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Lecture 5 Topics

1. Magnitude and phase characterization of transfer functions

2. Linear phase FIR filters

3. Simple FIR and IIR filtering

4. Complementary transfer functions

5. Inverse systems and equalization

6. System identification
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Magnitude Response Characterization of Transfer Function

Definition

A causal stable system H with real-coefficient transfer function H(z) is
called bounded real (BR) if its DTFT satisfies |H(ω)| ≤ 1 for all ω.

Note that causal stable transfer functions have all poles inside the unit
circle, hence they must have a bounded magnitude response |H(ω)| ≤ K
for all ω. The TF can be scaled by 1/K to make the system BR.

Definition

A stable system H with IIR transfer function H(z) is called allpass if its
DTFT satisfies |H(ω)| = 1 for all ω.

Definition

A causal stable system H with real-coefficient allpass transfer function is
called lossless bounded real (LBR).
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Allpass Delay Equalizer Example

It is not possible to design a stable causal IIR filter with linear phase. So
what we can do instead is cascade an allpass filter with an IIR filter to get
approximately linear phase over a desired range of frequencies. Example:
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Allpass Filter Poles and Zeros Mirrored Across Unit Circle
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Phase Response Characterization of Transfer Function

Definition

A stable system H is called zero-phase if it has a DTFT satisfying
∠H(ω) = 0 for all ω where |H(ω)| > 0.

Remark: A zero-phase dynamic system can not be implemented causally. Matlab

filtfilt is an example of a non-causal zero-phase filtering technique.

Definition

A linear phase system H is a system with phase response
θ(ω) = ∠H(ω) = cω for all ω and any constant c. An affine phase

system (also called a generalized linear phase system) H is a system with
phase response θ(ω) = ∠H(ω) = cω + β for all ω and any constants c
and β.

It is always possible to design an FIR filter with linear-phase response. It is
not possible to design a stable causal IIR filter with linear phase response.
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Phase Response Characterization of Transfer Function

Definition

A causal stable system H with transfer function H(z) with all zeros inside the
unit circle is called minimum phase.

Definition

A causal stable system H with transfer function H(z) with all zeros outside the
unit circle is called maximum phase.

Definition

A causal stable system H with transfer function H(z) with at least one zero inside
the unit circle and at least one zero outside the unit circle is called mixed phase.

Minimum phase systems are important because they have a stable inverse

G(z) = 1/H(z). You can convert between min/max/mixed-phase systems by

cascading allpass filters.
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Phase Response Characterization Example

H1(z) = 6 + z−1 − z−2 H2(z) = 1− z−1 − 6z−2

H3(z) = 2− 5z−1 − 3z−2 H4(z) = 3 + 5z−1 − 2z−2

As shown below, all four of these causal stable systems have the same
magnitude response. Which are minimum, maximum, and mixed phase?
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Four Types of Linear-Phase FIR Filters (1 of 2)

Type Impulse response symmetry Impulse response length

I symmetric N odd (order is even)

II symmetric N even (order is odd)

III antisymmetric N odd (order is even)

IV antisymmetric N even (order is odd)

Symmetric length-N impulse response: h[n] = h[N − 1− n].
Antisymmetric length-N impulse response: h[n] = −h[N − 1− n].

All of these types will have frequency response of the form

H(ω) = e−j(N−1)ω/2ejβH̆(ω)

where H̆(ω) : R 7→ R is called the amplitude response.

Note N − 1 is the order of the system (this can be confusing). Also note

these filters all have the same constant group delay: τg(ω) =
(N−1)

2 .
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Four Types of Linear-Phase FIR Filters (2 of 2)

Type LPF HPF BPF BSF Comment

I Y Y Y Y Most versatile.

II Y N Y N Zero at z = −1.

III N N Y N Zeros at z = ±1.

IV N Y Y N Zero at z = 1.
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Simple Filtering I: Lowpass FIR

Length N = 2 moving average filter just takes the average of the last two
inputs:

H(z) =
1

2
(1 + z−1) =

z + 1

2z

Since this is an FIR filter, it has ROC everywhere except z = 0.

H(ω) =
1

2
(1 + e−jω) = e−jω/2 cos(ω/2)

Linear phase?

Type?

Cutoff frequency is defined as the value of ω such that |H(ω)|2 = 1
2 . This

is easy to compute:

cos2(ωc/2) = 1/2 ⇐⇒ ωc = π/2.

Can cascade to decrease width of passband.
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Simple Filtering I: Lowpass FIR
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Simple Filtering II: Highpass FIR

Length N = 2 “moving difference” filter just takes the difference of the
last two inputs:

H(z) =
1

2
(1− z−1) =

z − 1

2z

Since this is an FIR filter, it has ROC everywhere except z = 0.

H(ω) =
1

2
(1− e−jω) = je−jω/2 sin(ω/2)

Linear phase?

Type?

Cutoff frequency is easy to compute:

sin2(ωc/2) = 1/2 ⇐⇒ ωc = π/2.

Can cascade to decrease width of passband.
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Simple Filtering II: Highpass FIR
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Simple Filtering III: Notch FIR

You can’t get a notch with a length-2 FIR filter. We need at least length
N = 3. This transfer function will work:

H(z) = 1− 2 cos(ω0)z
−1 + z−2 =

z2 − 2 cos(ω0)z + 1

z2

(note book eq (7.74) is wrong). Not difficult to confirm z = e±jω0 are the
zeros. Since this is an FIR filter, it has ROC everywhere except z = 0.

H(ω) = 1− 2 cos(ω0)e
−jω + e−j2ω = e−jω(2 cos(ω)− 2 cos(ω0))

Easy to see H(ω) = 0 when ω = ±ω0.

Linear phase?

Type?

Cascading may not be a good idea for this filter.
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Simple Filtering III: Notch FIR
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Simple Filtering IV: Lowpass IIR

Intuition:
◮ We want a zero at z = −1 to block the high frequencies.
◮ We want a pole somewhere near z = 1 (but inside the unit circle if our

filter is to be causal & stable) to provide gain to the low frequencies.

Candidate transfer function with real 0 < α < 1:

H(z) =
K(1 + z−1)

1− αz−1
=

1− α

2

1 + z−1

1− αz−1

where in the second equality we’ve selected K so that the maximum
magnitude (which occurs at z = 1) is one.

We can find the cutoff frequency with a bit of algebra to be

ωc = cos−1
(

2α
1+α2

)

, or we can solve for α in terms of the cutoff frequency
as

α =
1− sinωc

cosωc
.

What happens if we set ωc = π/2?
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Simple Filtering IV: Lowpass IIR
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Simple Filtering V: Highpass IIR

Using the intuition you now have about the effect of poles and zeros on the
frequency response, how would you construct a simple IIR highpass filter?
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Simple Filtering V: Highpass IIR
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Simple Filtering V: Bandpass IIR
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Simple Filtering VI: Bandstop/Notch IIR
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Simple Filtering VII: IIR Comb Filter
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Delay-Complementary Transfer Functions

Definition

A set of L transfer functions {H1(z), . . . ,HL(z)} are called
delay-complementary if their sum is equal to a scaled integer delay, i.e.

L∑

k=1

Hk(z) = cz−n0

for c 6= 0 and any n0 ∈ {0, 1, . . . }.

H1(z)

H2(z)

x[n] y[n]

If H1(z) and H2(z) are delay
complementary, then
y[n] = cx[n − n0].

When might something like this
be useful?
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Allpass-Complementary Transfer Functions

Definition

A set of L stable transfer functions {H1(z), . . . , HL(z)} are called
allpass-complementary if their sum is equal to an allpass transfer function, i.e.

L∑

k=1

Hk(z) = A(z)

where |A(ω)| = 1 for all ω.

Delay complementary transfer functions with c = 1 are also allpass
complementary. Some allpass complementary transfer functions are also delay
complementary.

H1(z)

H2(z)

x[n] y[n]

If H1(z) and H2(z) are allpass
complementary, then
Y (ω) = X(ω)ejf(ω) for some phase
function f(ω).
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Power-Complementary Transfer Functions

Definition

A set of L stable transfer functions {H1(z), . . . ,HL(z)} are called
power-complementary if their squared magnitude sum is a constant for
all ω, i.e.

L∑

k=1

|Hk(ω)|
2 = c > 0 for all ω.

See Matlab function
iirpowcomp.
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Magnitude and Doubly-Complementary Transfer Functions

Definition

A set of L stable transfer functions {H1(z), . . . ,HL(z)} are called
magnitude-complementary if their magnitude sum is a constant for all
ω, i.e.

L∑

k=1

|Hk(ω)| = c > 0 for all ω.

Same idea as power-complementary except we are adding magnitudes
here, not squared magnitudes.

Definition

A set of L stable transfer functions {H1(z), . . . ,HL(z)} satisfying the
allpass-complementary property and the power-complementary property
are called doubly-complementary.
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Power-Complementary vs. Magnitude Complementary

omega0 = pi/4; % bandpass filter center frequency

beta = cos(omega0);

alpha = 0.8; % controls bandwidth of BPF

b = (1-alpha)/2*[1 0 -1]; % numerator

a = [1 -beta*(1+alpha) alpha]; % denominator

[bp,ap] = iirpowcomp(b,a); % compute power complementary filter

squared-magnitude plot
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Inverse Systems and Equalization

H1(z) H2(z)x[n] y[n]

The system H2(z) is the inverse of H1(z) if y[n] = x[n]. This is
equivalent to saying H1(z)H2(z) = 1 or h1[n]⊛ h2[n] = δ[n].

Remarks:
1. When might something like this be useful?

2. Note that the zeros of H1(z) become the poles of H2(z).

3. Note that the inverse system usually does not have a unique impulse
response unless you further constrain the inverse system to be causal
and/or stable (which identifies the ROC).

4. It is often the case that a causal stable inverse can not be found. One
workaround is to find a causal stable generalized inverse such that
H1(z)H2(z) = z−n0 for some integer n0.
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Equalization of Nonminimum Phase Channel

Suppose H1(z) =
(z−4)(z+5)

(z+0.5)(z−0.3) with ROC |z| > 0.5.

We form the inverse system H2(z) =
(z+0.5)(z−0.3)
(z−4)(z+5) . What are the possible

ROCs? Is there a causal stable inverse?

One approach in this case is to factor H1(z) into a causal stable minimum
phase filter and a causal stable allpass filter, i.e.

H1(z) = Hmin(z)A(z) =
(4z − 1)(5z + 1)

(z + 0.5)(z − 0.3)
︸ ︷︷ ︸

minimum phase

(z − 4)(z + 5)

(4z − 1)(5z + 1)
︸ ︷︷ ︸

allpass

ROC : |z| > 0.5

and invert just the minimum phase component, i.e. H2(z) =
(z+0.5)(z−0.3)
(4z−1)(5z+1) .

Then H1(z)H2(z) 6= 1 but rather H1(z)H2(z) = A(z). Hence, the
equalizer H2(z) corrects the magnitude/power distortion, but leaves some
residual phase distortion.
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Deterministic System Identification

Problem: We wish to determine the impulse response and/or transfer
function of a causal LTI unknown system H. It is assumed that we can
measure (but do not control) the input x[n] and the output y[n].

Methods:

1. Deconvolution (x[0] 6= 0):

h[0] =
y[0]

x[0]
and h[n] =

y[n]−
∑n−1

k=0 h[k]x[n − k]

x[0]
for n ≥ 1

2. Ratio of z-tranforms.
◮ Measure input x[n] and compute its z-transform X(z).
◮ Measure output y[n] and compute its z-transform Y (z).
◮ H(z) = Y (z)/X(z).

3. Energy density spectrum
◮ Measure input x[n] and compute autocorrelation rxx[ℓ]

DTFT
←→ Sxx(ω).

◮ Measure output y[n] and compute cross-correlation ryx[ℓ]
DTFT
←→ Syx(ω).

◮ H(ω) = Syx(ω)/Sxx(ω) for all ω where Sxx(ω) 6= 0.
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Conclusions

1. This concludes Chapter 7. You are responsible for all of the material
in this chapter except Sections 7.8 (Digital Two-Pairs) and 7.9
(Algebraic Stability Test), even if it wasn’t covered in lecture.

2. Please read Chapter 8 before the next lecture and have some
questions prepared.

3. The next lecture is on Monday 20-Feb-2012 at 6pm. Part of that
lecture will be reserved for review.

4. The midterm exam is scheduled for Monday 27-Feb-2012 and is based
on Chapters 1-7 of your textbook. No homework will be due on
Monday 27-Feb-2012.
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