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Some Challenges of Real-Time DSP
�  Analog to digital conversion

�  Are we sampling fast enough?

�  How much quantization noise have we added to the original analog 
signal?

�  Are we clipping?

�  ADC non-idealities like non-linear response, etc.

�  Digital to analog conversion
�  How much distortion is added by the reconstruction filter?

�  DAC non-idealities like non-linear response, etc.

�  DSP
�  Are we running in real time?

�  Do we have enough memory?

�  Distortion caused by digital processing, e.g. overflow, underflow, fixed 
point effects, etc.



Analog To Digital Conversion

� An ADC performs two functions:
�  sampling: convert a continuous-time (CT) signal 

to a discrete-time (DT) signal

�  quantization: convert a continuous-valued (CV) 
signal to a discrete-valued (DV) signal

ADC analog 
signal 

digital 
signal 



ADC Sampling (CT è DT)

�  Recall Nyquist’s sampling theorem (ECE2312): A 
bandlimited CT signal with maximum frequency B Hz can be 
uniquely recovered from its samples only if the sampling 
frequency fs >= 2B samples per second

�  Reconstruction formula (DT è CT, performed by DAC): �
�
�
�
�
xr(t) = xa(t) if fs >= 2B (see ECE2312 textbook for proof).



DAC Sinc Reconstruction 
(Kehtarnavaz Figure 2-17)



Sampling Example

� What is the minimum sampling frequency to 
allow for exact recovery of the original 
analog signal from its samples?



Sampling Example: No Aliasing (fs=50)



Sampling Example: Aliasing (fs=10)



Aliasing Audio Examples

�  Please see file aqc.m on course website



ADC Quantization (CV è DV) 
�  An N-bit quantizer converts a continuous valued 

(CV) signal to a discrete valued (DV) signal with 2N 
discrete values

�  Remarks:
�  Unlike sampling, quantization always causes irreversible 

distortion of the signal

�  Two types of distortion:
○  Saturation/clipping
○  Quantization error

�  In normal cases with no clipping, increasing the number of 
bits (N) typically decreases the distortion caused by 
quantization



3-bit Ideal Quantization

saturation/clipping

saturation/clipping



3-bit Ideal Quantization 
(Kehtarnavaz Figure 2-15)

quantization error



Quantizer + Reconstruction Example 
(N=4, fs=50)



Signal to Noise Ratio of Quantization

Bottom line: Best SNR is achieved when analog input signal amplitude�
is as large as possible without saturation/clipping. 



Basic Quantization in Matlab
�  Matlab variables are typically 64-bit double-precision 

floating point. We often refer to this as “infinite precision”.

�  One way to quantize vectors Matlab:
�  First check for saturation: �

vref	=	1;	
i1	=	find(x>vref*(2^(N-1)-1)/(2^(N-1)));	
x(i1)	=	vref*(2^(N-1)-1)/(2^(N-1));	
i2	=	find(x<-vref);	
x(i2)	=	-vref;	

�  Then perform quantization: �
xq	=	round((x/vref)*2^(N-1))*vref/(2^(N-1));	

�  You can also compute quantization error�
equant	=	x-xq;	



Advanced Quantization in Matlab
�  See Matlab’s Fixed Point Designer
� Useful functions:

�  fi (fixed point numeric objects)
�  fixed.quantizer (create a quantizer object)

�  quantize (apply quantizer object to data)

	%	EXAMPLE:	Use	Quantizer	object	to	reduce	the	wordlength	resulting		
				%										from	adding	two	fixed-point	numbers		
				Q	=	fixed.Quantizer;	%	Signed,	WordLength=16,	FractionLength=15	
				x1	=	fi(0.1,1,16,15);	
				x2	=	fi(0.8,1,16,15);	
				y		=	quantize(Q,x1+x2);	



Signals Review: Impulse Response
�  Definition: A discrete time impulse function, d[n], is 

defined as: d[n] = 1 if n=0, d[n] = 0 otherwise.

�  Definition: The “impulse response” of a linear time 
invariant filter is the output that occurs if the input is d[n].

n 

d[n] 

d[n] LTI filter
n 
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�  Definition: A filter is FIR if there exists N<∞ such that the 
filter’s impulse response h[n]=0 for all n>N.

�  FIR filters are frequently used in real-time DSP systems
�  Simple to implement
�  Guaranteed to be stable
�  Can have nice properties like linear phase

�  Input/output relationship

x = input, y = output, h = impulse response (aka “filter coefficients”)
M = # of filter coefficients

Finite Impulse Response (FIR) 
Filtering – Basics



Finite Impulse Response (FIR) 
Filtering – More Basics
�  Transfer function (useful for what?)

�  Frequency response (useful for what?)



Implementation of FIR Filters

�  If everything is “infinite precision”, then there isn’t 
too much to worry about (except real-time 
considerations)

�  Finite precision raises some issues:
�  Precision:

○  How is the input signal quantized?
○  How is the output signal quantized?
○  How are the filter coefficients quantized?
○  How are intermediate results (products, sums) 

quantized/stored?

�  “Realization Structure”
○  In what order should we do the calculations?

Actual performance can
be significantly affected

by these choices.

FIR filtering is usually�
less sensitive to these 

choices than IIR�
filtering because there is no 

feedback.



Typical Procedure for Designing and 
Implementing FIR Filters
1.  Design filter

�  Type: low pass, high pass, band pass, band stop, ...
�  Filter order M
�  Desired frequency response

2.  Decide on a realization structure 
3.  Decide how coefficients will be quantized.
4.  Compute coefficients
5.  Decide how everything else will be quantized (input 

samples, output samples, products, and sums)
6.  Write code to realize filter (based on step 2)
7.  Test filter and compare to theoretical expectations

Matlab 

CCS 



Tools for Designing FIR Filters

>> fdatool 



Filter Realization Structures
�  Filter realization structure specifies how past calculations are stored and the 

order in which calculations are performed.
�  Lots of different structures available

�  Direct form I, direct form II, transposed forms, cascade, parallel, lattice, …
�  Choice of structure affects computational complexity and how quantization errors 

are manifested through the filter

 

right click 
in this pane 

Focus on “Direct form” for now. 
We’ll discuss other options when 

we look at IIR filtering later.



Direct Form I Filter Structure

(picture from Matlab’s help system)

Just a pictorial depiction
of convolution.
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Compute FIR Filter Coefficients

set up filter and press 



Make Coefficient File For CCS

Here you can change the coefficient data type to match 
your desired coefficient quantization.



Main Datatypes for FIR/IIR Filtering

�  Signed integer:
�  (8 bit) signed char: -128 to +127

�  (16 bit) short: -32768 to +32767

�  (32 bit) int: -215E6 to 215E6

�  Floating point:
�  (32 bit) float: -3.4E38 to +3.4E38 with numbers 

as small as 1.175E-38
�  (64 bit) double: -1.7E308 to +1.7E308 with 

numbers as small as 2.2E-308



Example DP-FP Coefficient File
/* 
 * Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool 
 * 
 * Generated by MATLAB(R) 7.0 and the  
 * 
 * Generated on: 19-Aug-2005 13:04:09 
 * 
 */ 
 
/* 
 * Discrete-Time FIR Filter (real) 
 * ------------------------------- 
 * Filter Structure  : Direct-Form FIR 
 * Filter Order      : 8 
 * Stable            : Yes 
 * Linear Phase      : Yes (Type 1) 
 */ 
 
/* General type conversion for MATLAB generated C-code  */ 
#include "tmwtypes.h" 
/*  
 * Expected path to tmwtypes.h  
 * C:\MATLAB7\extern\include\tmwtypes.h  
 */ 
const int BL = 9; 
const real64_T B[9] = { 
    0.02588139692752,  0.08678803067191,   0.1518399865268,   0.2017873498839, 
     0.2205226777929,   0.2017873498839,   0.1518399865268,  0.08678803067191, 
    0.02588139692752 
}; 

Note this new header
file needed for CCS to
understand Matlab’s
strange data types.

Add this header file
to your project (in the Matlab 

directory tree) or edit the 
datatypes.



FIR Filter Coefficient 
Quantization Considerations
�  Key choice: floating point vs. fixed point
�  Advantages of floating point math:

�  Less quantization error (more precision)
�  Don’t have to worry about overflow
�  Don’t have to worry about keeping track of scaling factors
�  Much easier to code

�  Disadvantages of floating point math:
�  Executes slower than fixed point
�  Requires you to use a floating-point DSP ($$$, power, heat,…)

�  C code allows you to “cast” variables into any datatype



Casting Variables in C
short a,b,c; // 16-bit signed integers
double x,y,z; // double-precision float

x = 456.78;
a = (short) x;

a = -4321;
x = (double) a;

x = 33333;
a = (short) x;  // What happens here?

Note:  Type casting takes precedence over most math operators.



Write Code to Realize FIR Filter

�  Direct form I implies direct realization of the 
convolution equation (multiply and accumulate)

�  Some practical considerations:
�  Allocate buffer of length M for filter coefficients.
�  Allocate buffer of length M for input samples.
�  Move input buffer pointer as new data comes in or 

move data? 



Double-Precision Floating Point 
Filter Realization

�  Since everything is DP-FP, you don’t need to worry about 
overflow (except at the output) 

�  Keeping track of the largest positive and largest negative 
intermediate results is optional, but will help with:
�  Detecting overflow in the output (short)

�  Designing a fixed-point implementation with proper 
scaling factors that avoids overflow (Lab 3)



Verifying your real-time filter 
works correctly
�  Method 1: Sinusoids (easy but labor intensive)

�  Make a table with columns for f, ain, and aout

�  Generate input sinusoid at frequency f with amplitude ain. 

�  LTI filter output will also be at frequency f but with amplitude aout.

�  Magnitude response of the filter is 20log10(aout/ain)
�  Compare actual magnitude response to the predicted response from 

Matlab

�  Method 2: White noise (more complicated but less work)
�  Generate at least 10 seconds of a white noise input signal (matlab 

command rand or randn)
�  Record your digital filter output to a .wav file

�  Use Matlab commands wavread and pwelch to estimate “power 
spectral density” of the digital filter output


