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ECE503: Digital Filter Structures

Lecture 6 Topics

1. Filter structures overview

2. FIR filter structures
◮ Direct form
◮ Direct form transposed
◮ Symmetry tricks
◮ Cascaded
◮ Polyphase/parallel

3. IIR filter structures
◮ Direct form I
◮ Direct form II
◮ DFI/DFII transposed
◮ Cascaded
◮ Parallel

4. Cascaded Lattice Structures

5. Computational Complexity
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Digital Filter Structures

The problem we now consider is how to actually implement
discrete-time filters/systems. Some possibilities:

1. Compute output by convolving input buffer with impulse response?

y[n] =

N−1
∑

k=0

h[k]x[n − k]

2. Directly compute input-output difference equation?

y[n] =
M−1
∑

k=0

bkx[n− k]−
N−1
∑

k=1

aky[n− k]

3. Other methods?

Our scope will be restricted to LTI causal real-coefficient FIR and IIR
discrete-time filters.
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Motivation

All filter structures give the same output when we have infinite-precision
math. There can be big differences, however, when implementing a filter
with finite precision (Chapter 12).

Example: Causal IIR bandpass filter
y[n] = 0.01x[n] − 0.01x[n − 2] + 0.0031y[n − 1]− 0.98y[n − 2]

H(z) =
0.01(1 − z−2)

1− 0.0031z−1 + 0.98z−2

If we implement this filter on a small microcontroller with 8-bit integer
datatypes, the quantized difference equation will be

y[n] =
1

128
{x[n]− x[n− 2] + 0y[n− 1]− 125y[n − 2]}

which gives a transfer function of

Hq(z) =
0.078(1 − z−2)

1 + 0.9766z−2
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Finite-Precision IIR BPF
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FIR Direct Form

This is called “direct form” because it is a direct implementation of the
convolution operation. The number of delays is equal to the order of the
filter, hence this structure is canonic.

Note the fundamental building blocks:
◮ Unit delay z−1

◮ Multiplier/gain

◮ Accumulator/summer/adder

◮ Pick-off node
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FIR Direct Form Transposed

In general (not just for FIR filters), we can form an equivalent structure by
performing the transpose operation, which is defined as follows:

1. Reverse all paths

2. Replace pick-off nodes with accumulators, and vice-versa

3. Interchange input and output

If we perform this transpose operation on a direct form FIR filter, we get
the “direct form transposed” FIR filter structure:

Not difficult to confirm this realizes the same difference equation as the
direct form structure. Also canonic.
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Linear Phase FIR Symmetry Tricks

Recall the various types of linear phase FIR filters, each having either
symmetric or anti-symmetric impulse response. For example:

h[n] =h[0]δ[n] + h[1]δ[n − 1] + h[2]δ[n − 2]

+ h[3]δ[n − 3] + h[2]δ[n − 4] + h[1]δ[n − 5] + h[0]δ[n − 6]

=h[0](δ[n] + δ[n − 6]) + h[1](δ[n − 1] + δ[n− 5])

+ h[2](δ[n − 2] + δ[n − 4]) + h[3]δ[n − 3]

This symmetry can be exploited to reduce the number of multipliers.
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FIR Cascaded

Idea: Factor transfer function into product of smaller transfer functions.

Example:

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5 + h[6]z−6

= h[0](1 + β1,1z
−1 + β2,1z

−2)(1 + β1,2z
−1 + β2,2z

−2)(1 + β1,3z
−1 + β2,3z

−2)

Why do we factor into second-order rather than first-order sections?

Canonic?
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FIR Polyphase

We can also develop equivalent structures by putting smaller filters in
parallel. One way to do this is called “polyphase realization”:

2-branch polyphase decomposition 3-branch polyphase decomposition

This approach is not canonic unless the subfilters share delays (see
Figure 8.8 in your textbook).

These structures are useful for computationally efficient realizations of
multirate signal processing systems.
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FIR Polyphase Examples

Example (2-branch):

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5

= (h[0] + h[2]z−2 + h[4]z−4) + z−1(h[1] + h[3]z−2 + h[5]z−4)

= E0(z
2) + z−1E1(z

2)

where E0(z) = h[0] + h[2]z−1 + h[4]z−2 and E1(z) = h[1] + h[3]z−1 + h[5]z−2.

Same example except 3-branch:

H(z) = h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 + h[5]z−5

= (h[0] + h[3]z−3) + z−1(h[1] + h[4]z−3) + z−2(h[2] + h[5]z−3)

= E0(z
3) + z−1E1(z

3) + z−2E2(z
3)

where E0(z) = h[0] + h[3]z−1, and E1(z) = h[1] + h[4]z−1, and
E2(z) = h[2] + h[5]z−1.
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IIR Direct Form I

If H(z) = P (z)
Q(z) , we can implement this directly as a cascade of the

feedforward part P (z) and the feedback part Q(z).

Note textbook uses p0, . . . , pM−1 for numerator coefficients and
d0, . . . , dN−1 for denominator coefficients. We typically use b0, . . . , bM−1

for numerator coefficients and a0, . . . , aN−1 for denominator coefficients
(consistent with Matlab). Is this structure canonic?
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Changing the Order of the IIR DFI Sections

To get equivalent structures, we can perform a transpose or we can reverse
the order of the sections (do feedback first, feedforward second):

IIR DFI IIR-DFI swapped sections

Canonic?

Note the delays are no longer storing past inputs and past outputs.

What can we say about the contents at pickoff node ℓ with respect to the
contents at pickoff node ℓ′?
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IIR Direct Form II

By sharing the delays in our swapped sections structure, we arrive at a
structure called IIR Direct Form II (its transpose is also shown below).

Canonic?
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Pseudocode Implementation of IIR Direct Form II

<read in new input x[n] from ADC>

<shift intermediate values down, starting at bottom

u[n-M+1] = u[n-M+2]

u[n-M+2] = u[n-M+3]

...

>

<compute new intermediate value

u[n] = x[n] - d[1]*u[n-1] - d[n]*u[n-2] - ...

>

<compute new output

y[n] = p[0]*u[n] + p[1]*u[n-1] + p[2]*u[n-2] + ...

>

<write new ouput y[n] to DAC>
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IIR Cascaded Direct Form II

Same idea as before: Factor transfer function and implement as a
series/product of smaller cascaded transfer functions. Example:

H(z) =
p0 + p1z

−1 + p2z
−2 + p3z

−3

1 + d1z−1 + d2z−2 + d3z−3

=

(

p0(1 + β1,1z
−1)

1 + α1,1z−1

)(

1 + β1,2z
−1 + β2,2z

−2

1 + α1,2z−1 + α2,2z−2

)

Both sections are implemented here as DF II. Canonic?
WPI D. Richard Brown III 20-February-2012 16 / 28



ECE503: Digital Filter Structures

IIR Cascaded Direct Form II

Suppose we have the factorization

H(z) =
P (z)

D(z)
=

P1(z)P2(z)P3(z)

D1(z)D2(z)D3(z)

Section ordering and pole-zero pairings can affect finite-precision behavior
of system. We’ll look at this more closely when we cover Chapter 12.

WPI D. Richard Brown III 20-February-2012 17 / 28



ECE503: Digital Filter Structures

IIR Direct Form II Second Order Sections

When creating IIR filters in Matlab with fdatool this is the default filter
structure. Why?

◮ Canonic (minimum number of delays/memory)
◮ Computationally efficient (minimum number of multiply/accumulates)
◮ Robust to coefficient quantization

Some Matlab functions for working with DFII-SOS filter structures:
tf2sos, sos2tf, zp2sos, sos2zp, and fdatool.
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IIR Parallel Realization

One way to realize IIR filters in parallel is to do a partial fraction expansion. Example:

H(z) =
0.44z−1 + 0.362z−2 + 0.02z−3

1 + 0.4z1− + 0.18z−2
− 0.2z−3

= −0.1 +
0.6

1− 0.4z−1
+

−0.5− 0.2z−1

1 + 0.8z−1 + 0.5z−2

Each subfilter is DFII. Can be useful for dividing computation across processors/cores.
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FIR Cascaded Lattice Structures

δ0

γ0

δ1

γ1

δ2

γ2

δ3

γ3

x[n] y[n]

w[n]z−1 z−1z−1

This approach can realize two FIR transfer functions H(z) = Y (z)
X(z) and

G(z) = W (z)
X(z) .

Given a lattice structure block diagram, how do we determine H(z) and
G(z)?

Given a desired FIR H(z) and G(z) (or h[n] and g[n]), how do we
determine the lattice coefficients?
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FIR Cascaded Lattice Structures (Lattice → TF)

Gℓ−1(z)

Hℓ−1(z)

δℓ

γℓ

Hℓ(z)

Gℓ(z)z−1

Analysis of single lattice segment:

Hℓ(z) = Hℓ−1(z) + z−1δℓGℓ−1(z)

Gℓ(z) = γℓHℓ−1(z) + z−1Gℓ−1(z)

Since H0(z) = δ0X(z) and G0(z) = γ0X(z), this recursion can be applied
for ℓ = 1, 2, . . . , N to determine the transfer functions H(z) and G(z)
from the lattice coefficients.
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FIR Cascaded Lattice Structures (TF → Lattice)

To get a recursion for computing lattice coefficients given H(z) and G(z), we can
redo our analysis, solving instead for Hℓ−1(z) and Gℓ−1(z), to get

Hℓ−1(z) = Kℓ [Hℓ(z)− δℓGℓ(z)]

Gℓ−1(z) = Kℓz [Gℓ(z)− γℓHℓ(z)]

where Kℓ =
1

1−δℓγℓ

.

Suppose, as an example, ℓ = 2 with Hℓ(z) = h0 + h1z
−1 + h2z

−2 and
Gℓ(z) = g0 + g1z

−1 + g2z
−2. Then

H1(z) = K2

[

h0 + h1z
−1 + h2z

−2 − δ2(g0 + g1z
−1 + g2z

−2)
]

G1(z) = K2z
[

g0 + g1z
−1 + g2z

−2 − γ2(h0 + h1z
−1 + h2z

−2)
]

Note that H1(z) and G1(z) can only be order 1 transfer functions. Hence we
need the z−2 and z+1 terms to vanish, which happens when

z−2 term in H1(z) vanishes ⇔ h2 − δ2g2 = 0 ⇔ δ2 =
h2

g2

z+1 term in G1(z) vanishes ⇔ g0 − γ2h0 = 0 ⇔ γ2 =
g0

h0
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FIR Cascaded Lattice Structures (TF → Lattice)

Outline of procedure:

1. Set L equal to the number of lattice sections.

2. Set HL(z) = H(z) and GL(z) = G(z).

3. Set ℓ = L.

4. Solve for δℓ and γℓ.

5. Compute Kℓ =
1

1−δℓγℓ
.

6. Compute Hℓ−1(z) and Gℓ−1(z). Both transfer functions should be
order ℓ− 1. Note coefficients are affected by Kℓ (you can’t just say
Hℓ−1(z) is equal to the first ℓ− 1 coefficients of Hℓ(z) or that
Gℓ−1(z) is equal to the first ℓ− 1 coefficients of Gℓ(z)).

7. Decrement ℓ.

8. If ℓ ≥ 1 go to step 4.

9. The final gains at the input are simply δ0 = H0(z) and γ0 = G0(z)
(these are both zero-order transfer functions).
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FIR Cascaded Lattice Structures (TF → Lattice)

Remarks and extensions:

1. There are some special cases where this recursion breaks down. See
your textbook pp. 454-455 for workarounds.

2. The lattice structure is natural for creating complementary filter pairs.
For example, if H(z) and G(z) are power complementary transfer
functions, then δℓ = (−1)ℓγℓ.

3. There are other FIR lattice structures. For example, you can
formulate a single output version with δ0 = γ0 = 1 and symmetric
lattice coefficients (δℓ = γℓ). Similar recursions can be used to
determine the lattice coefficients.

4. Lattice structures have nice properties for adaptive filtering (ECE630)
and also usually have good robustness to coefficient quantization
(Chap 12).
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All-Pole IIR Lattice Structures (1 of 2)

−k3

k3

−k2

k2

−k1

k1

W3(z) W2(z) W1(z)

S3(z) S2(z) S1(z)

x[n] y[n]

z−1z−1z−1

Analysis of single section:

Wi(z) = Wi+1(z)− kiz
−1Si(z)

Si+1(z) = kiWi(z) + z−1Si(z)

We can rearrange this to write
[

Wi+1(z)
Si+1(z)

]

=

[

1 kiz
−1

ki z−1

] [

Wi(z)
Si(z)

]

Note X(z) = W4(z) and Y (z) = W1(z) = S1(z). Continued
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All-Pole IIR Lattice Structures (2 of 2)

−k3

k3

−k2

k2

−k1

k1

W3(z) W2(z) W1(z)

S3(z) S2(z) S1(z)

x[n] y[n]

z−1z−1z−1

We can apply the result from the previous slide to write for this example
[

X(z)
S4(z)

]

=

[

1 k3z
−1

k3 z−1

] [

1 k2z
−1

k2 z−1

] [

1 k1z
−1

k1 z−1

] [

Y (z)
Y (z)

]

.

Since we only care about the relationship between X(z) and Y (z), we can do a little bit
of algebra to write

X(z) =
(

1 + [k1(1 + k2) + k2k3]z
−1 + [k2 + k1k3(1 + k2)]z

−2 + k3z
−3

)

Y (z)

Hence H(z) = Y (z)
X(z)

= 1
1+d1z

−1+d2z
−2+d3z

−3 is an all-pole transfer function.

A recursion similar to the FIR case can be found to determine the lattice coefficients
from an all-pole transfer function (see Section 8.8.1 of your textbook).
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General IIR Lattice Structures

−k3

k3

−k2

k2

−k1

k1

α1 α2 α3 α4

W3(z) W2(z) W1(z)

S3(z) S2(z) S1(z)S4(z)

x[n]

y[n]

z−1z−1z−1

Note Y (z) = α1S4(z) + α2S3(z) + α3S2(z) + α4S1(z).

Similar analysis as before can be applied to determine the TF from the
lattice. See also Matlab function latc2tf.

To get the lattice coefficients from the TF, you can use the Gray-Markel
method (see Section 8.8.2) of your textbook. See also Matlab function
tf2latc.
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Conclusions

1. This concludes Chapter 8. You are responsible for all of the material
in this chapter except Sections 8.7 (Parametrically Tunable
Low-Order IIR Digital Filter Pairs) and 8.11 (Tunable High-Order
Digital Filter Pairs), even if it wasn’t covered in lecture.

2. Please read Chapter 9 before the next lecture and have some
questions prepared.

3. The next lecture is on Monday 12-March-2012 at 6pm.

4. The midterm exam is scheduled for Monday 27-Feb-2012 and is based
on Chapters 1-7 of your textbook. No homework is due on Monday
27-Feb-2012 or Monday 12-March-2012.
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