can be resolved by “waiting” with NOPs

Efficient ASM code tries to keep functional units busy all
of the time.

Efficient code is hard to write (and follow).

oW TEC,
‘3} 5% @R’Nu/v/(\’
|]

Additional Constraints; Data Cross-Paths

TMS320Cé6x core has A side and B side
A side: MI,SI, LI, DI, and register file AO-A 15
B side: M2, 52,12, D2, and register file BO-BI5

Cross path instruction examples:
MPYSP .MIx A2, B2,A4 ; cross path brings B2 to M|
MPYSP .M2x A2, B2, B4 ; cross path brings A2 to M2

Constraint: Only two cross-paths are available per cycle:
one A—2 and one B— 1.

Note: Can’ t have two A—2 or two B—1 cross paths in the
same cycle.

Additional Constraints

Memory constraints

Two memory accesses can be performed in one cycle if
they don’ t access the same bank of memory

See TMS320C6000 Programmer’ s Guide

L oad/Store constraints

Address register must agree with .D unit, e.g.:
o LDW .DI *Al,A2 ;valid because Al and DI agree

Parallel loads and stores must use different register files
See TMS320C6000 Programmer’ s Guide

O %7
‘3} 5% @R’Nu/v/(\’

s ASmy T
® ‘o -

o A =
@ ‘I - 8

Suggested Reading

Reference material (on course web page)

TMS320C6000 CPU Instruction Set and Reference
Guide

TMS320C6000 Programmer’ s Guide

Examples in textbooks, e.g:
Kehtarnavaz Chap 3
Kehtarnavaz Chap 7

O %7
‘3} 5% @M%O’
L1

& my g
b 3
& ‘I'/ Wy

