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ECE503: Finite-Length Discrete Transforms

Lecture 3 Topics

1. Discrete Fourier Transform (DFT)
◮ Relationship to DTFT
◮ Intuition
◮ Properties
◮ Convolution

2. Short-Time Fourier Transform (STFT)

3. Discrete Cosine Transform (DCT)
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The Discrete Fourier Transform (DFT)

Definition: Given a length-N <∞ sequence {x[n]}, the DFT {X [k]} is

X [k] =

N−1∑

n=0

x[n]e−j2πkn/N =

N−1∑

n=0

x[n]W kn
N for k = 0, . . . , N − 1

where the “twiddle factors” WN := e−j2π/N . Recall the DTFT of a finite-length
sequence {x[n]} with length N :

X(ω) =
N−1∑

n=0

x[n]e−jωn

Remarks:

◮ The DTFT takes a discrete-time sequence and produces a
continuous-frequency output.

◮ The DFT is a length-N sampled version of the DTFT,
i.e. X [k] = X(ω)|ω=2πk/N for k = 0, . . . , N − 1.

◮ The DFT takes a finite-length discrete-time sequence and produces a
finite-length discrete-frequency output.
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Sampling and Periodicity

Recall all discrete-time signals are periodic in the frequency domain. Given
a discrete-time sequence {x[n]}, the DTFT X(ω) is periodic with period
2π, i.e. X(ω+m2π) = X(ω) for any integer m. The DFT is also periodic.

Now, when we compute the DFT, we are sampling the
continuous-frequency signal. The DFT X[k] = X(ω)ω=2πk/N is a
discrete-frequency signal. What does this imply about the time-domain
signal x[n] = IDFT(X[k])?

Sampling in the frequency domain implies a periodic signal in the time
domain, i.e. x[n+mN ] = x[n] for any integer m. This is easy to see from
the definition of the IDFT:

x[n+mN ] =
1

N

N−1∑

k=0

X[k]ej2πk(n+mN)/N =
1

N

N−1∑

k=0

X[k]ej2πkn/N
e
j2πkmN/N

︸ ︷︷ ︸

=1

= x[n]
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The Discrete Fourier Transform (DFT)

The DFT is a linear operation that can be conveniently represented as a
matrix-vector product. For example, suppose N = 3. The DFT is

X[0] = W 00
3 x[0] +W 01

3 x[1] +W 02
3 x[2]

X[1] = W 10
3 x[0] +W 11

3 x[1] +W 12
3 x[2]

X[2] = W 20
3 x[0] +W 21

3 x[1] +W 22
3 x[2]

which is the same thing as




X[0]
X[1]
X[2]



 =





W 00
3 W 01

3 W 02
3

W 10
3 W 11

3 W 12
3

W 20
3 W 21

3 W 22
3









x[0]
x[1]
x[2]





=





1 1 1

1 e−j2π/3 e−j4π/3

1 e−j4π/3 e−j8π/3









x[0]
x[1]
x[2]





X = Gx
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Matrix Hermitian

The notation G
H means “matrix Hermitian” and is defined as the

complex conjugate transpose of a matrix. For example:

G =

[
a b
c d

]

G
H =

[
a∗ c∗

b∗ d∗

]

.

Let’s look at the G from our length-3 DFT:

G =





1 1 1

1 e−j2π/3 e−j4π/3

1 e−j4π/3 e−j8π/3



 G
H =





1 1 1

1 ej2π/3 ej4π/3

1 ej4π/3 ej8π/3



 .

It is not difficult to confirm that

1

3
G

H
G =

1

3
GG

H =





1 0 0
0 1 0
0 0 1





The DFT is an orthogonal transform. Since 1
NG

H
Gx = x, this also tells

us how to compute the IDFT.
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The Inverse Discrete Fourier Transform (IDFT)

Given our definition of the DFT matrix G, the IDFT can be computed as

x =
1

N
G

H
X

or, if you prefer the more explicit summation notation

x[n] =
1

N

N−1∑

k=0

X[k]ej2πkn/N =
1

N

N−1∑

k=0

X[k]W−kn
N for n = 0, . . . , N−1

See Matlab functions fft and ifft. You can get an N -point DFT matrix
in Matlab with the following code:

N = 3;

x = eye(N);

G = fft(x);

Note the FFT is the same as the DFT but has less computational
complexity (we will discuss this when we cover chapter 11).
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DFT Intuition

Look at our N = 3 example again:





X[0]
X[1]
X[2]



 =





1 1 1

1 e−j2π/3 e−j4π/3

1 e−j4π/3 e−j8π/3









x[0]
x[1]
x[2]





Intuition:

◮ Each row of the DFT matrix is a sampled complex exponential at a
specific frequency.

◮ The matrix-vector product is a correlation between the time domain
sequence {x[n]} and each row of the DFT matrix.

◮ X[k] is a measure of how much 2πk/N -frequency component is
present in {x[n]}.

◮ Each row of the DFT matrix is orthogonal from the other rows.

◮ The DFT operation can be thought of as a change of basis.
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Interpretation of the DFT Frequency Axis

Suppose you plot the DFT magnitude of an N = 32 point signal via
plot(0:31,abs(fft(x))) and see the following result:
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What frequencies are present in the signal? If the signal was sampled at
FT = 44100 Hz, what frequencies are present in the original analog signal?
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Convolution Theorem: DTFT vs. DFT

Textbook pp. 108-109 proves

DTFT(h[n]⊛ x[n]) = H(ω)X(ω)

if the DTFTs both exist.

What about
DFT(h[n]⊛ x[n])

?
= H[k]X[k]

If we think about the lengths of each of these sequences (and their
corresponding DFTs), it should be obvious this doesn’t make sense.
Example:

h[n] = {1, 1} ⇔ H[k] = {2, 0}

x[n] = {1,−1, 1,−1} ⇔ X[k] = {0, 0, 4, 0}

h[n]⊛ x[n] = {1, 0, 0, 0,−1} ⇔ DTFT(h[n]⊛ x[n]) = {0, 0.69 − 0.95i,

1.81 − 0.59i, 1.81 + 0.59i, 0.69 + 0.95i}

Is the DFT useful for convolution?
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Circular Convolution

Recall the definition of (linear) convolution for y[n] = h[n]⊛ x[n]:

y[n] =
∞∑

k=−∞

x[k]h[n − k] =
∞∑

k=−∞

x[n− k]h[k].

If h[n] and x[n] are both length-N sequences defined on
n = 0, . . . , N − 1, we can define circular convolution y[n] = h[n] N x[n] as

y[n] =

N−1∑

k=0

x[k]h[〈n − k〉N ] =

N−1∑

k=0

x[〈n− k〉N ]h[k]

where 〈n− k〉N means “modulo N”. For example: 〈−1〉N = N − 1,
〈N〉N = 0, 〈N + 1〉N = 1, etc.

Note the circular convolution result y[n] will also be length-N .

See Matlab function cconv.
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Circular Convolution Matrix

To illustrate the idea, suppose we want to circularly convolve
{a[0], a[1], a[2]} and {b[0], b[1], b[2]}. Note N = 3 here. Applying the
definition, we can write

c[0] = a[0]b[0] +a[1]b[2] +a[2]b[1]
c[1] = a[0]b[1] +a[1]b[0] +a[2]b[2]
c[2] = a[0]b[2] +a[1]b[1] +a[2]b[0]

This is the same as




c[0]
c[1]
c[2]



 =





a[0] a[2] a[1]
a[1] a[0] a[2]
a[2] a[1] a[0]





︸ ︷︷ ︸

convolution matrix





b[0]
b[1]
b[2]



 =





b[0] b[2] b[1]
b[1] b[0] b[2]
b[2] b[1] b[0]





︸ ︷︷ ︸

convolution matrix





a[0]
a[1]
a[2]





Like linear convolution, the circular convolution matrix has a Toeplitz
(actually “circulant”) structure. Unlike linear convolution, the circular
convolution matrix is square (N ×N).
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Circular Convolution Theorem

Textbook pp. 226-228 proves

h[n] N x[n]
DFT
←→ H[k]X[k].

This is not the same thing as

h[n]⊛ x[n]
DTFT
←→ H(ω)X(ω).

Intuition:

◮ Recall N -point sampling in the frequency domain leads to a periodic
signal with period N in the time domain.

◮ Circular convolution accounts for this periodicity.

◮ Circular convolution is like the linear convolution of two infinite-length
periodic sequences with period N (summing only over one period).
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Zero-Padding

Suppose we take a length-N sequence and extend it to length-L > N by
appending L−N zeros. The DFT is then

X[k] =

L−1∑

n=0

x[n]e−j2πkn/L =

N−1∑

n=0

x[n]e−j2πkn/L for k = 0, . . . , L− 1

This effectively creates a “tall” DFT matrix with L rows and N columns.
For example, suppose L = 4 and N = 3. Then

G =







W 00
4 W 01

4 W 02
4

W 10
4 W 11

4 W 12
4

W 20
4 W 21

4 W 22
4

W 30
4 W 31

4 W 32
4







where we had G =





W 00
3 W 01

3 W 02
3

W 10
3 W 11

3 W 12
3

W 20
3 W 21

3 W 22
3



 before.

Why might this be useful?
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Linear Convolution with the DFT

zero-pad

zero-pad

N-point
DFT

N-point
DFT

N-point
IDFT

trim

length L
sequence a[k]

length M 
sequence b[k]

length L+M-1 
sequence c[k]

Remarks:
◮ The zero-padded sequences are still periodic, but the gaps inserted by

the zeros make the circular convolution look like linear convolution.
◮ N should be selected such that N ≥ L+M − 1.
◮ To make the computation efficient, N is usually chosen as the

smallest integer power of two satisfying N ≥ L+M − 1.
◮ When the DFTs are computed with the FFT, this is called “fast

convolution”.
◮ This can be extended to infinite length sequences using “overlap-add”

and “overlap-save” methods (see Section 5.10.3 of your textbook).
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Periodic Extension: DFT and Fourier Series (1 of 2)

n

x[n]

n

periodic extension of x[n]

Denote the periodic extension of the length-N sequence x[n] as x̃[n]. Note

x̃[n] = IDFT(X[k]) =
1

N

N−1∑

k=0

X[k]ej2πkn/N

hence

X̃(ω) = DTFT(x̃[n]) =
1

N

N−1∑

k=0

X[k]DTFT(ej2πkn/N )

Textbook p. 105 says DTFT(ejω0n) =
∑

∞

ℓ=−∞
2πδ(ω − ω0 + 2πℓ).
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Periodic Extension: DFT and Fourier Series (2 of 2)

Noting ω0 = 2πk/N here, we can use the prior result to write

DTFT(ej2πkn/N ) =

∞∑

ℓ=−∞

2πδ(ω − 2πk/N + 2πℓ)

which implies

X̃(ω) =

∞∑

ℓ=−∞

N−1∑

k=0

2π

N
X[k]

︸ ︷︷ ︸

Fourier series coefficient

δ(ω − 2πk/N + 2πℓ)

N=4 example
|X̃(ω)|

ω
0 2π

4
4π
4

6π
4 2π

2π
4 X[0]

2π
4 X[1]

2π
4 X[2]

2π
4 X[3]

2π
4 X[0]
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Two-Dimensional DFT

Given a two-dimensional time-domain signal x[m,n], the two-dimensional
DFT is defined as

X[k, ℓ] =
M−1∑

m=0

N−1∑

n=0

x[m,n]e−j2π(mk/M+nℓ/N)

=

M−1∑

m=0

(
N−1∑

n=0

x[m,n]e−j2πnℓ/N

)

︸ ︷︷ ︸

1-D DFT of row m

e−j2πmk/M

=

N−1∑

n=0

(
M−1∑

m=0

x[m,n]e−j2πmk/M

)

︸ ︷︷ ︸

1-D DFT of column n

e−j2πnℓ/N

for k = 0, . . . ,M − 1 and ℓ = 0, . . . , N − 1. 2D-FFT has the same
properties as the 1D-FFT. See Matlab functions fft2 and ifft2.
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Two-Dimensional DFT Example

X = imread(’post512.tif’);

figure(1), imshow(X)

J = fft2(X);

figure(2), imshow(fftshift(log(abs(J))),[])

colormap(jet(64))

figure(3), plot(cumsum(sort(abs(J(:)),’descend’))/sum(sum(abs(J))))
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Short-Time Fourier Transform (1 of 4)

For signals that have frequency content that is changing over time, e.g. music or
speech, taking the DFT of the whole signal usually isn’t very interesting.
x = cos(2*pi/80000*(n+1000).^2); % linear chirp

soundsc(x,8000)

plot([0:length(x)-1]/length(x)*2*pi,20*log10(abs(fft(x))))
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Short-Time Fourier Transform (2 of 4)

We can get more insight on these signals by performing a “short-time
Fourier transform” (STFT). Suppose x[n] is a signal with P samples. The
STFT defined as

XSTFT[k, n] =
∞∑

m=−∞

x[m]w[m− n]e−j2πkm/N

where k = 0, . . . , N − 1 is the frequency index (same as the DFT), n is a
time index, and w[n] is a “window function”. For now, assume a
rectangular window of length R ≤ N ≪ P with w[n] = 1 for
n = 0, . . . , R− 1 and w[n] = 0 otherwise.

In practice, we don’t usually compute the STFT for all n = 0, 1, . . . since
the frequency content of the signal does not change much from sample to
sample. Instead, we typically pick an integer L ≤ R and compute the
STFT for values of n = 0, L, 2L, . . . .
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Short-Time Fourier Transform (3 of 4)

n

x[n]

P=24

n

w[n]

R=81

n

x[n]w[n]

n

x[n]w[n-4]

do DFT to get X[:,0]

DFT must be at least 8 points (can be more)

do DFT to get X[:,4]

n

x[n]w[n-8]

do DFT to get X[:,8]

etc.
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Short-Time Fourier Transform (4 of 4)

Matlab function spectrogram is useful for computing STFTs.

x = cos(2*pi/80000*(n+1000).^2); % linear chirp

[s,f,t] = spectrogram(x,ones(1,256),128,512,8000);

image(t,f,abs(s)); set(gca,’ydir’,’normal’)

time (sec)

fr
eq

 (
H

z)
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Google “Aphex face” for an example of a more interesting spectrogram.
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Discrete Cosine Transform (1 of 3)

When working with real-valued signals, the DFT is typically complex and
has some redundancy:

◮ Odd symmetric phase
◮ Even symmetric magnitude

If you know X[1], you know X[N − 1] since they are just conjugates of
each other (easy to prove or try it for yourself in Matlab).

Also, the periodic extension implicit in the DFT can create sharp
discontinuities, as we saw before:

n

x[n]

n

periodic extension of x[n]

These discontinuities can cause the spectral content of the DFT to be
spread out.
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Discrete Cosine Transform (2 of 3)

The “discrete cosine transform” DCT is an orthogonal transform, like the DFT,
but generates a length-N real valued output from a length-N real valued input.
It also assumes a different periodic extension, as shown below:

n

x[n]

n

“half-sample” periodic extension of x[n]

do length-2N DFT

of this signal v[n]

After forming v[n] from x[n], the 2N -point DFT can be computed as

V [k] =

2N−1∑

n=0

v[n]e−j2πnk/(2N) = 2W
−k/2
2N

N−1∑

n=0

x[n] cos

(
πk(2n+ 1)

2N

)

and XDCT[k] = W
k/2
2N V [k] for n = 0, . . . , N − 1. IDCT is similar (see textbook).

See Matlab functions dct, idct, dct2, and idct2.
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Discrete Cosine Transform (3 of 3)

X = imread(’post512.tif’);

figure(1), imshow(X)

J = dct2(X);

figure(2), imshow(log(abs(J)),[]),

colormap(jet(64))

figure(3), plot(cumsum(sort(abs(J(:)),’descend’))/sum(sum(abs(J))))
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The DCT is used in signal compression due to its better “energy compaction”.
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Conclusions

1. This concludes Chapter 5. You are responsible for all of the material
in this chapter except 5.13 (Haar transform), even if it wasn’t covered
in lecture.

2. Please read Chapter 6 before the next lecture and have some
questions prepared.

3. The next lecture is on Monday 06-Feb-2012 at 6pm.
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