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ECE503: Finite Precision Signal Processing

Lecture 11 Topics

1. Motivation and context

2. Quantization basics

3. Effect of coefficient quantization on FIR filters

4. Effect of coefficient quantization on IIR filters: “pole sensitivity”

5. Input quantization and propagation of quantization noise to output

6. Product round-off error analysis
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A Simple DSP System

Suppose we wish to implement the transfer function / difference equation

H(z) =
1

1− az−1
⇔ y[n] = x[n] + ay[n− 1]

We could draw a block diagram (realization) of the system:

ideal sampling ideal reconstructionx(t)
x[n] y[n]

y(t)

z−1

a

Unfortunately, this block diagram represents an idealized view of how the
system is actually going to work. Some practical considerations:

◮ Input/output quantization.
◮ Filter coefficient quantization.
◮ Product roundoff.
◮ Potential overflow in sums.
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A Simple DSP System: A More Realistic View

ideal sampling ideal reconstructionx(t)
x̂[n] ŷ[n]

y(t)

z−1

a
â

Q()

Q()

Q()

Q()Q()

Our nice simple LTI system is now highly nonlinear.

In general, nonlinear systems like this are difficult to analyze. Hence, we
must isolate the sources of quantization error and adopt some approximate
approaches to make the analysis tractable:

◮ Analyze the effect of coefficient quantization, assuming all other
quantization errors are negligible.

◮ Analyze the effect of input quantization, assuming a statistical model
of quantization error and all other quantization errors are negligible.

◮ Analyze the effect of product roundoff, assuming a statistical model
of quantization error and all other quantization errors are negligible.
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Quantization Basics

Given a real number x, we denote the quantized value of x as

x̂ = Q(x) = x+ ǫ

where ǫ is the “quantization error”.

There are two main types of quantization:

1. Truncation: just discard least significant bits

2. Rounding: choose closest value

As an example, suppose we want to quantize 1√
2
≈ 0.7071 to a fixed point

number with two fractional bits. If we truncate, we have

Q(1/
√
2) = 0∆10 110 · · · = 0.50

whereas if we round, we have

Q(1/
√
2) = 0∆11 = 0.75

We usually prefer rounding because the quantization errors are zero-mean and

bounded − δ
2 ≤ ǫ < δ

2 , where δ is the quantizer step size (assuming no overflow).
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Bipolar 3-Bit Quantizer Example (Fig. 12.16)

Rounding quantization, saturation overflow, and two’s complement.
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Matlab Code to Implement a Rounding Quantizer with

Saturation Overflow

function [xhat,delta,qerr] = quant(x,nbits,RFS)

% function [xhat,delta,qerr] = quant(x,nbits,RFS)

%

% x is the unquantized value (floating point)

% nbits is the number of bits in the quantizer

% RFS is the full scale range (peak-to-peak)

% compute quantizer step size and min/max levels for saturation

delta = RFS/2^nbits;

xhatmax = (2^(nbits-1)-1)*delta;

xhatmin = (-2^(nbits-1))*delta;

% quantize

xhat = round(x/delta)*delta;

% check for overflow and saturate

if xhat>xhatmax

xhat = xhatmax;

end

if xhat<xhatmin

xhat = xhatmin;

end

% compute quantization error

qerr = xhat - x;
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Part I: Effect of Coefficient Quantization

ideal sampling ideal reconstructionx(t)
x̂[n] ŷ[n]

y(t)

z−1

a
â

Q()

Q()

Q()

Q()Q()

We will first focus on the effect of coefficient quantization and ignore the
other sources of quantization error.

1. How does coefficient quantization affect FIR filters?

2. How does coefficient quantization affect IIR filters?
◮ Analysis of pole/zero sensitivity to coefficient quantization.

WPI D. Richard Brown III 09-Apr-2012 8 / 52



ECE503: Finite Precision Signal Processing

FIR Filter Coefficient Quantization (1 of 3)

For a direct form FIR filter, we have the realization structure

ideal sampling ideal reconstructionx(t)
x[n] y[n]

y(t)

z−1

z−1 h0

h1

h2

ĥ0

ĥ1

ĥ2

Q()

Q()

Q()

with ĥn = hn + en.
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FIR Filter Coefficient Quantization (2 of 3)

For a causal FIR filter with N coefficients, we have

Ĥ(z) =
N−1
∑

n=0

ĥnz
−n =

N−1
∑

n=0

(hn + en)z
−n

=

N−1
∑

n=0

hnz
−n +

N−1
∑

n=0

enz
−n = H(z) + E(z)

Hence, the quantized FIR filter Ĥ(z) is equivalent to a parallel connection
of H(z) and E(z):

x[n]

y[n]

w[n]
E(z)

ŷ[n] = y[n] + w[n]

H(z)

Note E(z) is FIR and causal.
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FIR Filter Coefficient Quantization (3 of 3)

It is of interest to analyze the effect of the quantization error on the
magnitude response of the system. We can develop a bound for the
worst-case magnitude response error caused by FIR filter coefficient
quantization as follows.

By definition, for FIR E(z) with N coefficients

E(ω) =

N−1
∑

n=0

ene
−jωn

With rounding quantization, each en is bounded between −δ/2 and δ/2.
Hence,

|E(ω)| =
∣

∣

∣

∣

∣

N−1
∑

n=0

ene
−jωn

∣

∣

∣

∣

∣

≤
N−1
∑

n=0

∣

∣ene
−jωn

∣

∣ ≤
N−1
∑

n=0

δ

2
=

Nδ

2

Note that the bound is worse for longer filters but better when the
quantizer step size is small.
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FIR Coefficient Quantization Example (δ = 2
−8, N = 51)
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IIR Filter Coefficient Quantization

For a direct-form II IIR filter, we have

ideal sampling ideal reconstruction

-
x(t)

y[n]
y(t)

z−1

z−1 b0

b1

b2

b̂0

b̂1

b̂2

a1

a2

â1

â2

Q()

Q()

Q()

Q()

Q()

with b̂n = bn +∆bn and ân = an +∆an.

Unfortunately, the FIR analysis techniques used previously are not
applicable here because of the feedback in the system. Let’s look at some
examples before developing analytical techniques.

WPI D. Richard Brown III 09-Apr-2012 13 / 52



ECE503: Finite Precision Signal Processing

IIR Coefficient Quantization Example (8th order DF-II)
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IIR Coefficient Quantization Example (8th order DF-II)
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IIR Coefficient Quantization Example (8th order DF-II)
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IIR Coefficient Quantization Example (8th order DF-II)
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IIR Filter Coefficient Quantization Remarks/Observations

1. Previous examples all used 8-bit coefficient quantization.

2. Numerator coefficient quantization tends to have less effect on the
magnitude response than denominator coefficient quantization.

3. Denominator coefficient quantization can cause an IIR filter to
become unstable (e.g. homework problem).

4. This filter was realized as a single 8th order DF-II section, rather than
four cascaded 2nd order sections.

5. In general, a cascaded 2nd order sections (SOS) realization is going to
be better with finite precision coefficients because the dynamic range
of the coefficients is reduced.

Denominator of H(z) when realized as a single 8th order section:

Q(z) = 1−3.76z−1+8.20z−2−11.85z−3+12.33z−4−9.30z−5+4.98z−6−1.74z−7+0.32z−8

Ratio of 38.9 between largest coefficient and smallest non-zero coefficient.
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IIR Filter DF-II SOS Coefficient Quantization

When we convert the filter to second order sections, we get the following
denominators, where Q(z) = Q1(z)Q2(z)Q3(z)Q4(z):

Q1(z) = 1− 0.74z−1 + 0.8610z−2

Q2(z) = 1− 1.04z−1 + 0.7062z−2

Q3(z) = 1− 1.37z−1 + 0.5431z−2

Q4(z) = 1− 0.61z−1 + 0.9605z−2

Ratio of 2.53 between largest coefficient and smallest non-zero coefficient.
By reducing the dynamic range, finer coefficient quantization is possible,
even with less bits. This means the poles don’t move as much and the
SOS filter is more accurate.
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IIR Coefficient Quantization Example (6-bit SOS DF-II)
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IIR Coefficient Quantization Example (6-bit SOS DF-II)
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Effect of Realization Structure on Pole Locations

Consider the following DF-II realization of an all-pole second-order IIR
filter:

-
x[n] y[n]

z−1

z−1

K

L

The transfer function is

H(z) =
1

1 +Kz−1 + Lz−2

If we assume a 5-bit word length (one sign bit, one non-fractional bit,
three fractional bits) for coefficients K and L, there are only a finite
number of possible pole locations that we can achieve.
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DF-II Second Order Section Pole Locations (5-bit)
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DF-II Second Order Section Pole Locations

Remarks:

1. More pole density near z = ±j.

2. Less pole density near z = ±1.

3. DF-II second order structure may be highly inaccurate for lowpass or
highpass filters with complex poles near z = ±1.

4. Textbook Figure 12.10 is incorrect (but the overall point is correct):
◮ Doesn’t show real-valued poles.
◮ Uses different fixed-point representations for K (2 fractional bits) and

L (3 fractional bits).
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Effect of Realization Structure on Pole Locations

Now consider the following coupled-form realization of an all-pole
second-order IIR filter:

x[n] y[n]

z−1z−1 α

β

−β

α

The transfer function is

H(z) =
β

1− 2αz−1 + (α2 + β2)z−2

If we assume a 5-bit word length (one sign bit, one non-fractional bit,
three fractional bits) for α and β, there are only a finite number of
possible pole locations that we can achieve.

WPI D. Richard Brown III 09-Apr-2012 25 / 52



ECE503: Finite Precision Signal Processing

Coupled-Form Second Order Section Pole Locations
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Coupled-Form Second Order Section Pole Locations

Remarks:

1. Pole locations are uniformly distributed on z-plane. Nice!

2. Suitable for any type of IIR filter.

3. Quantized pole displacement is easily bounded.

4. Why not always use the coupled form? Is there any disadvantage?

5. Textbook Figure 12.12 is incorrect (but the overall point is correct):
◮ Doesn’t show real-valued poles.

Note: This technique can also be used to determine quantized zero
locations.
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Analysis of Quantized Root Displacements

Problem setup: We have an N th degree polynomial B(z) with simple
roots and bN = 1:

B(z) =

N
∑

i=0

biz
i =

N
∏

k=1

(z − λk)

Note B(z) can be a numerator or denominator polynomial. We want to
understand how quantizing the coefficients bi affects the roots λk (which
can correspond to the poles or the zeros of a transfer function).

The polynomial with quantized coefficients is

B̂(z) =

N
∑

i=0

b̂iz
i =

N
∑

i=0

(bi +∆bi)z
i = B(z) +

N−1
∑

i=0

(∆bi)z
i =

N
∏

k=1

(z − λ̂k)

Note the implicit assumption that ∆bN = 0 (since bN = 1). Also note λ̂k

are the new displaced root locations after coefficient quantization.
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Analysis of Quantized Root Displacements

We denote the original roots in polar coordinates as λk = rke
jθk . We can

write the displaced roots as

λ̂k = (rk +∆rk)e
j(θk+∆θk)

= (rk +∆rk)e
jθkej(∆θk)

≈ (rk +∆rk)e
jθk(1 + j(∆θk))

where the last line uses the first order series approximation ex ≈ 1 + x
(implicitly assuming the angular displacement is small). Continuing,

λ̂k ≈ ejθk {rk(1 + j(∆θk)) + (∆rk) + j(∆rk)(∆θk)}

If the magnitude displacement is small, we can discard the last term
because it is the product of two small numbers. Hence

λ̂k ≈ ejθk {rk + jrk(∆θk)) + (∆rk)} = λk + ejθk {jrk(∆θk)) + (∆rk)}

Hence the root displacement λ̂k − λk ≈ ejθk {jrk(∆θk)) + (∆rk)}.
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Analysis of Quantized Root Displacements

Sanity check. Suppose
B(z) = z2 − 1.4z + 0.98

We can compute the roots λ1 = −0.7 + 0.7j = r1e
jθ1 and λ2 = −0.7− 0.7j = r2e

jθ2

with r1 = r2 = 0.9899 and θ1 = −θ2 = 3π/4.

Now suppose the roots are displaced so that ∆θ1 = −∆θ2 = π/100 and
∆r1 = ∆r2 = −0.01. We know the exact locations of the displaced roots are at
λ̂k = (rk +∆rk)e

j(θk+∆θk). We can calculate this to be

λ1 = −0.7144 + 0.6708j and λ2 = −0.7144 − 0.6708j

Hence the exact root displacements are

λ̂1 − λ1 = −0.0144 − 0.0292j and λ̂2 − λ2 = −0.0144 + 0.0292j

Our previous analysis says the root displacements are approximately

λ̂k − λk ≈ ejθk {jrk(∆θk)) + (∆rk)}

Calculation of this result with our numbers gives

λ̂1 − λ1 ≈ −0.0149 − 0.0291j and λ̂2 − λ2 ≈ −0.0149 + 0.0291j

which is pretty accurate.
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Analysis of Quantized Root Displacements

So hold the main result λ̂k − λk ≈ ejθk {jrk(∆θk)) + (∆rk)} for a bit
while we work on another related problem.

Consider the rational function (recall our simple roots assumption)

1

B(z)
=

N
∑

i=1

ρi
z − λi

If we set z = λ̂k, we get

1

B(λ̂k)
=

N
∑

i=1

ρi

λ̂k − λi

≈ ρk

λ̂k − λk

where the approximation results from the fact that the original root λk is
assumed to be very close to the displaced root λ̂k and all other terms in
the PFE sum will be relatively insignificant. Hence, λ̂k − λk ≈ ρkB(λ̂k).
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Analysis of Quantized Root Displacements

Recall

B̂(z) = B(z) +

N−1
∑

i=0

(∆bi)z
i

Then

B̂(λ̂k) = B(λ̂k) +
N−1
∑

i=0

(∆bi)(λ̂k)
i = 0

where the last equality is because λ̂k is a root of B̂(z). Hence

B(λ̂k) = −
N−1
∑

i=0

(∆bi)(λ̂k)
i.

Plug this in to the result from the previous slide (λ̂k − λk ≈ ρkB(λ̂k)) to get

λ̂k − λk ≈ −ρk

N−1
∑

i=0

(∆bi)(λ̂k)
i ≈ −ρk

N−1
∑

i=0

(∆bi)(λk)
i

where the second approximation uses the assumption that λ̂k is very close to λk.
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Analysis of Quantized Root Displacements

So we have two useful approximations now:

λ̂k − λk ≈ ejθk {jrk(∆θk)) + (∆rk)}

and

λ̂k − λk ≈ −ρk

N−1
∑

i=0

(∆bi)(λk)
i

We can equate these and do a little rearranging to write

∆rk + jrk(∆θk) ≈ −e−jθkρk

N−1
∑

i=0

(∆bi)(rke
jθk)i

In other words, given the original root magnitudes {ri}, original root
angles {θi}, coefficient displacements {∆bi}, and partial fraction
expansion residues {ρi}, we can calculate the magnitude and angle
displacements ({∆ri} and {∆θi}) for all of the roots of B(z).
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Analysis of Quantized Root Displacements

To make the main result

∆rk + jrk(∆θk) ≈ −e−jθkρk

N−1
∑

i=0

(∆bi)(rke
jθk)i

more explicit, we can denote the PFE coefficients ρk = αk + jβk, equate the real
and imaginary parts on each side, and do a bit of algebra to write

∆rk = (−αkP k + βkQk)∆B

∆θk = − 1

rk
(βkP k + αkQk)∆B

where

P k =
[

cos θk rk r2k cos θk . . . rN−1
k cos((N − 2)θk)

]

∈ R
1×N

Qk =
[

− sin θk 0 r2k sin θk . . . rN−1
k sin((N − 2)θk)

]

∈ R
1×N

∆B =







∆b0
...

∆bN−1






∈ R

N×1
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Analysis of Quantized Root Displacements: Example

Let’s apply our result to look at the pole sensitivity of

H(z) =
1

1 +Kz−1 + Lz−2
=

z2

z2 +Kz + L
=

1

B(z)

with N = 2, b0 = L, b1 = K, and b2 = 1.

Note B(z) has two roots λ1 = rejθ and λ2 = re−jθ. We want to
understand how changes in K and L affect r and θ.

Using our prior analysis, we can write

P 1 =
[

cos θ r
]

= P 2

Q1 =
[

− sin θ 0
]

= −Q2

∆B =

[

∆L
∆K

]

Continued...
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Analysis of Quantized Root Displacements: Example

We can write the partial fractional expansion of

1

B(z)
=

ρ1
z − λ1

+
ρ2

z − λ2

yields

ρ1 = −
j

2r sin θ
and ρ2 =

j

2r sin θ

Hence α1 = α2 = 0 and β1 = −β2 = − 1
2r sin θ

.

Putting it all together, we can determine the sensitivity of the first pole at λ1 = rejθ as

∆r = β1Q1∆B = −
1

2r sin θ

[

− sin θ 0
]

[

∆L
∆K

]

=
∆L

2r

∆θ = −
1

r
(β1P 1∆B) = −

1

r

(

−
1

2r sin θ

[

cos θ r
]

[

∆L
∆K

])

=
∆L

2r2 tan θ
+

∆K

2r sin θ

Observations:

◮ The pole displacements are large when r is small.

◮ The pole displacements are also large when θ is close to zero or ±π.

◮ These results are consistent with the figure on slide 23.
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Analysis of Quant. Root Displacements: Other Structures

The prior analysis can be extended to other structures as follows:

1. Denote the coefficients in the structure as γ1, . . . , γR.

2. Coefficient quantization changes each coefficient to γ̂k = γk +∆γk.

3. Since B(z) is a function of these coefficients, this also indirectly
changes the coefficients of the polynomial B(z). We can relate
changes in the structure coefficients γk to the polynomial coefficients
bk with

∆bk =

R
∑

i=1

∂bk
∂γi

∆γi for k = 0, . . . , N − 1

4. Note that ∆B = C∆γ where C ∈ R
N×R is a gradient matrix.

5. Hence

∆rk = (−αkP k + βkQk)C∆γ

∆θk = − 1

rk
(βkP k + αkQk)C∆γ
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Analysis of Quantized Root Displacements: Example

We can illustrate the process for the coupled form second order IIR filter

x[n] y[n]

z−1z−1 γ1

γ2

−γ2

γ1

with γ1 = r cos θ and γ2 = r sin θ to get the original roots λ1 = rejθ and
λ2 = re−jθ. Note R = 2. The transfer function is

H(z) =
−γ2

1− 2γ1z−1 + (γ21 + γ22)z
−2

Hence B(z) = z2 − 2γ1z + (γ21 + γ22) with N = 2, b0 = γ21 + γ22 ,
b1 = −2γ1 and b2 = 1. Continued...
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Analysis of Quantized Root Displacements: Example

The next step is to compute the C matrix

C =

[

∂b0
∂γ1

∂b0
∂γ2

∂b1
∂γ1

∂b1
∂γ2

]

=

[

2γ1 2γ2
−2 0

]

=

[

2r cos θ 2r sin θ
−2 0

]

Putting this together with our previous result yields

∆r = β1Q1C∆γ

= −
1

2r sin θ

[

− sin θ 0
]

[

2r cos θ 2r sin θ
−2 0

] [

∆γ1
∆γ2

]

= ∆γ1 cos θ +∆γ2 sin θ

and

∆θ = −
∆γ1
r

sin θ +
∆γ2
r

cos θ (homework problem)

Observations:

◮ Angular pole displacement is still sensitive when r is small (intuitive).

◮ Neither displacement is sensitive to angle of original poles.

◮ These results are consistent with the figure on slide 26.
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Part II: Effect of Input Quantization (Section 12.5)

ideal sampling ideal reconstructionx(t)
x̂[n]x[n] ŷ[n]

ŷ(n)H(z)Q()

Here we assume H(z) is an LTI system (no overflow or significant
quantization errors) and focus our attention on understanding the effect of
input quantization.

Recall the ideal sampling relationship

x[n] = x(nT )

and the quantizer relationship

x̂[n] = Q(x[n]) = x[n] + ǫ[n]

where ǫ[n] is the quantization error.
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Statistical Input Quantization Error Analysis (1 of 4)

Under the assumptions

1. the ADC is a rounding quantizer with step size δ and

2. the input is bounded to the ADC full-scale range (no input overflow)

we can bound the quantization error ǫ[n] = x̂[n]− x[n] as

−δ

2
< ǫ[n] ≤ δ

2
.

We further assume the quantization error sequence {ǫ[n]} is a random
sequence with the following statistical properties:

1. Each quantization error ǫ[n] is uniformly distributed on
[

− δ
2 ,

δ
2

]

.

2. The quantization error ǫ[n] is independent of ǫ[m] for all n 6= m.

3. The quantization error ǫ[n] is independent of x[m] for all n and m.

In other words, the quantization error sequence {ǫ[n]} is an independent
and identically distributed random sequence, also independent of {x[n]}.
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Statistical Input Quantization Error Analysis (2 of 4)

What is the mean of ǫ[n]?

What is the variance of ǫ[n]?

Note that the variance of a zero-mean random sequence is sometimes
called the “power” of the sequence.

We define the signal to quantization noise ratio as

SQNR(dB) = 10 log10

(

signal power

quantization noise power

)

= 10 log10

(

σ2
x

σ2
ǫ

)

Signal power: If x[n] is reasonably-modeled as a independent, identically
distributed random sequence with each sample uniformly distributed on
[−A,A] with 0 < A ≤ Amax, what is the variance of x[n]?
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Statistical Input Quantization Error Analysis (3 of 4)

Putting it all together, we have:

σ2
ǫ =

δ2

12
=

1

12
·
(

RFS

2b+1

)2

=
R2

FS

48 · 22b

and

σ2
x =

A2

3

hence

SQNR(dB) = 10 log10

(

16A222b

R2
FS

)

If the input signal is scaled so that A = α
2RFS with 0 < α ≤ 1, then

RFS = 2A
α

and we have

SQNR(dB) = 10 log10

(

4 · 22b · α2
)

= 6.02b + 6.02 + 20 log10(α)
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Statistical Input Quantization Error Analysis (4 of 4)

SQNR(dB) = 6.02b + 6.02 + 20 log10(α)

where α represents the input scaling with α = 1 corresponding to full scale.

Remarks:

1. SQNR is maximized when α = 1. This corresponds to scaling the
input so that the signal uses the full range of the quantizer but does
not overflow.

2. Setting α > 1 appears to make SQNR even better, but our analysis
does not account for overflow which actually causes SQNR to become
bad very quickly for α > 1.

3. Adding one more bit to your quantizer increases the SQNR by
approximately 6dB. So a 12-bit quantizer has an SQNR about 24dB
better than an 8-bit quantizer.

4. Compact discs use 16-bit quantization. If the signal uses half of the
full scale, i.e. α = 1/2, what is the SQNR?
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Propagation of Input Quantization Noise to Filter Output

Since the quantized input to H(z) can be written as

x̂[n] = x[n] + ǫ[n]

we can think of input quantization as shown in below.

x[n]
x̂[n]

ǫ[n]

ŷ[n]H(z)

Since H(z) is linear, we can use the principle of superposition to analyze
the effect of x[n] and ǫ[n] separately. In other words, we can analyze

x[n]
y[n]

v[n]
ǫ[n]

ŷ[n] = y[n] + v[n]

H(z)

H(z)

and look specifically at the properties of v[n].
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Propagation of Input Quantization Noise to Filter Output

We now focus on analyzing

v[n]ǫ[n] H(z)

Since H(z) is an LTI system and {ǫ[n]} is a zero-mean independent
random sequence, i.e. white noise, we have the results (ECE502):

◮ Output mean:
µv = 0

◮ Output variance:

σ2
v = σ2

ǫ ·
1

2π

∫ π

−π

|H(ω)|2 dω = σ2
ǫ ·

∞
∑

n=−∞

|h[n]|2

Your textbook also provides method for “Algebraic Computation of
Output Noise Variance” in Section 12.5.5 that might be easier to compute
in some cases.
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Propagation of Input Quantization Noise to Filter Output

Example:

H(z) =
1

1− az−1

with |a| < 1 and ROC |z| > |a|. We can compute the output variance

σ2
v = σ2

ǫ ·
1

2π

∫ π

−π

|H(ω)|2 dω

= σ2
ǫ ·

1

2π

∫ π

−π

∣

∣

∣

∣

1

1− ae−jω

∣

∣

∣

∣

2

dω

= difficult integral

It is easier to note that h[n] = anµ[n] and compute

σ2
v = σ2

ǫ ·
∞
∑

n=−∞

|h[n]|2 = σ2
ǫ

1− |α|2 .

What happens when α gets close to the unit circle?
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Matlab Simulation of Input Quantization Noise

Propagation

% output noise variance via simulation

% DRB ECE503 Spring 2012

delta = 0.1; % quantizer step size

a = 0.8; % filter parameter

num = [1 0];

den = [1 -a];

N = 1e5;

% generate input quantization noise sequence

e = rand(1,N)*delta-delta/2;

disp([’Input noise variance : ’ num2str(var(e))]);

% filter

v = filter(num,den,e);

% compute output noise variance

disp([’Output noise variance : ’ num2str(var(v))]);

disp([’Ratio : ’ num2str(var(v)/var(e))]);

disp([’Analytically predicted ratio : ’ num2str(1/(1-abs(a)^2))]);WPI D. Richard Brown III 09-Apr-2012 48 / 52



ECE503: Finite Precision Signal Processing

Part III: Effect of Product Round-Off

When you take the product of two b-bit fixed point numbers, the result
requires 2b bits to store. We typically round off the least significant bits of
the product, which leads to another source of quantization error in finite
precision filters. How does this error affect the filter output?

To illustrate the main idea, consider the following DF-II realization of an
all-pole second-order IIR filter:

- -

Product Round-O�
Model for Product

Round-O� Error Analysis

x[n]x[n] y[n]y[n]

z−1

z−1

z−1

z−1

a1a1

a2a2

e1[n]

e2[n]

Q()

Q()
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Effect of Product Round-Off

To facilitate analysis, the product round-off quantization errors are modeled as
random sequences just like input quantization errors:

1. Each product round-off error eℓ[n] is uniformly distributed on
[

− δ
2 ,

δ
2

]

.

2. The product round-off error eℓ[n] is independent of eℓ[m] for all n 6= m.

3. The product round-off error eℓ[n] is independent of x[m] for all n and m.

4. The product round-off error eℓ[n] is independent of ek[m] for all ℓ 6= k.

Procedure: Denote the round-off noise variance σ2
0 (assumed the same for all

products). For each product round-off error source ℓ = 1, . . . , L:

1. Determine the “noise transfer function” Gℓ(z) =
Y (z)
Eℓ(z)

(you should assume

all other sources including the input are set to zero).

2. Compute the output noise variance σ2
ℓ using same approach as before

σ2
ℓ = σ2

0 ·
1

2π

∫ π

−π

|Gℓ(ω)|2 dω = σ2
0 ·

∞
∑

n=−∞

|gℓ[n]|2

The total round-off noise variance at output is then σ2
tot =

∑L

ℓ=1 σ
2
ℓ .
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Effect of Product Round-Off: Example

- -

Product Round-O�
Model for Product

Round-O� Error Analysis

x[n]x[n] y[n]y[n]

z−1

z−1

z−1

z−1

a1a1

a2a2

e1[n]

e2[n]

Q()

Q()

We denote the round-off noise variance for both products as σ2
0 . By

inspection, we can determine

G1(z) = G2(z) =
1

1 + a1z−1 + a2z−2
= H(z)

Hence, assuming a1 and a2 are such that H(z) is stable,

σ2
tot = 2σ2

0

1

2π

∫ π

−π

|G1(ω)|2 dω = 2σ2
0

(

1 + a2
1− a2

)(

1

1 + 2a2 + a22 − a21

)
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Conclusions

1. Several sources of quantization error can affect the behavior of filters
when realized with finite precision arithmetic:

◮ Coefficient quantization error.
◮ Input quantization error.
◮ Product round-off quantization error.
◮ Overflow in sums (not covered).
◮ Output quantization (not covered).

2. Analytical techniques can inform a good design.

3. All of our analysis assumed no overflow. Overflow causes massive
quantization errors that are usually devastating to filter performance.

4. Simulation techniques can be used to confirm analysis and test effect
of simultaneous error sources.
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