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ECE503: Course Introduction

Lecture 1 Major Topics

1. Administrative details:
◮ Course web page.
◮ Syllabus and textbook.
◮ Academic honesty policy.
◮ Students with disabilities statement.

2. Course Overview
3. Notation

4. Mitra Chap 1: Signals and signal procesing
5. Mitra Chap 2: Discrete-time signals in time domain
6. Mitra Chap 3: Discrete-time signals in frequency

domain
7. Bandpass sampling

8. Complex-valued signals
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Signal Processing

“Roughly speaking, signal processing is concerned with the mathematical
representation of the signal and the algorithmic operation carried out on it
to extract the information present” (Mitra p. 1)

Lots of applications:

◮ Audio signals

◮ Communications

◮ Biological signals (EMG, ECG, ...)

◮ Radar/sonar

◮ Image/video processing

◮ Power metering

◮ Structural health monitoring

◮ ... (see Mitra Chap. 1.4)
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Digital Signal Processing
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The idea of processing signals digitally began in the 1950s with the
availability of computers.

Some advantages:
1. Less sensitive to component values, temperature, and aging.

2. Typically easier to manufacture (less need for calibration).

3. Typically more accurate (accuracy can be increased by increasing
word length)

4. Typically higher dynamic range

5. Wider range of applications: signal multiplexing, adaptive filters, ...

6. Easy to reconfigure/reprogram

7. Digital storage for offline processing
WPI D. Richard Brown III 12-January-2012 4 / 56



ECE503: Course Introduction

Digital Signal Processing

analog

input

sample

and hold

analog

to digital

converter

digital

processor

digital

to analog

converter

reconstruction

�lter

analog

output

Some disadvantages:
1. Increased system complexity

2. Potential for software bugs (more testing required)

3. Typically higher power consumption than analog circuits

4. Limited frequency range

5. Decreasing ADC/DAC accuracy as sampling frequency is increased

6. ADC and DAC delay

7. Finite precision effects

8. Analog circuits must be used for some applications (like what?)
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Mitra Chapter 1

Signals and Signal Processing

1. Characterization and classification of signals
◮ Continuous-Time and Discrete-Time
◮ Continuous-Valued and Discrete-Valued
◮ Signal dimensionality

2. Typical Signal Processing Operations
◮ Scaling, delay, addition, product, integration, differentiation, filtering

(convolution), amplitude modulation, multiplexing, ...

3. Examples of typical signals

4. Typical signal processing applications

5. Why digital signal processing?

Please read 1-2 for review and skim 3-5 for context and motivation.
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Some Notation

R = the set of real numbers (−∞,∞)

Z = the set of integers {. . . ,−1, 0, 1, . . . }
j = unit imaginary number

√
−1

C = the set of complex numbers (−∞,∞)× j(−∞,∞)

t = continuous time parameter ∈ R

x(t) = continuous-time signal R 7→ R or R 7→ C

n = discrete time parameter ∈ Z

x[n] = discrete-time signal Z 7→ R or Z 7→ C

T = sampling period ∈ R

FT = sampling frequency ∈ R

Ω = frequency of continuous-time signal ∈ R

ω = frequency of discrete-time signal ∈ R
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Mitra Chapter 2

Discrete-Time Signals in the Time Domain
1. Time-Domain Representation

◮ Length and strength of a signal
2. Operations on sequences

◮ Scaling, delay, time-reversal, product, summation, filtering
(convolution), sample rate conversion, ...

3. Operations on finite-length sequences
◮ Circular time-reversal, circular shifts

4. Classification of sequences
◮ Symmetry, periodicity, energy and power, bounded sequences,

absolutely summable sequences, square-summable sequences
5. Typical sequences

◮ Impulse (unit sample), unit step, sinusoidal, exponential, rectangular
windows, ...

◮ Generating useful sequences in Matlab

6. The sampling process and aliasing

7. Correlation of signals
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Representations of a Discrete-Time Signals

Example (Mitra sequence notation)

{x[n]} = {3,−3,1, 6}
↑

means x[−2] = 3, x[−1] = −3, x[0] = 1, and x[1] = 6.

We could also write this sequence as

x[n] = 3δ[n + 2]− 3δ[n + 1] + δ[n] + 6δ[n − 1]

where

δ[n] =

{

1 n = 0

0 otherwise

is the discrete-time unit impulse function.

If the sequence is given without an arrow, e.g. {x[n]} = {3,−3, 1, 6}, it is
implied that the first element is at n = 0.
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Length of a Discrete-Time Signal

Example:

{x[n]} = {3,−3,1, 6}
↑

Mitra says this finite-length signal is defined only on the interval
N1 ≤ n ≤ N2 where N1 = −2 and N2 = 1 in this example. The length of
this signal is clearly N = N2 −N1 + 1 = 4 samples.

In ECE503, we will say a finite-length signal is non-zero only on the
interval N1 ≤ n ≤ N2. Rather than being undefined, we say that x[n] = 0
for all integer n < N1 and all integer n > N2. Hence

{y[n]} = {0, 0, 3,−3,1, 6, 0}
↑

is the same as {x[n]} above. This avoids problems when performing
operations on unequal length sequences.
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Strength of a Discrete-Time Signal

The strength of a discrete-time signal is given by its norm. The Lp norm is
defined as

‖x‖p =

(
∞∑

n=−∞

|x[n]|p
)1/p

Typical values for p are p = 1, p = 2, and p = ∞.

Some facts:

◮ ‖x‖2/
√
N is the root-mean-squared (RMS) value of a length-N

sequence.

◮ ‖x‖22/N is the mean-squared value of a length-N sequence.

◮ ‖x‖1/N is the mean absolute value of a length-N sequence.

◮ ‖x‖2 ≤ ‖x‖1.
◮ ‖x‖∞ = maxn{|x[n]|}.

See the Matlab command norm.
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Discrete-Time Convolution

Assumes you understand the elementary operations of:
◮ Time shifting
◮ Time reversal
◮ Multiplication and addition

Given two sequences {x[n]} and {h[n]}, we can convolve these sequences
to get a third sequence by computing

y[n] = x[n]⊛ h[n]

= h[n]⊛ x[n]

=
∞∑

k=−∞

x[k]h[n − k]

=
∞∑

k=−∞

h[k]x[n − k].

See the Matlab command conv and examples in Mitra Section 2.2.3.
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Sample-Rate Conversion (1 of 2)

Up-sampling by an integer factor L > 1:

xu[n] =

{

x[n/L] n = 0,±L,±2L, . . .

0 otherwise.

See Matlab command upsample.

Example: {x[n]} = {1, 2, 3} and L = 3.
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Sample-Rate Conversion (2 of 2)

Down-sampling by an integer factor M > 1:

xd[n] = x[nM ].

See Matlab command downsample.

Example: {x[n]} = {1, 2, 3, 4, 5, 6} and M = 2.
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You can combine upsampling and downsampling to get any rational rate

conversion L/M you want. See Matlab command upfirdn.
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Energy and Power Signals (1 of 2)

Total energy of the sequence {x[n]}:

Ex =
∞∑

n=−∞

|x[n]|2 = ‖x‖22

Total energy is finite for all finite length sequences with finite valued
samples and some infinite length sequences. A sequence that has finite
total energy is called an energy signal.

For sequences that don’t have finite total energy, we can define the
average power of an aperiodic sequence {x[n]} as:

Px = lim
K→∞

1

2K + 1

K∑

n=−K

|x[n]|2 (aperiodic sequences)

A sequence with non-zero finite average power is called a power signal.
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Energy and Power Signals (2 of 2)

For periodic sequences {x[n]} with period N , i.e. x[n+N ] = x[n] for all
n, the average power is defined as

Px =
1

N

n0+N−1∑

n=n0

|x[n]|2 (periodic sequences)
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Sequence Boundedness and Summability

Definition
A sequence {x[n]} is said to be bounded if there exists some finite Bx < ∞ such that

|x[n]| ≤ Bx for all n.

Definition
A sequence {x[n]} is said to be absolutely summable if

∞∑

n=−∞

|x[n]| < ∞.

Definition
A sequence {x[n]} is said to be square-summable if

∞∑

n=−∞

|x[n]|2 < ∞.

Such a sequence has finite energy and is an energy signal.
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Typical Discrete-Time Sequences

Unit sample (discrete-time delta function):

δ[n] =

{

1 n = 0

0 otherwise

Unit step:

µ[n] =

{

1 n ≥ 0

0 otherwise

◮ Note that δ[n] = µ[n]− µ[n− 1].

◮ δ[n] is bounded, finite length, absolutely summable, and square
summable.

◮ µ[n] is bounded, infinite length (one-sided), not absolutely summable,
and not square summable.

See Mitra pp. 64-67 for examples of sinusoidal and exponential sequences.
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Sequence Generation in Matlab

Some useful functions to generate discrete-time sequences in Matlab:
◮ exp
◮ sin
◮ cos
◮ square
◮ sawtooth

For example, to generate a half-second long exponentially decaying 100 Hz
sinusoid sampled at FT = 800 Hz, one could write

Ttot = 0.5; % total time

OMEGA = 2*pi*100; % sinusoidal frequency

FT = 800; % sampling frequency (Hz)

T = 1/FT; % sampling period (sec)

n=0:Ttot*FT; % generate sampling indices

alpha = 1.5; % exponential decay factor

x = exp(-alpha*n*T).*sin(OMEGA*n*T);

stem(n,x); % plot sequence vs sample index
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Normalized Frequency of Discrete-Time Signals

Ttot = 0.5; % total time

OMEGA = 2*pi*100; % sinusoidal frequency

FT = 800; % sampling frequency (Hz)

T = 1/FT; % sampling period (sec)

n=0:Ttot*FT; % generate sampling indices

alpha = 1.5; % exponential decay factor

x = exp(-alpha*n*T).*sin(OMEGA*n*T);

stem(n,x); % plot sequence vs sample index

Note the frequency of the continuous-time signal is Ω = 2π · 100
radians/sec.

What is the frequency of the discrete-time signal? We specify the
normalized frequency of the discrete time signal in radians per sample as

ω = ΩT =
Ω

FT

which implies that ω = 2π
8 radians per sample in this example.
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Non-Uniqueness of Discrete-Time Sinusoidal Signals

Suppose

x1[n] = sin(ωn+ φ)

x2[n] = sin((ω + k2π)n+ φ).

These two sequences are identical for any integer k ∈ Z.

This means there are an infinite number of continuous-time waveforms
that have the same discrete-time representation. In our previous example,
suppose Ω = 2π · 900 radians per second. Then

ω =
Ω

fT
=

2π · 9
8

=
2π

8
+ 2π

Hence a 900 Hz sinusoidal signal looks exactly the same as a 100 Hz signal
when they are sampled at FT = 800 Hz. This is an example of aliasing.
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Discrete-Time Correlation

Cross-correlation of two sequences {x[n]} and {y[n]}:

rxy[ℓ] =
∞∑

n=−∞

x[n]y∗[n− ℓ] for ℓ ∈ Z

where ()∗ denotes complex conjugation (which has no effect if x[n] is a
real-valued sequence). The parameter ℓ is called the “lag”.

1. Intuitively, a large correlation at lag ℓ indicates the sequence {x[n]} is
similar to the delayed sequence {y[n− ℓ]}.

2. Intuitively, a small correlation at lag ℓ indicates the sequence {x[n]} not
similar to the delayed sequence {y[n− ℓ]}.

Autocorrelation of {x[n]} with itself:

rxx[ℓ] =

∞∑

n=−∞

x[n]x∗[n− ℓ] for ℓ ∈ Z

Note rxx[0] = Ex. See Mitra 2.6 for properties, normalized forms, what to do

with power and periodic signals, and how to compute correlations in Matlab.
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Discrete-Time Correlation Example

x = 0.98.^(abs(n-20))+0.1*randn(1,length(n));

y = 0.98.^(abs(n))+0.1*randn(1,length(n));

subplot(2,1,1)

plot(n,x,n,y);

grid on

xlabel(’sample index’);

ylabel(’signal values’);

subplot(2,1,2)

z = xcorr(x,y,100);

plot(n,z)

grid on

xlabel(’lag’);

ylabel(’correlation r_{xy}’);
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Mitra Chapter 3

Discrete-Time Signals in the Frequency Domain

1. Continuous-Time Fourier Transform (CTFT)
◮ Definition and properties
◮ Parseval’s Theorem

2. Discrete-Time Fourier Transform (DTFT)
◮ Definition and properties
◮ Convergence conditions
◮ Relationship between DTFT and CTFT
◮ Parseval’s Theorem

3. Sampling Theorem

4. Bandpass Sampling
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Continuous-Time Fourier Transform

X(Ω) =

∫
∞

−∞

x(t)e−jΩt dt (CTFT)

x(t) =
1

2π

∫
∞

−∞

X(Ω)ejΩt dΩ (inverse CTFT)

Note x(t) is defined for all t ∈ R and X(Ω) is defined for all Ω ∈ R.

The spectrum X(Ω) is typically complex, even if x(t) is real.
◮ |X(Ω)| is called the “magnitude spectrum”.
◮ ∠X(Ω) is called the “phase spectrum”.

Sufficient conditions for the CTFT of x(t) to exist (Dirichlet conditions):

1. The signal x(t) has a finite number of finite discontinuities and a
finite number of maxima and minima in any finite interval

2. The signal x(t) is absolutely integrable, i.e.
∫

∞

−∞

|x(t)| dt < ∞
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Continuous-Time Fourier Transform Example

Given x(t) = e−αtµ(t) with α > 0, we can directly confirm x(t) is
absolutely integrable and do the integration to compute

X(Ω) =
1

α+ jΩ

Can compute magnitude and phase analytically (see Mitra example 3.1).
We can also plot the magnitude and phase in Matlab:

alpha = 1;

OMEGA = 2*pi*[-5:0.01:5];

X = 1./(alpha+j*OMEGA);

subplot(2,1,1);

plot(OMEGA,abs(X));

xlabel(’freq (rad/sec)’);

ylabel(’magnitude’);

subplot(2,1,2)

plot(OMEGA,angle(X)); % may need unwrap(angle(X))

xlabel(’freq (rad/sec)’);

ylabel(’angle (rad)’);
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Parseval’s Theorem for Continuous-Time Signals

If a continuous-time signal x(t) has finite energy, then

Ex =

∫
∞

−∞

|x(t)|2 dt = 1

2π

∫
∞

−∞

|X(Ω)|2 dΩ < ∞

See the proof in your textbook. Units:

◮ Ex is energy (joules).

◮ |x(t)|2 is energy per second, which is power (watts).

◮ |X(Ω)|2 is energy per unit frequency (joules/(rad/sec) or
joule-sec/rad).

Your textbook uses the notation Sxx(Ω) = |X(Ω)|2 to mean the “energy
density spectrum”. You can compute the amount of energy in a particular
frequency range a < Ω < b by computing

1

2π

∫ b

a
|X(Ω)|2 dΩ
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Poisson’s Sum Formula for Continuous-Time Signals

Given a continuous-time signal z(t) with CTFT Z(Ω), we can write the
infinite sum of delayed copies of z(t) as

z̃(t) =
∞∑

n=−∞

z(t− nT ) =
1

T

∞∑

n=−∞

Z(nΩT )e
jnΩT t

where ΩT = 2π/T .

Proof sketch: Note that z̃(t) is periodic with period T and can be
represented as a Fourier series

z̃(t) =
∞∑

n=−∞

αne
jnΩT t

The Fourier series coefficients can be computed as αn = 1
T Z(nΩT ).
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Application of Poisson’s Sum Formula

Suppose z(t) = δ(t). Then Z(Ω) = 1 and

z̃(t) =

∞∑

n=−∞

δ(t− nT ) =
1

T

∞∑

n=−∞

ejnΩT t

We can rewrite this result as

∞∑

n=−∞

ejnΩT t = T
∞∑

n=−∞

δ(t− nT ).

This result can also be applied to signals that are periodic in the frequency
domain with period ΩT by substituting ΩT ↔ T and t ↔ Ω:

∞∑

n=−∞

ejnTΩ = ΩT

∞∑

n=−∞

δ(Ω − nΩT ).

This will be useful shortly when we relate the CTFT to the DTFT.
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Discrete-Time Fourier Transform

X(ω) =
∞∑

n=−∞

x[n]e−jωn (DTFT)

x[n] =
1

2π

∫ π

−π
X(ω)ejωn dω (inverse DTFT)

Note x[n] is defined for all n ∈ Z and X(ω) is defined for all ω ∈ R.

The spectrum X(ω) is typically complex, even if x[n] is real.
◮ |X(ω)| is called the “magnitude spectrum”.
◮ ∠X(ω) is called the “phase spectrum”.

Unlike the CTFT X(Ω), the DTFT X(ω) is periodic such that
X(ω + k2π) = X(ω) for any k ∈ Z. Easy to see from the definition:

X(ω + k2π) =

∞∑

n=−∞

x[n]e−j(ω+k2π)n =

∞∑

n=−∞

x[n]e−jωn e−jk2πn
︸ ︷︷ ︸

=1

= X(ω)
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Parseval’s Theorem for Discrete-Time Signals

If a discrete-time signal x[n] has finite energy, then

Ex =
∞∑

n=−∞

|x[n]|2 = 1

2π

∫ π

−π
|X(ω)|2 dω < ∞

See the proof in your textbook.

Your textbook uses the notation Sxx(ω) = |X(ω)|2 to mean the “energy
density spectrum”. You can compute the amount of energy in a particular
(normalized) frequency range a < ω < b by computing

1

2π

∫ b

a
|X(ω)|2 dω
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Computation of the DTFT in Matlab

There are lots of ways to do this, but freqz is a good choice.

Typical usage:

N = 1001;

w = linspace(-pi,pi,N);

A = 1;

x = 0.95.^[0:100]; % example sequence

h = freqz(x,A,w);

subplot(2,1,1);

plot(w,abs(h));

xlabel(’normalized freq (rad/sample)’);

ylabel(’magnitude’);

subplot(2,1,2);

plot(w,unwrap(angle((h))));

xlabel(’normalized freq (rad/sample)’);

ylabel(’angle’);
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Relationship Between the CTFT and the DTFT (1 of 4)

Ideal sampling and reconstruction process:

impulse
generator

reconstruction
 lter

u(t)

p(t)

v(t) ∫ nT+ǫ
nT−ǫ dt

x[n] v(t)
h(t) y(t)

The pulse train

p(t) =

∞∑

n=−∞

δ(t−nT ) ↔ P (Ω) =

∞∑

n=−∞

e−jΩnT = ΩT

∞∑

n=−∞

δ(Ω−nΩT )

causes

v(t) = u(t)p(t) =

∞∑

n=−∞

u(nT )δ(t− nT )

hence the discrete-time signal

x[n] =

∫ nT+ǫ

nT−ǫ
v(t) dt =

∫ nT+ǫ

nT−ǫ

∞∑

n=−∞

u(nT )δ(t− nT ) dt = u(nT ).
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Relationship Between the CTFT and the DTFT (2 of 4)

impulse
generator

reconstruction
 lter

u(t)

p(t)

v(t) ∫ nT+ǫ
nT−ǫ dt

x[n] v(t)
h(t) y(t)

What is the relationship between U(Ω), V (Ω), and X(ω)?

Since the continuous-time signal

v(t) =

∞∑

n=−∞

u(nT )δ(t − nT ),

we can write

V (Ω) =

∫
∞

−∞

v(t)e−jΩt dt =

∞∑

n=−∞

u(nT )e−jΩnT

where we have used the sifting/sampling property of the delta function.
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Relationship Between the CTFT and the DTFT (3 of 4)

We have

V (Ω) =

∞∑

n=−∞

u(nT )e−jΩnT .

We can develop a more direct expression relating V (Ω) and U(Ω) by
recalling v(t) = u(t)p(t) and using the multiplication property of the
CTFT:

V (Ω) =
1

2π
U(Ω)⊛ P (Ω)

=
1

2π
U(Ω)⊛

(

ΩT

∞∑

n=−∞

δ(Ω − nΩT )

)

=
1

T

∞∑

n=−∞

U(Ω− nΩT )

where ΩT = 2πFT = 2π/T is the sampling frequency in radians/sec.
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Relationship Between the CTFT and the DTFT (4 of 4)

We now have

V (Ω) =

∞∑

n=−∞

u(nT )e−jΩnT (1)

=
1

T

∞∑

n=−∞

U(Ω− nΩT ). (2)

Recall the DTFT of x[n] = u(nT ) is

X(ω) =

∞∑

n=−∞

x[n]e−jωn =

∞∑

n=−∞

u(nT )e−jωn

Comparison with (1) reveals that X(ω) = V (Ω)|Ω=ω/T . Plugging this result into
(2) gives the desired result:

X(ω) =
1

T

∞∑

n=−∞

U(ω/T − n2π/T )

since ΩT = 2π/T .
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Sampling Theorem

impulse
generator

reconstruction
 lter

u(t)

p(t)

v(t) ∫ nT+ǫ
nT−ǫ dt

x[n] v(t)
h(t) y(t)

The impulse generator simply converts the discrete time sequence {x[n]}
to the continuous time signal

v(t) =

∞∑

n=−∞

x[n]δ(t − nT ) =

∞∑

n=−∞

u(nT )δ(t− nT )

for which we previously derived the spectrum

V (Ω) =
1

T

∞∑

n=−∞

U(Ω− nΩT ).

Under what conditions will y(t) = u(t)?
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Bandpass Sampling (1 of 5)

There are many signal processing situations, e.g. wireless communications,
in which we would like to sample a bandpass signal, i.e. a signal with
non-zero spectrum only on 0 < a < |Ω| < b.

Ω
a b−a−b

|U(Ω)|

We know we could satisfy the sampling theorem by just setting ΩT > 2b,
but this is often impractical because the frequency b is often very large,
e.g. 2.4 GHz.

Another approach is called bandpass sampling.
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Bandpass Sampling (2 of 5)

Ω
a b−a−b

|U(Ω)|

Example: Suppose a = 17.5 MHz and b = 22.5 MHz. We could just
sample at FT = 45 MHz but this would require a fast sampler and lots of
fast memory to store and process the sampled signal.

What would happen if we sampled at FT = 17.5 MHz?

17.5 22.512.55-5-17.5-22.5 -12.5
Ω

|V (Ω)|

Aliasing occurs but the replicated spectra do not overlap.
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Bandpass Sampling (3 of 5)

Can we have an even lower sampling rate and still avoid overlap?

Define the bandwidth and center frequency of the bandpass signal as
B = b− a and Ωc = (b+ a)/2, respectively.

a b-a-b

P Q

Ω

−Ωc Ωc

2Ωc −B

We denote the number of spectral replicas between −Ωc and Ωc as m. In
this example, we have m = 6.

The sampling frequency that achieves this spectral replication pattern is

ΩT1
=

2Ωc −B

m
.
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Bandpass Sampling (4 of 5)

a b-a-b

P Q

Ω

−Ωc Ωc

2Ωc −B

The sampling frequency that achieves this spectral replication pattern is

ΩT1
=

2Ωc −B

m
.

If we increase the sampling frequency from this value, the replicas P and
Q will overlap. So this means that, given a choice of m spectral replicas,

ΩT1
≤ 2Ωc −B

m
.
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Bandpass Sampling (5 of 5)

If we decrease the sampling frequency from this value, the replicas P and
Q will begin to separate and eventually abut R and S as shown below.

a b-a-b

P QR S

Ω

−Ωc Ωc

2Ωc −B

The sampling frequency that achieves this spectral replication pattern is

ΩT2
=

2Ωc +B

m+ 1
.

We do not want to decrease the sampling frequency below this point,
otherwise we will have overlap. All of this implies

2Ωc +B

m+ 1
≤ ΩT ≤ 2Ωc −B

m
.
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Bandpass Sampling Procedure

The final rule is that ΩT ≥ 2B (this should be obvious).

A procedure then is to:

1. make a table with different values of m = 1, 2, . . . ,

2. compute the sampling frequency bounds

2Ωc +B

m+ 1
≤ ΩT ≤ 2Ωc −B

m
,

3. sketch the resulting spectra, and

4. select the smallest sampling frequency that avoids spectral overlap
(taking into account one practical consideration).
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Bandpass Sampling Example Continued

We have Ωc = 2π · 20 · 106 rad/sec and B = 2π · 5 · 106 rad/sec. For
notational convenience, we will compute all of the bounds in MHz.

m (2Ωc +B)/(m+ 1) (2Ωc −B)/m

1 22.5 MHz 35.0 MHz

2 15.0 MHz 17.5 MHz

3 11.25 MHz 11.66 MHz

4 9.0 MHz 8.75 MHz

No need to go any further because at m = 4 replicas, we can’t satisfy the
bounds and we can’t satisfy the general rule that ΩT ≥ 2B.

Now we just need to sketch the spectra at each of the 6 possible sampling
frequencies.
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20-20

FT = 22.5MHz

20-20

FT = 35MHz

20-20

FT = 15MHz

20-20

FT = 17.5MHz

20-20

FT = 11.25MHz

20-20

FT = 11.66MHz

ΩΩ

ΩΩ

ΩΩ
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Bandpass Sampling: Some Practical Considerations

For odd values of m, note that the baseband spectrum is flipped with
respect to the original passband spectrum. This is called “spectral
inversion”.

◮ It doesn’t matter if the passband signals have symmetric spectra
(around Ωc).

◮ If you want to avoid it, make sure you pick an even value of m.

◮ You can easily correct for spectral inversion after the fact by
multiplying the spectrally inverted sequence by (−1)n = cos(πn).

Broadband background noise can also cause problems in bandpass
sampling unless filtered first.
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What is a Complex Signal?

In the real world, all signals are real valued. A complex signal like
x(t) = ejΩt can’t be generated. Or can it?

In many real-world applications like communication or radar systems, we
often work with two-dimensional real-valued signals that have a certain
relationship. It is often more convenient to represent these signals as a
single complex-valued signal (sometimes called a “quadrature signal”).

For example:

x1(t) = cos(Ωt)

x2(t) = sin(Ωt)

Both of these signals are real-valued. We can define
x(t) = x1(t) + jx2(t) = ejΩt. This signal is complex-valued.
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Complex Signal Notation Convenience (1 of 2)

Suppose you have four real-valued signals

x1(t) = cos(Ωt)

x2(t) = sin(Ωt)

y1(t) = cos(Ωt+ φ)

y2(t) = − sin(Ωt+ φ)

and have a real system (a “quadrature downconverter”) that computes

z1(t) = x1(t)y1(t)− x2(t)y2(t)

z2(t) = x1(t)y2(t) + x2(t)y1(t)

You can do all of the trigonometry to compute

z1(t) = cos(φ)

z2(t) = sin(−φ)

(continued...)
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Complex Signal Notation Convenience (2 of 2)

... or you could use complex notation:

x(t) = x1(t) + jx2(t) = ejΩt

y(t) = y1(t) + jy2(t) = e−j(Ωt+φ).

Recognizing that the quadrature downconverter is just performing complex
multiplication, we can write

z(t) = x(t)y(t)

= ejΩte−j(Ωt+φ)

= e−jφ

= cos(φ)− j sin(φ)

which is the same as saying

z1(t) = cos(φ)

z2(t) = sin(−φ).
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Complex Signals: Bottom Line

1. Concise and convenient notation for certain types of signals,
e.g. bandpass signals

2. Simplified mathematical operations

3. Continuous-time or discrete-time

4. Compatible with Fourier analysis

5. It is how signal processing for communication systems is usually
described in the literature

See the single-sideband amplitude modulation example in Mitra 1.2.4
and the quadrature amplitude modulation example in Mitra 1.2.6 for
more real-world examples of complex signals.
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Conclusions

1. You are responsible for all of the material in Chapters 2 and 3, even if
it wasn’t covered in lecture.

2. Almost all of this material should be review.

3. Please read Chapter 4 before the next lecture and have some
questions prepared.

4. The next lecture is on Monday 23-Jan-2012 at 6pm.
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