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Adaptive Filtering Basics

Problem Statement and Assumptions

unknown system known
known (assumed LTI) (but noisy)
input output
wln]
noise

» We want to estimate the impulse response of the unknown system.

» Just sending x[n] = d[n] is not a good idea because we don't get any
averaging.

» Our approach: build an “auxiliary system” and minimize the mean
squared error.
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Adaptive Filtering Basics

Auxiliary System

known
unknown system (but noisy)
known (assumed LTI) output
input d[n] error
z[n] > H D e[n]
A
wn]
noise
yln]

» A

auxiliary system output (known)

The mean squared error (MSE) is defined as
MSE = E {€®[n]} = E{(d[n] — y[n])*} .

We want to design the auxiliary system to minimize the MSE.
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Adaptive Filtering Basics
Warmup Problem: Unknown System is a Gain

Suppose H is simply a gain g and we wish to estimate this gain.
The auxiliary system is also a gain denoted as g.
The MSE is then

MSE = E {(d[n] — y[n])*}

= E{d*[n] — 2d[n]§z[n] + §°2*[n]}
= E{d’[n]} — 20E {d[n]a[n]} + §°E {«*[n]}

To minimize the MSE, we take a derivative of MSE with respect to g, set
it equal to zero, and solve for §. This results in

G= E{d[n]zn]} _ DI 1d[ Jz[n]
E{a?[n]} NZn ~o 22[n]
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Adaptive Filtering Basics
Remarks

The minimum MSE (MMSE) solution is:
. _ E{d[njz[n]}
I EERD

Recall the output of the unknown system is d[n] = gx[n] + w[n]. We can
substitute for d[n] and use the linearity of the expectation to write
E{lgzln] +wip)zlnly _ | E{win]zlnl}

E{?[n]} E{a?n]}

If 2:[n] is statistically independent of w[n] (which is usually is) and one or
both are zero mean then

g=

E{w[n]z[n]} = E{w(n]} E{z[n]} = 0.

Hence, if you have enough samples to accurately compute the
expectations, this estimator converges to the correct value: § — g.
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Problem: Unknown System is an FIR Filter

Suppose H is now a FIR filter with impulse response {h[0],...,h[L — 1]}
and we wish to estimate this impulse response.

The auxiliary system is also a FIR filter with impulse response denoted as
{n[0],...,h[L —1]}.

Note that the output of the auxiliary system can be written as

L—1
yln] =Y hikzln — k] = (k) z[n]
k=0
where
[ oho]
h = : and x[n] = :
h|L — 1] z[n — (L —1)]

This is just a representation of convolution as an inner/dot product.
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Adaptive Filtering Basics
Mean Squared Error

Recall that
(a'b)?=a"bb'a=0b"aa'b.

The MSE is then
MSE = E {(d[n] — y[n])*}
= E{(dln] - () "[n])*}
—E {d2 n] — 2d[n](h) T z[n] + (ﬁ)Tm[n]xT[n]ﬁ}
= E{d2[n]} — 2(h)E {d[n]z[n]} + (h)TE {m[n]xT[n]} h

To minimize the MSE, we take a gradient of the MSE with respect to h,
set it equal to zero, and solve for h. This results in L equations...
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Gradient Review

For f : RY — R, recall the gradient is defined as
of(a)

dag
vaf(a) =
of(a)

dar_1

For example, suppose a = [ag,a;]' and
fla)=a"a=a2+d2.

lhen
v f( 2a0 9
) 2&1

It is not difficult to show for general a, b, and C of proper dimensions that
Vala'b)=b
Va(aTCa) =2Ca.
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Adaptive Filtering Basics
Minimum Mean Squared Error

We have
MSE = E {@®[n]} — 2(h) "E {d[n]z[n]} + (h)TE {w[n]mT[n]} h

The gradient can be computed as

V; MSE = 0 — 2E {d[n]z[n]} + 2E {.’n[n]xT[n]} h

This can be rearranged and solved for h to write

~

b= (E{alna"(n}) " E{dplef))
=R p

where R € REXL s the autocorrelation matrix of the input and p € R” is
the cross correlation vector of the input with the output of unknown
system.
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Adaptive Filtering Basics
Remarks

MMSE solution:

h=R'p

1. This is a generalization of our previous result for when the unknown
system was a gain. In that case we had

R = E{«*[n]}
p = E{d[n]z[n]}
and § =p/R =R !p.

2. We assume we have control of z[n], so we can always make
R =E{z[n]z"[n]} invertible.
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Computing Minimum Mean Squared Error

We have the MMSE solution
h= R 'p

with R = E {z[n]z[n]} and p = E {d[n]z[n]}. In practice, we can
approximate the expectations by computing the averages

Then we have to compute the matrix inverse R~! (with complexity
O(L?)) and the matrix vector product R™'p (with complexity O(L?)).
This is easy enough in Matlab, but more difficult on the DSK.

See the Matlab code sysid.m on the course website.
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Computing Minimum Mean Squared Error: A Trick

If the input signal is “white” so that z[n] is statistically independent of
x[m] for all n # m, then

p

This is easy to invert and the resulting MMSE estimate of the unknown
system's impulse response is simply
h= R 'p= 1p.
p
Even with this trick, this approach is not desirable for a real-time system
because of its batch nature. We still have to collect lots of samples to
approximate the expectations.

We would like a way of automatically adapting h as new samples arrive so

that h — h and the mean squared error is minimized.
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Adaptive Filtering Basics
Exact Derivative Descent

f(9)

T I T §
912191} 9[0]

Idea: Starting from an initial guess §[0], take small steps proportional to
the negative of the derivative of the objective function f(§).

dln 1] = glr] ~ 1 | (@)
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Adaptive Filtering Basics
Exact Derivative Descent for System ID

For the case when our unknown system is a gain, we have

0
5EMSE: — 2E{d[n]x[n]} + 29E{x*[n]}
= —2p+92R
So (absorbing the factor of 2 into the stepsize p), the exact derivative
descent algorithm would be implemented as

g9ln +1] = gln] — p(9[n]R — p)
Remarks:

» As long as u is small enough, this is guaranteed to converge since the
MSE objective function is quadratic and has a unique minimum.

» Note that this iteration avoids the division required to compute the
MMSE solution directly, i.e., § = p/R.

» More “adaptive” than the direct (batch) estimator, but we still need
to collect samples and estimate R and p.
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Exact Gradient Descent

The same idea works with multidimensional objective functions
f : RY = R except we use a gradient rather than a derivative.

h

h[0]

ﬁ[n + 1] = ﬁ[n] — M [vaf(a)]a:ﬁ[n]
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Exact Gradient Descent for System ID

For a FIR unknown system, we have

0 = — n|xin mann h
S FMSE = — 2E{dln]e[n]} + 2{zln]z ]}

= —2p+2Rh
Like before, the exact gradient descent algorithm would be implemented as
h[n +1] = hn] — p(Rh[n] - p)

Remarks:

» As long as p is small enough, this will also guaranteed to converge
since the MSE objective function is (multidimensional) quadratic and
has a unique minimum.

» Note that this iteration avoids the matrix inverse required to compute
the MMSE solution directly, i.e., g = R~ 'p.

» More “adaptive” than the direct (batch) estimator, but we still need
to collect samples and estimate R and p.
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Approximate Gradient Descent for System ID (1/2)

The main problem with the exact gradient descent algorithm is that we
have to collect lots of samples to get accurate estimates of R and p.

These approximations become more accurate as N becomes larger.

What if we did something dumb? What if we just set N =17

Rn] = z[njx

T T
p[n] = d[n]z[n]

n]

These are terrible estimates of R and p!
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Approximate Gradient Descent for System ID (2/2)

Bad estimates of R and p:

R[] = a[n]a" 1]

pln] = d[n]z[n]

Let's just plug these into our gradient descent algorithm and see what
happens (recall that y[n] = (h[n])"x[n] = =" [n]h[n]):

hln +1] = hln] — p(Rhn] - p)
= h[n] — p(z[n]a" [n]h[n] — dn]e[n])
= h[n] — u(x[n]y[n] — dn]a[n])
= h[n] — u(yln] — din])z[n]
= hn] + peln]z[n]

This is called the “Least Mean Squares” (LMS) algorithm. LMS is the

“workhorse of adaptive filtering”.
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LMS Basics

Recursion: X R
h[n + 1] = h[n] + pe[n]z(n]
Remarks:
» Completely sample-by-sample operation.

> Start with any guess h[0] you want (avoid infinities and NaNs).
Remarkably, this is guaranteed to converge to the MMSE solution if
is sufficiently small.

» Convergence is not monotonic like exact gradient descent, but the
convenience of not having to estimate R and p is generally more
desirable.
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