
Adaptive Filtering Basics

MMSE System Identification, Gradient Descent, and
the Least Mean Squares Algorithm

D.R. Brown III

WPI

WPI D.R. Brown III 1 / 19



Adaptive Filtering Basics

Problem Statement and Assumptions

known

input

unknown system

(assumed LTI)

known

(but noisy)

output

noise

x[n] d[n]H +

w[n]

◮ We want to estimate the impulse response of the unknown system.

◮ Just sending x[n] = δ[n] is not a good idea because we don’t get any
averaging.

◮ Our approach: build an “auxiliary system” and minimize the mean
squared error.

WPI D.R. Brown III 2 / 19



Adaptive Filtering Basics

Auxiliary System

known

input

unknown system

(assumed LTI)

known

(but noisy)

output

noise

error

auxiliary system output (known)

x[n]
d[n]

H

A

++

w[n]

e[n]

y[n]

The mean squared error (MSE) is defined as

MSE = E
{

e2[n]
}

= E
{

(d[n]− y[n])2
}

.

We want to design the auxiliary system to minimize the MSE.
WPI D.R. Brown III 3 / 19



Adaptive Filtering Basics

Warmup Problem: Unknown System is a Gain

Suppose H is simply a gain g and we wish to estimate this gain.

The auxiliary system is also a gain denoted as ĝ.

The MSE is then

MSE = E
{

(d[n]− y[n])2
}

= E
{

d2[n]− 2d[n]ĝx[n] + ĝ2x2[n]
}

= E
{

d2[n]
}

− 2ĝE {d[n]x[n]}+ ĝ2E
{

x2[n]
}

To minimize the MSE, we take a derivative of MSE with respect to ĝ, set
it equal to zero, and solve for ĝ. This results in

ĝ =
E {d[n]x[n]}

E {x2[n]}
≈

1
N

∑N−1
n=0 d[n]x[n]

1
N

∑N−1
n=0 x2[n]

WPI D.R. Brown III 4 / 19



Adaptive Filtering Basics

Remarks

The minimum MSE (MMSE) solution is:

ĝ =
E {d[n]x[n]}

E {x2[n]}

Recall the output of the unknown system is d[n] = gx[n] + w[n]. We can
substitute for d[n] and use the linearity of the expectation to write

ĝ =
E {(gx[n] + w[n])x[n]}

E {x2[n]}
= g +

E {w[n]x[n]}

E {x2[n]}
.

If x[n] is statistically independent of w[n] (which is usually is) and one or
both are zero mean then

E {w[n]x[n]} = E {w[n]}E {x[n]} = 0.

Hence, if you have enough samples to accurately compute the
expectations, this estimator converges to the correct value: ĝ → g.

WPI D.R. Brown III 5 / 19



Adaptive Filtering Basics

Problem: Unknown System is an FIR Filter

Suppose H is now a FIR filter with impulse response {h[0], . . . , h[L− 1]}
and we wish to estimate this impulse response.

The auxiliary system is also a FIR filter with impulse response denoted as
{ĥ[0], . . . , ĥ[L− 1]}.

Note that the output of the auxiliary system can be written as

y[n] =

L−1
∑

k=0

ĥ[k]x[n − k] = (ĥ)⊤x[n]

where

ĥ =







ĥ[0]
...

ĥ[L− 1]






and x[n] =







x[n]
...

x[n− (L− 1)]







This is just a representation of convolution as an inner/dot product.
WPI D.R. Brown III 6 / 19



Adaptive Filtering Basics

Mean Squared Error

Recall that
(a⊤b)2 = a⊤bb⊤a = b⊤aa⊤b.

The MSE is then

MSE = E
{

(d[n]− y[n])2
}

= E
{

(d[n]− (ĥ)⊤x[n])2
}

= E
{

d2[n]− 2d[n](ĥ)⊤x[n] + (ĥ)⊤x[n]x⊤[n]ĥ
}

= E
{

d2[n]
}

− 2(ĥ)⊤E {d[n]x[n]}+ (ĥ)⊤E
{

x[n]x⊤[n]
}

ĥ

To minimize the MSE, we take a gradient of the MSE with respect to ĥ,
set it equal to zero, and solve for ĥ. This results in L equations...

WPI D.R. Brown III 7 / 19



Adaptive Filtering Basics

Gradient Review

For f : RL 7→ R, recall the gradient is defined as

∇af(a) =









∂f(a)
∂a0
...

∂f(a)
∂aL−1









For example, suppose a = [a0, a1]
⊤ and

f(a) = a⊤a = a20 + a21.

Then

∇af(a) =

[

2a0
2a1

]

= 2a

It is not difficult to show for general a, b, and C of proper dimensions that

∇a(a
⊤b) = b

∇a(a
⊤Ca) = 2Ca.

WPI D.R. Brown III 8 / 19



Adaptive Filtering Basics

Minimum Mean Squared Error

We have

MSE = E
{

d2[n]
}

− 2(ĥ)⊤E {d[n]x[n]}+ (ĥ)⊤E
{

x[n]x⊤[n]
}

ĥ

The gradient can be computed as

∇
ĥ
MSE = 0− 2E {d[n]x[n]}+ 2E

{

x[n]x⊤[n]
}

ĥ

This can be rearranged and solved for ĥ to write

ĥ =
(

E
{

x[n]x⊤[n]
})−1

E {d[n]x[n]}

= R−1p

where R ∈ R
L×L is the autocorrelation matrix of the input and p ∈ R

L is
the cross correlation vector of the input with the output of unknown
system.

WPI D.R. Brown III 9 / 19



Adaptive Filtering Basics

Remarks

MMSE solution:

ĥ = R−1p

1. This is a generalization of our previous result for when the unknown
system was a gain. In that case we had

R = E{x2[n]}

p = E{d[n]x[n]}

and ĝ = p/R = R−1p.

2. We assume we have control of x[n], so we can always make
R = E

{

x[n]x⊤[n]
}

invertible.

WPI D.R. Brown III 10 / 19



Adaptive Filtering Basics

Computing Minimum Mean Squared Error

We have the MMSE solution

ĥ = R−1p

with R = E
{

x[n]x⊤[n]
}

and p = E {d[n]x[n]}. In practice, we can
approximate the expectations by computing the averages

R ≈
1

N

N−1
∑

n=0

x[n]x⊤[n]

p ≈
1

N

N−1
∑

n=0

d[n]x[n]

Then we have to compute the matrix inverse R−1 (with complexity
O(L3)) and the matrix vector product R−1p (with complexity O(L2)).
This is easy enough in Matlab, but more difficult on the DSK.

See the Matlab code sysid.m on the course website.
WPI D.R. Brown III 11 / 19



Adaptive Filtering Basics

Computing Minimum Mean Squared Error: A Trick

If the input signal is “white” so that x[n] is statistically independent of
x[m] for all n 6= m, then

R = ρI =







ρ
. . .

ρ







This is easy to invert and the resulting MMSE estimate of the unknown
system’s impulse response is simply

ĥ = R−1p =
1

ρ
p.

Even with this trick, this approach is not desirable for a real-time system
because of its batch nature. We still have to collect lots of samples to
approximate the expectations.

We would like a way of automatically adapting ĥ as new samples arrive so
that ĥ → h and the mean squared error is minimized.

WPI D.R. Brown III 12 / 19



Adaptive Filtering Basics

Exact Derivative Descent

ĝ

f(ĝ)

ĝ[0]ĝ[1]ĝ[2]

Idea: Starting from an initial guess ĝ[0], take small steps proportional to
the negative of the derivative of the objective function f(ĝ).

ĝ[n+ 1] = ĝ[n]− µ

[

∂

∂a
f(a)

]

a=ĝ[n]

WPI D.R. Brown III 13 / 19



Adaptive Filtering Basics

Exact Derivative Descent for System ID

For the case when our unknown system is a gain, we have

∂

∂ĝ
MSE = − 2E{d[n]x[n]} + 2ĝE{x2[n]}

= − 2p+ ĝ2R

So (absorbing the factor of 2 into the stepsize µ), the exact derivative
descent algorithm would be implemented as

ĝ[n+ 1] = ĝ[n]− µ(ĝ[n]R− p)

Remarks:
◮ As long as µ is small enough, this is guaranteed to converge since the

MSE objective function is quadratic and has a unique minimum.
◮ Note that this iteration avoids the division required to compute the

MMSE solution directly, i.e., ĝ = p/R.
◮ More “adaptive” than the direct (batch) estimator, but we still need

to collect samples and estimate R and p.
WPI D.R. Brown III 14 / 19



Adaptive Filtering Basics

Exact Gradient Descent

The same idea works with multidimensional objective functions
f : RL 7→ R except we use a gradient rather than a derivative.

ĥ0

ĥ1

ĥ[0]

ĥ[n+ 1] = ĥ[n]− µ [∇af(a)]a=ĥ[n]

WPI D.R. Brown III 15 / 19



Adaptive Filtering Basics

Exact Gradient Descent for System ID

For a FIR unknown system, we have

∂

∂ĥ
MSE = − 2E{d[n]x[n]}+ 2E{x[n]x⊤[n]}ĥ

= − 2p + 2Rĥ

Like before, the exact gradient descent algorithm would be implemented as

ĥ[n+ 1] = ĥ[n]− µ(Rĥ[n]− p)

Remarks:
◮ As long as µ is small enough, this will also guaranteed to converge

since the MSE objective function is (multidimensional) quadratic and
has a unique minimum.

◮ Note that this iteration avoids the matrix inverse required to compute
the MMSE solution directly, i.e., ĝ = R−1p.

◮ More “adaptive” than the direct (batch) estimator, but we still need
to collect samples and estimate R and p.

WPI D.R. Brown III 16 / 19



Adaptive Filtering Basics

Approximate Gradient Descent for System ID (1/2)

The main problem with the exact gradient descent algorithm is that we
have to collect lots of samples to get accurate estimates of R and p.

R ≈
1

N

N−1
∑

n=0

x[n]x⊤[n]

p ≈
1

N

N−1
∑

n=0

d[n]x[n]

These approximations become more accurate as N becomes larger.

What if we did something dumb? What if we just set N = 1?

R̃[n] = x[n]x⊤[n]

p̃[n] = d[n]x[n]

These are terrible estimates of R and p!
WPI D.R. Brown III 17 / 19



Adaptive Filtering Basics

Approximate Gradient Descent for System ID (2/2)

Bad estimates of R and p:

R̃[n] = x[n]x⊤[n]

p̃[n] = d[n]x[n]

Let’s just plug these into our gradient descent algorithm and see what
happens (recall that y[n] = (ĥ[n])⊤x[n] = x⊤[n]ĥ[n]):

ĥ[n+ 1] = ĥ[n]− µ(R̃ĥ[n]− p̃)

= ĥ[n]− µ(x[n]x⊤[n]ĥ[n]− d[n]x[n])

= ĥ[n]− µ(x[n]y[n]− d[n]x[n])

= ĥ[n]− µ(y[n]− d[n])x[n]

= ĥ[n] + µe[n]x[n]

This is called the “Least Mean Squares” (LMS) algorithm. LMS is the
“workhorse of adaptive filtering”.

WPI D.R. Brown III 18 / 19



Adaptive Filtering Basics

LMS Basics

Recursion:
ĥ[n+ 1] = ĥ[n] + µe[n]x[n]

Remarks:

◮ Completely sample-by-sample operation.

◮ Start with any guess ĥ[0] you want (avoid infinities and NaNs).
Remarkably, this is guaranteed to converge to the MMSE solution if µ
is sufficiently small.

◮ Convergence is not monotonic like exact gradient descent, but the
convenience of not having to estimate R and p is generally more
desirable.

WPI D.R. Brown III 19 / 19


