
ECE503: The FFT & Number Representation

ECE503: The FFT & Number Representation

Lecture 10

D. Richard Brown III

WPI

02-Apr-2012

WPI D. Richard Brown III 02-Apr-2012 1 / 21



ECE503: The FFT & Number Representation

Lecture 10 Topics

1. A brief introduction to asymptotic complexity

2. Complexity analysis of the DFT

3. The Cooley-Tukey radix-2 decimation in-time fast Fourier transform
(R2DIT-FFT) (Textbook 11.3)

4. Number representation (Textbook 11.8)

5. Fixed-point basics

WPI D. Richard Brown III 02-Apr-2012 2 / 21



ECE503: The FFT & Number Representation

Asymptotic Complexity of Algorithms

Suppose you have an algorithm A that operates on discrete-time
sequences of length N and requires g(N) “operations” to complete.
Operations could be things like:

◮ Multiplications

◮ Multiply+accumulates (MACs)

◮ Comparisons

◮ Memory accesses

◮ etc.

We say algorithm A has asymptotic complexity of O(f(N)) if

lim
N→∞

g(N)

f(N)
= c > 0

where c is a positive constant (not a function of N).

WPI D. Richard Brown III 02-Apr-2012 3 / 21



ECE503: The FFT & Number Representation

Some Asymptotic Complexity Examples

Suppose you have an algorithm A to sort a sequence of N numbers and
you determine it requires g(N) = 6N + 12 comparisons to complete.
What is the asymptotic complexity?

What if you improved the algorithm so that it requires g(N) = N/2 + 5
comparisons?

Some real world examples:

◮ Finding an item in a sorted array with a binary search: O(logN).

◮ Matrix inversion via Gaussian elimination: O(N3).

◮ Solving the traveling salesman problem via dynamic programming:
O(aN ) with a > 1.

WPI D. Richard Brown III 02-Apr-2012 4 / 21



ECE503: The FFT & Number Representation

Asymptotic Complexity of the DFT

To determine the asymptotic complexity of the DFT, recall

X[k] =

N−1
∑

n=0

x[n]W kn

N for k = 0, 1, . . . , N − 1.

The most relevant measure of “operations” here is multiplies or
multiply+accumulates (MACs). In our analysis, let’s assume the W kn

N
are

all computed in advance (and, hence, are not included in the complexity
analysis). Your textbook discusses how these can be computed on the fly
via Goertzel’s Algorithm.

How many (complex) multiplies to compute the DFT?

How many (complex) additions to compute the DFT?

If we define “operations” as multiplies (or additions, or MACs), what is
the asymptotic complexity of the DFT?

WPI D. Richard Brown III 02-Apr-2012 5 / 21



ECE503: The FFT & Number Representation

The Cooley-Tukey Radix-2 Decimation-in-Time FFT
Main idea: Suppose you are given a length-N sequence {x[n]} (with N even) and
wish to compute the DFT {X [k]}. What if we did this?

1. Split x[n] into two length-N
2
sequences

{x[n]} = {x[0], x[2], . . . , x[N − 2]}+ {x[1], x[3], . . . , x[N − 1]}.

2. Reindex and call the first sequence {xeven[n]} for n = 0, . . . , N/2− 1.

3. Reindex and call the second sequence {xodd[n]} for n = 0, . . . , N/2− 1.

4. Compute the length-N
2
DFTs: {Xeven[k]} = DFT{xeven[n]} and

{Xodd[k]} = DFT{xodd[n]}. Each of these DFTs has ≈ N
2

4
operations.

5. Assemble the length-N
2
DFTs into the desired length-N DFT {X [k]} via

X [k] =

{

Xeven[k] +W k

N
Xodd[k] k = 0, . . . , N

2
− 1

Xeven[k − N

2
] +W k

N
Xodd[k − N

2
] k = N

2
, . . . , N − 1

How many total operations? ≈ N
2

4
+ N

2

4
+N . Still O(N2). But what if we

repeated this “divide and conquer” approach all the way to one-point DFTs?
WPI D. Richard Brown III 02-Apr-2012 6 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: N = 1

When N = 1, there is nothing to divide into even and odd parts, so we
will just use the DFT. The DFT equation:

X[k] =

N−1
∑

n=0

x[n]W kn

N for k = 0, 1, . . . , N − 1

When N = 1, we have

X[0] = x[0]e0 = x[0]

No multiplies or additions. Hence a one-point DFT/FFT has no MACs.

WPI D. Richard Brown III 02-Apr-2012 7 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: N = 2

Two-point FFT computed using radix-2 decimation in time:
{x[n]} = {x[0], x[1]}.

X[0] = Xeven[0] +W 0
2Xodd[0] = Xeven[0] +Xodd[0]

X[1] = Xeven[0] +W 1
2Xodd[0] = Xeven[0] −Xodd[0]

Note that Xeven[k] and Xodd[k] for k = 0, 1 are just one-point FFTs.

Xeven[0] = DFT1{x[0]} = x[0]

Xodd[0] = DFT1{x[1]} = x[1]

Hence,

X[0] = x[0] + x[1]

X[1] = x[0]− x[1]

How many MACs in the R2-DIT two-point FFT?

Note that the two-point DFT and FFT are identical.
WPI D. Richard Brown III 02-Apr-2012 8 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: N = 4

Four-point FFT computed using radix-2 decimation in time:

X[0] = Xeven[0] +W 0
4Xodd[0] = Xeven[0] +Xodd[0]

X[1] = Xeven[1] +W 1
4Xodd[1] = Xeven[1]− jXodd[1]

X[2] = Xeven[0] +W 2
4Xodd[0] = Xeven[0]−Xodd[0]

X[3] = Xeven[1] +W 3
4Xodd[1] = Xeven[1] + jXodd[1]

Computation of {Xeven[0],Xeven[1]} = FFT2{x[0], x[2]} requires how
many MACs? 2

Computation of {Xodd[0],Xodd[1]} = FFT2{x[1], x[3]} requires how many
MACs? 2

How many more MACs are required to assemble the results into a
four-point FFT? 4

Hence, the total MACs needed to compute a four-point FFT is 8.
WPI D. Richard Brown III 02-Apr-2012 9 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: N = 8

Eight-point FFT computed using radix-2 decimation in time follows the
same accounting:

X[k] = Xeven[k] +W k

8 Xodd[k] for k = 0, 1, . . . , 7

Computation of
{Xeven[0],Xeven[1],Xeven[2],Xeven[3]} = FFT4{x[0], x[2], x[4], x[6]}
requires how many MACs? 8

Computation of
{Xodd[0],Xodd[1],Xodd[2],Xodd[3]} = FFT4{x[1], x[3], x[5], x[7]} requires
how many MACs? 8

How many more MACs are required to assemble the results into an
eight-point FFT? 8

Hence, the total MACs needed to compute an eight-point FFT is 24.
WPI D. Richard Brown III 02-Apr-2012 10 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: N = 8

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

2-pt
DFT

2-pt
DFT

2-pt
DFT

2-pt
DFT

assemble
4-pt FFT

assemble
4-pt FFT

assemble
8-pt FFT

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

2 MACs each = 
8 MACs total

4 MACs each = 
8 MACs total

8 MACs 

See also Figure 11.21 in your textbook.
WPI D. Richard Brown III 02-Apr-2012 11 / 21



ECE503: The FFT & Number Representation

FFT Complexity Analysis: General N

Operation MACs

Computation of N one-point FFTs 0

Assembling N

2
two-point FFTs from N one-point FFTs N

2
· 2 = N

Assembling N

4
four-point FFTs from N

2
two-point FFTs N

4
· 4 = N

Assembling N

8
eight-point FFTs from N

4
four-point FFTs N

8
· 8 = N

...
...

Assembling one N -point FFT from two N

2
-point FFTs 1 ·N = N

Hence, the total MACs needed to compute an N -point FFT is .

WPI D. Richard Brown III 02-Apr-2012 12 / 21



ECE503: The FFT & Number Representation

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

log2(N)

M
A

C
s

 

 
DFT
FFT

WPI D. Richard Brown III 02-Apr-2012 13 / 21



ECE503: The FFT & Number Representation

Floating-Point vs. Fixed-Point

Computing the output of an IIR filter (direct form I example):

y[n] = b0x[n] + b1x[n− 1]− a1y[n− 1].

When implementing DSP algorithms like filters, there is a fundamental
choice between using floating-point or fixed-point math.

Floating-Point Advantages Fixed-Point Advantages

More accurate Less expensive

Easier to code Typically faster

Typically lower power

Floating-point datatypes in C include float (32 bit IEEE) and double

(64-bit IEEE). Matlab defaults to double-precision floating-point math.

You can buy DSPs that have built-in hardware support for floating-point
math, but these have limited application because they are expensive, slow,
and tend to be less power efficient than fixed-point DSPs.

WPI D. Richard Brown III 02-Apr-2012 14 / 21



ECE503: The FFT & Number Representation

Fixed-Point Numbers (part 1)

First, recall M -bit binary unsigned integer representation:

q = {MSB, . . . ,LSB} = {bM−1, bM−2, . . . , b0}
e.g.
= 10110

The base-10 value of q is easily computed as

q =
M−1
∑

m=0

bm2m
e.g.
= 0 + 2 + 4 + 0 + 16 = 22

Fixed point numbers are just a generalization of this idea where we add a
binary decimal point denoted by ∆. For example:

q = 10∆110

In this example, there are b = 3 “fractional bits”. We can compute q as

q =
M−1
∑

m=0

bm2m−b e.g.
= 0 +

1

4
+

1

2
+ 0 + 2 = 2.75 =

22

8
=

integer value

2b

WPI D. Richard Brown III 02-Apr-2012 15 / 21



ECE503: The FFT & Number Representation

Fixed-Point Numbers (part 2)

Negative fixed-point numbers are just like negative integers. Typically
these are stored in two’s complement representation.

Example: Write an 8-bit binary two’s complement representation of
-1.375 given a fixed-point representation with four fractional bits.

Step 1: Determine the 8-bit binary representation of +1.375: q = 0001∆0110.

Step 2: Invert the bits: q = 1110∆1001.

Step 3: Add 1: q = 1110∆1010.

Step 4: Check (in this case, bM−1 is called the “sign bit”):

q = − bM−12
M−b +

M−2
∑

m=0

bm2m−b

= − 8 + 0 +
1

8
+ 0 +

1

2
+ 0 + 2 + 4 = −1.375

WPI D. Richard Brown III 02-Apr-2012 16 / 21



ECE503: The FFT & Number Representation

Fixed-Point Addition

Just like binary integer addition except

◮ you must make sure the decimal points are aligned and

◮ you have to check for overflow.

Example 1: q1 = 0011∆0110 and q2 = 0001∆0011, compute q1 + q2.
The decimal points are aligned, so we can add these to get
q1 + q2 = 0100∆1001. No overflow. You can check this result in base-10.

Example 2: q1 = 0011∆0110 and q2 = 000∆10011, compute q1 + q2.
The decimal points are not aligned here, so we either need to convert q1
to a representation with 5 fractional bits or convert q2 to a representation
with 4 fractional bits before we can add.

◮ First option: q1 = 011∆01100. Then q1 + q2 = 011∆11111.

◮ Second option: q2 = 0000∆1001 (note we’ve lost some precision
here). Then q1 + q2 = 0011∆1111.

Neither option overflowed. Option 1 is more accurate.
WPI D. Richard Brown III 02-Apr-2012 17 / 21



ECE503: The FFT & Number Representation

Types of Overflow

computed value

saturated result

largest positive number

largest negative number

computed value

wrapped result

largest positive number

largest negative number

WPI D. Richard Brown III 02-Apr-2012 18 / 21



ECE503: The FFT & Number Representation

Overflow Examples & Remarks

In these examples, we assume q1 and q2 are signed fixed-point numbers.

Example 1: q1 = 0111∆0110 and q2 = 0001∆0011, compute q1 + q2
assuming saturation overflow. The decimal points are aligned, so we can
add these to get q1 + q2 = 1000∆1001. Note the sign bit is one, which
shouldn’t happen when we add two positive numbers. Hence we
overflowed. The saturated result is q1 + q2 = 0111∆1111.

Example 2: q1 = 0111∆0110 and q2 = 0001∆0011, compute q1 + q2
assuming wrapped overflow. The decimal points are aligned, so we can
add these to get q1 + q2 = 1000∆1001. This is the wrapped result.

Remarks:
◮ Your textbook calls wrapped overflow “two’s complement overflow”.
◮ Generally, wrapped overflow is worse than saturated overflow, but

sometimes it works out when you are adding a sequence of numbers
that the final result is correct with wrapped overflow (see homework).

◮ Overflow is usually devastating to filtering.
WPI D. Richard Brown III 02-Apr-2012 19 / 21



ECE503: The FFT & Number Representation

Quantization Error

We define the quantization error as the difference between the number we are
trying to represent and the number we actually get in our fixed-point/quantized
representation:

ǫ = Q(x)− x

where Q(x) is the fixed-point/quantized value and x is the unquantized value.

Example: x = π and we quantize x to a signed 8-bit fixed-point datatype with
3 fractional bits. We can compute the closest quantized value in this case falls at
Q(π) = 3.125, which can be written as q = 00011∆001 in binary. The
quantization error is then ǫ = Q(π)− π ≈ −0.0166.

Quantization errors tend to be much bigger if we have overflow.

Example: x = π and we quantize x to a signed 8-bit fixed-point datatype with
6 fractional bits. We can compute the closest quantized value in this case falls at
Q(π) = 3.140625, but this value is above the largest positive value of our
datatype. With saturation overflow, we would have Q(π) = 1.984375 and the
quantization error is then ǫ = Q(π)− π ≈ −1.1572.

WPI D. Richard Brown III 02-Apr-2012 20 / 21



ECE503: The FFT & Number Representation

Conclusions

1. Asymptotic complexity basics

2. The DFT and the FFT (Section 11.3, skimming Goertzel’s algorithm)
◮ The FFT and the DFT give the same results.
◮ The only difference is that the FFT is much faster than the DFT for

large N . The FFT has asymptotic complexity O(N log2(N)) whereas
the DFT has asymptotic complexity O(N2).

◮ The FFT forms the basis for lots of fast algorithms like “fast
convolution”.

◮ The R2DIT Cooley-Tukey FFT is just one approach.

3. Finite-precision signal processing (Section 11.8, skimming floating
point representation)

◮ Fixed-point number representation
◮ Fixed-point addition
◮ Overflow
◮ Quantization errors

WPI D. Richard Brown III 02-Apr-2012 21 / 21


