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Quantization Effects on Digital Filters

Last week, we looked at the various sources and effects of quantization
error in digital filters.

ideal sampling ideal reconstructionx(t)
x̂[n] ŷ[n]
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z−1
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â

Q()

Q()

Q()

Q()Q()

Specifically, we looked at (Chap 12.1-12.6)

◮ Input quantization through the ADC.

◮ Coefficient quantization.

◮ Product roundoff quantization.

Note that input quantization noise (even when propagated to the output)
is not affected by the filter structure. The other forms of quantization
noise are affected by the filter structure, however.
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Coefficient Quantization: Pole Sensitivity Analysis

Suppose we have a causal stable system with transfer function

H(z) =
P (z)

B(z)
=

P (z)

zN + bN−1zN−1 + · · ·+ b0
=

P (z)

(z − λ1) · · · (z − λN )

We assume that the leading coefficient of B(z) is one and that all the
coefficients are real, i.e. bk ∈ R for k = 0, . . . , N − 1. Each (potentially
complex-valued) pole in the system is denoted as λk = rke

jθk for
k = 1, . . . , N .

In general, quantizing/changing the real-valued transfer function
coefficients {b0, . . . , bN−1} → {b̂0, . . . , b̂N−1} causes the poles to change:

{λ1, . . . , λN} → {λ̂1, . . . , λ̂N} ⇔
{r1, . . . , rN} → {r̂1, . . . , r̂N}

{θ1, . . . , θN} → {θ̂1, . . . , θ̂N}

Pole sensitivity analysis: How do small changes to the denominator
coefficient(s) affect the magnitude/angle of the pole(s) of the system?
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Quantized Coefficients → Pole Displacement

real

imag

λk

λ̂k

rk r̂kθk

θ̂k ∆rk

∆θk
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1st Order System Pole Sensitivity Analysis Example

Suppose we have a causal stable system with transfer function

H(z) =
P (z)

B(z)
=

P (z)

z + b0
=

P (z)

z − λ1

In the case of a first order system, the relationship between the coefficient
b0 and the root λ1 is trivial: λ1 = −b0.

Since λ1 is real, we have λ1 = r1e
jθ1 with r1 = |b0| and

θ1 =

{

0 b0 < 0

π b0 ≥ 0.

Denoting b̂0 = b0 +∆b0, what can we say about the relationship between
∆b0, ∆r1, and ∆θ1? Analysis on board...
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2nd Order System Pole Sensitivity Analysis Example

Suppose we have a causal stable system with transfer function

H(z) =
P (z)

B(z)
=

P (z)

z2 + b1z + b0
=

P (z)

(z − λ1)(z − λ2)

We can use the quadratic formula to write

λ1 =
−b1 +

√

b2
1
− 4b0

2
and λ2 =

−b1 −
√

b2
1
− 4b0

2
.

Note that the poles may be complex, even if the transfer function
coefficients are real.

In this case, we could do an exact analysis by replacing {b0, b1} with
{b0 +∆b0, b1 +∆b1} and the exactly computing ∆r0, ∆r1, ∆θ0, and
∆θ1. The expressions would be pretty messy, however, and we probably
wouldn’t get much intuition.
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Result from Lecture 11: Quantized Root Displacements

Given the partial fraction expansion of the inverse polynomial

1

B(z)
=

N∑

i=1

ρi
z − λi

=

N∑

i=1

αi + jβi
z − λi

we showed that, for a direct form realization, we can estimate

∆rk = (−αkP k + βkQk)∆B

∆θk = −
1

rk
(βkP k + αkQk)∆B

for k = 1, . . . , N where N is the order of B(z) and

P k =
[
cos θk rk r2k cos θk . . . rN−1

k cos((N − 2)θk)
]
∈ R

1×N

Qk =
[
− sin θk 0 r2k sin θk . . . rN−1

k sin((N − 2)θk)
]
∈ R

1×N

∆B =






∆b0
...

∆bN−1




 ∈ R

N×1
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2nd Order System Pole Sensitivity Analysis Example

Following the approximate analysis from Lecture 11, we can estimate the
magnitude/angle sensitivity of the first pole at λ1 = r1e

jθ1 as

∆r1 = −
1

2r1 sin θ1

[
− sin θ1 0

]
[
∆b0
∆b1

]

=
∆b0
2r1

∆θ1 = = −
1

r1

(

−
1

2r1 sin θ1

[
cos θ1 r1

]
[
∆b0
∆b1

])

=
∆b0

2r2
1
tan θ1

+
∆b1

2r1 sin θ1

Similarly, the magnitude/angle sensitivity of the second pole at
λ2 = r2e

jθ2 = λ∗
1 = r1e

−jθ1 can be estimated as

∆r2 = −
1

2r1 sin θ2

[
− sin θ2 0

]
[
∆b0
∆b1

]

=
∆b0
2r1

∆θ2 = = −
1

r1

(

−
1

2r1 sin θ2

[
cos θ2 r1

]
[
∆b0
∆b1

])

=
−∆b0

2r2
1
tan θ1

−
∆b1

2r1 sin θ1

It is not difficult to numerically verify the accuracy of these estimates.
Interpretation?
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4th Order System Pole Sensitivity Analysis

Now suppose we have a causal stable system with transfer function

H(z) =
P (z)

B(z)

=
P (z)

(z − λ1)(z − λ2)(z − λ3)(z − λ4)

=
P (z)

z4 + b3z3 + b2z2 + b1z + b0

with λk = rke
jθk for k = 1, 2, 3, 4.

We would like to understand how small changes to the coefficients
{b0, b1, b2, b3} → {b̂0, b̂1, b̂2, b̂3} affect the magnitude/angle of the poles.

B̂(z) = z4 + b̂3z
3 + b̂2z

2 + b̂1z + b̂0

= (z − λ̂1)(z − λ̂2)(z − λ̂3)(z − λ̂4)

with λ̂k = r̂ke
jθ̂k for k = 1, 2, 3, 4.
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4th Order System Pole Sensitivity Analysis Example

Let’s pick some numbers and work through an example. Let’s pick

λ1 = 0.9ejπ/4

λ2 = 0.9e−jπ/4

λ3 = 0.9ejπ/2

λ4 = 0.9e−jπ/2

Then

B(z) = z4 − 1.2728z3 + 1.62z2 − 1.0310z + 0.6561

= z4 + b3z
3 + b2z

2 + b1z + b0

This is our unquantized polynomial. When we implement this in a
fixed-point DSP system, we will need to quantize these coefficients.
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4th Order System Pole Sensitivity Analysis Example

We have the unquantized polynomial

B(z) = z
4
− 1.2728z3 + 1.62z2 − 1.0310z + 0.6561

= z
4 + b3z

3 + b2z
2 + b1z + b0

As an example of coefficient quantization, let’s change coefficient b2 from 1.62 to 1.5.

∆B =









∆b0
∆b1
∆b2
∆b3









=









b̂0 − b0

b̂1 − b1

b̂2 − b2

b̂3 − b3









=









0
0

−0.12
0









We can easily compute the new pole locations in Matlab

λ̂1 = 0.6805 + j0.5890 = 0.9000ej0.7135

λ̂2 = 0.6805 − j0.5890 = 0.9000e−j0.7135

λ̂3 = − 0.0441 + j0.8989 = 0.9000ej1.6198

λ̂4 = − 0.0441 − j0.8989i = 0.9000e−j1.6198

Note that changing b2 seems to have no effect on the pole magnitudes (the pole angles

changed, however). Was this just a lucky coincidence?
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4th Order System Pole Sensitivity Analysis Example
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4th Order System Pole Sensitivity Analysis Example

We have the unquantized polynomial

B(z) = z4 − 1.2728z3 + 1.62z2 − 1.0310z + 0.6561

= z4 + b3z
3 + b2z

2 + b1z + b0

with roots

λ1 = 0.9ejπ/4

λ2 = 0.9e−jπ/4

λ3 = 0.9ejπ/2

λ4 = 0.9e−jπ/2

Assuming a direct form realization, we would like to understand how
small changes to the coefficients {b0, b1, b2, b3} → {b̂0, b̂1, b̂2, b̂3} affect the
magnitude and angle of the poles. We’ve seen a small change in b2
doesn’t seem to change the pole magnitudes. Can we confirm this
analytically with the approximate analysis technique? On board...
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Interpreting the Pole Sensitivity Matrices

In this example, we saw that the pole magnitude sensitivity matrix was

Sr
b =







0.6859 0.4365 0 −0.3536
0.6859 0.4365 0 −0.3536

0 −0.4365 0 0.3536
0 −0.4365 0 0.3536







This confirms that small changes in b2 have no effect on the magnitude of any of
the poles. Also note that small changes in b0 have no effect on the magnitude of
the poles λ3 and λ4.

We also saw that the pole angle sensitivity matrix was

Sθ
b =







0 0.4850 0.6173 0.3928
0 −0.4850 −0.6173 −0.3928

0.5389 0 −0.4365 0
−0.5389 0 0.4365 0







Small changes in b0 have no effect on the angle of the poles λ1 and λ2, etc. Now
we see that small changes in b2 significantly affect on the angle of the poles.
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4th Order Example: Cascade Realization

Suppose instead of direct form, we implemented our transfer function as the
cascade of two second-order DF-II sections:

-

-

x[n]

y[n]

u[n]

v[n]

z−1

z−1

z−1

z−1

γ0

γ1

γ2

γ3

Note the new parameters γ0, γ1, γ2, and γ3. First, given the original H(z), how

can we determine γ0, γ1, γ2, and γ3 (Chapter 8 review)?
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4th Order Example: Cascade Realization

Recall

H(z) =
P (z)

(z − λ1)(z − λ2)(z − λ3)(z − λ4)

with

λ1 = 0.9ejπ/4 λ2 = 0.9e−jπ/4

λ3 = 0.9ejπ/2 λ4 = 0.9e−jπ/2

We can rewrite the denominator as a product of second order polynomials

H(z) =
P (z)

(z2 − 1.8 cos(π/4)z + 0.81)(z2 − 1.8 cos(π/2)z + 0.81)

=
P1(z)

z2 + γ0z + γ1
·

P2(z)

z2 + γ2z + γ3

Hence γ0 = −1.2728, γ1 = 0.81, γ2 = 0, and γ3 = 0.81.
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4th Order Example: Cascade Realization

We have the unquantized coefficients γ0 = −1.2728, γ1 = 0.81, γ2 = 0,
and γ3 = 0.81. If we implement this filter with a fixed-point DSP, we need
to quantize these coefficients.

Note that we are not directly quantizing the b0, b1, b2, b3 coefficients here.
We are quantizing the γ0, γ1, γ2, γ3 coefficients in our structure, which
changes the b0, b1, b2, b3 coefficients, which then changes the
magnitude/angle of the poles.

quantize realization

structure coe!cients

compute new

transfer function

coe!cients
compute new

poles

{γ̂0, . . . , γ̂R−1} {b̂0, . . . , b̂N−1} {λ̂1, . . . , λ̂N}
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4th Order Example: Cascade Realization

As an example, let’s quantize coefficient γ0 from -1.2728 to -1.5.

∆γ =







∆γ0
∆γ1
∆γ2
∆γ3






=







γ̂0 − γ0
γ̂1 − γ1
γ̂2 − γ2
γ̂3 − γ3






=







−0.2272
0
0
0







How does this change affect b0, b1, b2, b3?

B(z) = (z2 + γ0 + γ1)(z
2 + γ2 + γ3)

= z4 + (γ0 + γ2)z
3 + (γ1 + γ3 + γ0γ2)z

2 + (γ0γ3 + γ1γ2)z + γ1γ3

= z4 + b3z
3 + b2z

2 + b1z + b0

We see that changing γ0 affects all of the polynomial coefficients except
b0. Changing γ0 from -1.2728 to -1.5 results in b̂0 = 0.6561, b̂1 = −1.215,
b̂2 = 1.62, and b̂3 = −1.5 (the original coefficients were b0 = 0.6561,
b1 = −1.031, b2 = 1.62, and b3 = −1.2728).
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4th Order Example: Cascade Realization

Changing γ0 from -1.2728 to -1.5 results in b̂0 = 0.6561, b̂1 = −1.215,
b̂2 = 1.62, and b̂3 = −1.5. Hence

B̂(z) = z4 − 1.5z3 + 1.62z2 − 1.215z + 0.6561

We can easily compute the new pole locations in Matlab

λ̂1 = 0.75 + j0.4975 = 0.9000ej0.5857

λ̂2 = 0.75 − j0.4975 = 0.9000e−j0.5857

λ̂3 = 0 + j0.9 = 0.9000ej1.5708

λ̂4 = 0− j0.9 = 0.9000e−j1.5708

Remarks:
◮ Changing γ0 seems to have no effect on the pole magnitudes.
◮ In fact, this change to γ0 seems to have no effect at all on λ3 and λ4.
◮ The only thing that changed seems to be the angles of λ1 and λ2.
◮ Can we confirm this analytically?
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4th Order System Pole Sensitivity Analysis Example
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4th Order Example: Cascade Realization

With our cascaded SOS realization, if we change γ2 such that

∆γ =









−0.2272
0
0
0









then ∆B =









0
−0.1840

0
−0.2272









and we can apply our previous result for the direct form case to determine ∆r and ∆θ.

∆r = S
r
b∆B =









0.6859 0.4365 0 −0.3536
0.6859 0.4365 0 −0.3536

0 −0.4365 0 0.3536
0 −0.4365 0 0.3536

















0
−0.1840

0
−0.2272









=









0
0
0
0









∆θ = S
θ
b∆B =









0 0.4850 0.6173 0.3928
0 −0.4850 −0.6173 −0.3928

0.5389 0 −0.4365 0
−0.5389 0 0.4365 0

















0
−0.1840

0
−0.2272









=









−0.1785
0.1785

0
0









This agrees nicely with what we saw when we computed the roots in Matlab.
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4th Order Example: Cascade Realization

Our procedure:

1. Start with a given ∆γ (this represents the change in the parameters
of your realization structure due to quantization).

2. Determine ∆B (this is the change in the polynomial coefficients).
You need to know how the b0, b1, . . . coefficients are related to the
γ0, γ1, . . . parameters of your realization structure to do this.

3. Use the direct form analysis sensitivity matrices Sr
b and Sθ

b to predict
the pole magnitude and angle changes, i.e.

∆r = Sr
b∆B

∆θ = Sθ
b∆B

There is one more thing we can do to obtain an even more direct
analytical intuition for the relationship between ∆γ, ∆r and ∆θ, ...
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Taylor Series Approximation Review

Recall the first-order Taylor series approximation of f : R 7→ R around the
point x = a:

f(x) ≈ f(a) + (x− a)

[
d

dx
f(x)

]

x=a

The multivariable version of this for f : RN 7→ R around the point x = a is

f(x) ≈ f(a) + (x− a)⊤ [∇xf(x)]x=a

where ∇x =
[

∂
∂x1

, . . . , ∂
∂xN

]⊤

is the gradient operator you may recall from

multivariable calculus. We can rewrite this last expression as

f(x)− f(a) ≈

N∑

n=1

(xn − an)

[
∂

∂xn
f(x)

]

x=a
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Relating Structure Parameters & Polynomial Coefficients

In general, given a vector of realization structure parameters
γ = [γ0, . . . , γR−1]

⊤, each denominator polynomial coefficient will be a
continuous function of these parameters, i.e.,

bk = fk(γ) for k = 0, . . . , N − 1.

and, for the quantized parameters,

b̂k = fk(γ̂) for k = 0, . . . , N − 1.

We can use our first-order Taylor series approximation to write

∆bk = b̂k − bk

= fk(γ̂)− fk(γ)

≈
R−1∑

n=0

(γ̂n − γn)

[
∂

∂γ̂n
fk(γ̂)

]

γ̂=γ

=

R−1∑

n=0

∆γn
∂bk
∂γi

for k = 0, . . . , N − 1. This approximation is reasonable for small ∆γ.
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Relating Structure Parameters & Polynomial Coefficients

So we have the result

∆bk ≈
R−1∑

n=0

∆γn
∂bk
∂γi

for k = 0, . . . , N − 1.

We can stack these up into a matrix/vector form to to write








∆b0
∆b1
...

∆bN−1







≈









∂b0
∂γ0

∂b0
∂γ1

. . . ∂b0
∂γR1

∂b1
∂γ0

∂b1
∂γ1

. . . ∂b1
∂γR−1

...
...

...
...

∂bN−1

∂γ0

∂bN−1

∂γ1
. . .

∂bN−1

∂γR−1









︸ ︷︷ ︸

C∈RN×R








∆γ0
∆γ1
...

∆γR−1








Hence ∆B ≈ C∆γ. Furthermore,

∆r = Sr
bC∆γ

∆θ = Sθ
bC∆γ.
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Relating Structure Parameters & Polynomial Coefficients

Note that the C matrix relates realization structure parameter changes

to transfer function coefficient changes. This allows our approximate
pole sensitivity analysis to be extended to any realization structure.

Examples:

1. What is the C matrix for a direct form realization, i.e. bk = γk for
k = 0, 1, . . . , N − 1?

2. What is the C matrix for our cascaded SOS realization?

Since

∆r = Sr
bC∆γ = Sr

γ∆γ

∆θ = Sθ
bC∆γ = Sθ

γ∆γ.

we can think of Sr
γ = Sr

bC and Sθ
γ = Sθ

bC as being the pole sensitivity
matrices for the realization form described by C.
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Comparison of Direct form and Cascaded SOS Sensitivity

Pole magnitude sensitivity matrices for direct form and SOS cascade:

S
r
b =









0.6859 0.4365 0 −0.3536
0.6859 0.4365 0 −0.3536

0 −0.4365 0 0.3536
0 −0.4365 0 0.3536









S
r
γ =









0 0.5556 0 0
0 0.5556 0 0
0 0 0 0.5556
0 0 0 0.5556









Pole magnitude sensitivity matrices for direct form and SOS cascade:

S
θ
b =









0 0.4850 0.6173 0.3928
0 −0.4850 −0.6173 −0.3928

0.5389 0 −0.4365 0
−0.5389 0 0.4365 0









S
θ
γ =









0.7857 0.6173 0 0
−0.7857 −0.6173 0 0

0 0 0.5556 0
0 0 −0.5556 0









What do these results tell us about the advantages/disadvantages of the SOS cascade
realization (at least for this particular fourth order system)?
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Product Roundoff Noise: Effect of Realization Structure

Switching gears, consider the following second order DF-II realization
example with explicit product roundoff errors ek[n]:

-
x[n]

u[n]
y[n]

z−1

z−1

a1

a2

b0

b1

b2

e1[n]

e2[n]

e3[n]

e4[n]

e5[n]

In this case, we are not concerned with coefficient quantization (the
coefficients are all assumed to be unquantized). Instead, we wish to
understand how the product roundoff noise appears in the output.
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-
x[n]

u[n]
y[n]

z−1

z−1

a1

a2

b0

b1

b2

e1[n]

e2[n]

e3[n]

e4[n]

e5[n]

Using the principle of superposition and ignoring the input, we see that

Y (z) = E1(z) + E2(z) + E3(z) +H(z)(E4(z) + E5(z))

where H(z) = b0+b1z−1+b2z−2

1+a1z−1+a2z−2 .
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Product Roundoff Noise: Effect of Realization Structure

Assumptions to facilitate statistical analysis:

◮ Each ek[n] is identically distributed and independent of eℓ[n] for
k 6= ℓ.

◮ Each ek[n] wide-sense stationary with zero mean and variance σ2
e for

all n.

Y (z) = E1(z) + E2(z) + E3(z) +H(z)(E4(z) + E5(z))

which implies that the variance of the product roundoff noise at the
output is

σ2
y = 3σ2

e + 2σ2
e ·

1

2π

∫ π

−π
|H(ω)|2 dω

where we used our result from Lecture 11 regarding the propagation of
noise through an LTI system.
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Product Roundoff Noise: Effect of Realization Structure

Let’s pick some numbers to continue the example. Suppose σ2
e = 1 and

H(z) =
0.6 + 0.54z−1 + 0.108z−2

1− 1.3z−1 + 0.4z−2

with ROC |z| > 0.8 (causal and stable).

With these numbers, we can compute the integral (using, for example, the
algebraic technique in 12.5.5) to be

1

2π

∫ π

−π
|H(ω)|2 dω ≈ 12.7719

which means that

σ2
y = 3 + 2 · 12.7719 = 28.5438

We see that the product noise in the feedback coefficients is the
dominating source of noise in the output.
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Product Roundoff Noise: Effect of Realization Structure

Now, what if we split this realization structure up into a cascade of four
first order sections? There are (at least) four possibilities. Here are two:

- -
x[n] y[n]

z−1z−1

−0.8

0.6

0.36

e11[n]

e21[n]

e31[n]

−0.5

1

0.3

e12[n]

e22[n]

e32[n]

- -
x[n] y[n]

z−1z−1

−0.5

1

0.3

e11[n]

e21[n]

e31[n]

−0.8

0.6

0.36

e12[n]

e22[n]

e32[n]

Note both realizations have the same H(z) = H1(z)H2(z) = H2(z)H1(z).
Is there any difference?
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Product Roundoff Noise: Effect of Realization Structure

There is a difference in how the roundoff noise propagates.

In the first realization:

◮ e11[n] propagates through H(z) to get to the output.

◮ e21[n], e31[n], and e12[n] propagate through H2(z) to get to the output.

◮ e22[n] = 0.

◮ e23[n] is directly connected to the output.

In the second realization:

◮ e11[n] propagates through H(z) to get to the output.

◮ e21[n] = 0.

◮ e31[n], and e12[n] propagate through H1(z) to get to the output.

◮ e22[n] and e23[n] are directly connected to the output.

Which structure is better? How do these compare to the non-cascade form?
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Product Roundoff Noise: Effect of Realization Structure

Given

H1(z) =
0.6 + 0.36z−1

1− 0.8z−1

H2(z) =
1 + 0.3z−1

1− 0.5z−1

we can use the geometric methods in the textbook (or the usual series
convergence results) to compute

1

2π

∫ π

−π
|H1(ω)|

2 dω ≈ 2.32

1

2π

∫ π

−π
|H2(ω)|

2 dω ≈ 1.8533

Also recall our earlier result

1

2π

∫ π

−π
|H(ω)|2 dω ≈ 12.7719
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For the first realization:

◮ e11[n] propagates through H(z) to get to the output.

◮ e21[n], e31[n], and e12[n] propagate through H2(z) to get to the output.

◮ e22[n] = 0.

◮ e23[n] is directly connected to the output.

Hence
σ2

y = 12.7719 + 3 · 1.8533 + 0 + 1 ≈ 19.33

In the second realization:

◮ e11[n] propagates through H(z) to get to the output.

◮ e21[n] = 0.

◮ e31[n], and e12[n] propagate through H1(z) to get to the output.

◮ e22[n] and e23[n] are directly connected to the output.

Hence
σ2

y = 12.7719 + 0 + 2 · 2.32 + 0 + 2 ≈ 19.41

Not much difference, but both better than the full DF-II realization.
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Final Exam

1. 6pm 30-Apr-2012. 180 minutes.
2. Open book.
3. Two cheat sheets, double sided, letter sized, in your own

handwriting.
4. Calculator permitted.
5. Comprehensive: Chapters 1-9, parts of Chapter 11 (FFT and number

representation), Chapter 12.1-12.6.
6. There will definitely be some material from the second half of the

class, e.g.
◮ Realization structures
◮ IIR filter design
◮ FFT
◮ Fixed-point number representation and quantization basics
◮ Effects of finite precision on filtering, e.g. pole sensitivity, roundoff error

effects, ...

7. Two-hour special help session on Saturday 28-Apr-2012 (time to be
announced via email later this week).
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