Quadrature Signals
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Figure 8-5 A snapshot, in time, of two complex numbers whose exponents
change with time: (a) numbers shown as dots; (b) numbers shown as
phasors.

Let’s pause for a moment here to catch our breath. Don’t worry if the
ideas of imaginary numbers and the complex plane seem a little mysterious.
It's that way for everyone at first—you’ll get comfortable with them the more
you use them. (Remember, the j-operator puzzled Europe’s heavyweight
mathematicians for many years.) Granted, not only is the mathematics of
complex numbers a bit strange at first, but the terminology is almost bizarre.
While the term imaginary is an unfortunate one to use, the term complex is
downright weird. When first encountered, the phrase “complex numbers”
makes us think complicated numbers. This is regrettable because the concept of
complex numbers is not really so complicated.” Just know that the purpose of
the above mathematical rigmarole was to validate Egs. (8-2), (8-3), (8-7), and
(8-8). Now, let’s (finally!) talk about time-domain signals.

REPRESENTING REAL SIGNALS USING COMPLEX PHASORS

We now turn our attention to a complex number that is a function of time.
Consider a number whose magnitude is one, and whose phase angle in-
creases with time. That complex number is the ¢2%* point shown in Figure
8-5(a). (Here the 2xf, term is frequency in radians/second, and it corresponds
to a frequency of f, cycles/second where f, is measured in Hz.) As time ¢ gets
larger, the complex number’s phase angle increases and our number orbits

t The brilliant American engineer Charles P. Steinmetz, who pioneered the use of real and imag-
inary numbers in electrical circuit analysis in the early twentieth century, refrained from using
the term complex numbers—he called them general numbers.
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the origin of the complex plane in a CCW direction. Figure 8-5(a) shows the
number, represented by the solid dot, frozen at some arbitrary instant in time.
If, say, the frequency f, = 2 Hz, then the dot would rotate around the circle
two times per second. We can also think of another complex number ¢/2¥o!
(the white dot) orbiting in a clockwise direction because its phase angle gets
more negative as time increases.

Let’s now call our two complex expressions, &2% and e7290, quadrature
signals. Each has both real and imaginary parts, and they are both functions
of time. Those e2ot and e72%o! expressions are often called complex exponen-
tials in the literature.

We can also think of those two quadrature signals, &2%* and ¢72¥¢!, as
the tips of two phasors rotating in opposite directions, as shown in Figure
8-5(b). We're going to stick with this phasor notation for now because it'll
allow us to achieve our goal of representing real sinusoids in the context of
the complex plane. Don't touch that dial!

To ensure that we understand the behavior of a simple quadrature sig-
nal, Figure 8-6 shows the three-dimensional path of the &2% signal as time
passes. We've added the time axis, coming out of the page, to show how e/2¥ot
follows a corkscrew path spiraling along, and centered about, the time axis.
The real and imaginary parts of &% are shown as the sine and cosine projec-
tions in Figure 8-6 and give us additional insight into Eq. 8-7.
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Figure 8-6 The motion of the 2! complex signal as time increases.
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Quadrature Signals

To appreciate the physical meaning of our discussion here, let’s remem-
ber that a continuous quadrature signal geot = cos(2rf t) + jsin(2nf t) is not
just mathematical mumbo jumbo. We can generate 629! in our laboratory
and transmit it to another lab down the hall. All we need is two sinusoidal
signal generators, set to the same frequency f,. (However, somehow we have
to synchronize those two hardware generators so their relative phase shift is
fixed at 90 degrees.) Next we connect coax cables to the generators’ output
connectors and run those two cables, labeled cos for the cosine signal and sin
for the sinewave signal, to their destination as shown in Figure 8-7.

Now for a two-question pop quiz. First question: In the other lab, what
would we see on the screen of an oscilloscope if the continuous real cos(2nf t)
and sin(2xf,f) signals were connected to the horizontal and vertical input chan-
nels, respectively, of the scope (remembering, of course, to set the scope’s hori-
zontal sweep control to the External position)? That's right. We'd see the scope’s
electron beam rotating counterclockwise in a circle on the scope’s screen.

Next, what would be seen on the scope’s display if the cables were mis-
labeled and the two signals were inadvertently swapped? We’d see another
circle, but this time it would be orbiting in a clockwise direction. This would
be a neat little real-world demonstration if we set the signal generators’ f| fre-
quencies to, say, 1 Hz.

This oscilloscope example is meaningful and helps us answer the impor-
tant question “When we work with quadrature signals, how is the j-operator
implemented in hardware?” The j-operator is implemented by how we treat
the two signals relative to each other. We have to treat them orthogonally
such that the real cos(2xf,t) signal represents an east-west value, and the real
sin(2nf f) signal represents an orthogonal north-south value. (By “orthogo-
nal,” I mean the north-south direction is oriented exactly 90 degrees relative
to the east-west direction.) So in our oscilloscope example the j-operator is
implemented merely by how the connections are made to the scope. The real
cosine signal controls horizontal deflection and the real sine signal controls
vertical deflection. The result is a two-dimensional quadrature signal repre-
sented by the instantaneous position of the dot on the scope’s display. We
physically implemented the j-operator in ¢2%'=cos(2nf_t)+jsin(2nf,t) the mo-
ment we connected the sin(2nf#) signal to the vertical input connector of the
oscilloscope. Our Figure 8-7 example reminds us of an important characteris-
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Figure 8-7 Displaying a quadrature signat using an oscilloscope.
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tic of quadrature signals: While real signals can be transmitted over a single
cable, two cables are always necessary to transmit a quadrature (complex)
signal.

Returning to Figure 8-5(b), ask yourself: “What's the vector sum of those
two phasors as they rotate in opposite directions?” Think about this for a mo-
ment. That’s right, the phasors’ real parts will always add constructively, and
their imaginary parts will always cancel. This means the summation of these
¢/2%! and e72%e! phasors will always be a purely real number. Implementations
of modern-day digital communications systems are based on this property!

To emphasize the importance of the real sum of these two complex sinu-
soids we'll draw yet another picture. Consider the waveform in the three-
dimensional Figure 8-8 generated by the sum of two half-magnitude complex
phasors, 2%t /2 and e72¥ot /2, rotating in opposite directions about, and mov-
ing down along, the time axis.

Thinking about these phasors, it’s clear now why the cosine wave can be
equated to the sum of two complex exponentials by

Bp“fo‘ + e"izdo' _ eﬁ’fo’ + e‘ﬂ%‘
2 2 2

cos(2mf t)= (8-13)

Eq. (8-13), a well-known and important expression, is also one of Euler’s
identities. We could have derived this identity by solving Egs. (8-7) and (8-8)
for jsin{e), equating those two expressions, and solving that final equation for
cos(g). Similarly, we could go through the same algebra exercise and show a
real sinewave as also the sum of two complex exponentials as

o2t _ gi2fit je-flﬂ!o' jeﬂwfof

- (8-14)
2j 2 2
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Real

Imaginary e

axis

cos(2wf f)

Time

e-jZ‘n'fol‘
2

Figure 8-8 A cosine represented by the sum of two rotating complex phasors.
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8.4

Quadrature Signals

Look at Egs. (8-13) and (8-14) carefully—they are the standard expres-
sions for a cosine wave and a sinewave, using complex notation, and are seen
throughout the literature of quadrature communications systems. Equation
(8-13) tells us that the two complex exponentials are both oriented toward the
positive real axis when time ¢=0. The j operators in Eq. (8~14) tell us that the
negative-frequency complex exponential is oriented along the positive imagi-
nary axis, and the positive-frequency complex exponential is oriented along
the negative imaginary axis, when time ¢=0.

To keep the reader’s mind from spinning like those complex phasors,
please realize that the sole purpose of Figures 8-5 through 8-8 is to validate
the complex expressions of the cosine and sinewave given in Egs. (8-13) and
(8-14). Those two equations, along with Egs. (8-7) and (8-8), are the Rosetta
Stone of quadrature signal processing.! We can now easily translate, back and
forth, between real sinusoids and complex exponentials.

Let’s step back now and remind ourselves what we're doing. We are
learning how real signals that can be transmitted down a coax cable, or digi-
tized and stored in a computer’s memory, can be represented in complex num-
ber notation. Yes, the constituent parts of a complex number are each real, but
we're treating those parts in a special way-—we’re treating them in quadrature,

A FEW THOUGHTS ON NEGATIVE FREQUENCY

It’s important for us to be comfortable with the concept of negative frequency
because it’s essential in understanding the spectral replication effects of peri-
odic sampling, discrete Fourier transforms, and the various quadrature signal
processing techniques discussed in Chapter 9. The convention of negative fre-
quency serves as both a consistent and powerful mathematical tool in our
analysis of signals. In fact, the use of negative frequency is mandatory when
we represent real signals, such as a sine or cosine wave, in complex notation.
The difficulty in grasping the idea of negative frequency may be, for
some, similar to the consternation felt in the parlors of mathematicians in the
Middle Ages when they first encountered negative numbers. Until the thir-
teenth century, negative numbers were considered fictitious because numbers
were normally used for counting and measuring. So up to that time, negative
numbers just didn't make sense. In those days, it was valid to ask, “How can
you hold in your hand something that is less than nothing?” The idea of sub-
tracting six from four must have seemed meaningless. Math historians suggest
that negative numbers were first analyzed in Italy. As the story goes, around
the year 1200 the Italian mathematician Leonardo da Pisa (known as Fibonacci)

t The Rosetta Stone was a basalt slab found in Egypt in 1799. It had the same text written in
three languages, two of them being Greek and Egyptian hieroglyphs. This enabled scholars to,
finally, translate the ancient hieroglyphs.
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was working on a financial problem whose only valid solution involved a neg-
ative number. Undaunted, Leo wrote, “This problem, I have shown to be insol-
uble unless it is conceded that the first man had a debt.” Thus negative
numbers arrived on the mathematics scene, never again to be disregarded.

Modern men and women can now appreciate that negative numbers
have a direction associated with them. The direction is backward from zero in
the context that positive numbers point forward from zero. For example, neg-
ative numbers can represent temperatures measured in degrees below zero,
minutes before the present if the present is considered as zero time, or money
we owe the tax collector when our income is considered positive dollars. So,
the notion of negative quantities is perfectly valid if we just define it properly.
As comfortable as we now are with negative numbers, negative frequency re-
mains a troublesome and controversial concept for many engineers[3,4). This
author once encountered a paper in a technical journal which stated: “since
negative frequencies cannot exist—.” Well, like negative numbers, negative
frequency is a perfectly valid concept as long as we define it properly relative
to what we're used to thinking of as positive frequency. With this thought in
mind, we’ll call Figure 8-5's e”2%o! signal a positive-frequency complex exponen-
tial because it rotates around the complex plane’s origin in a circle in a
positive-angle direction at a cyclic frequency of f, cycles per second. Likewise,
we'll refer to the e72%* signal as a negative-frequency complex exponential be-
cause of its negative-angle direction of rotation.

So we've defined negative frequency in the frequency domain. If my
DSP pals want to claim negative frequency doesn’t exist in the time domain, I
won’t argue. However, our frequency-domain negative frequency definition
is clean, consistent with real signals, very useful, and here to stay.

8.5 QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN

Now that we know much about the time-domain nature of quadrature signals,
we're ready to look at their frequency-domain descriptions. We'll illustrate the
full three-dimensional aspects of the frequency domain so none of the phase re-
lationships of our quadrature signals will be hidden from view. Figure 8-9 tells
us the rules for representing complex exponentials in the frequency domain.

We'll represent a single complex exponential as a narrow impulse lo-
cated at the frequency specified in the exponent. In addition, we’ll show the
phase relationships between those complex exponentials along the real and
imaginary frequency-domain axes. To illustrate those phase relationships, a
complex frequency domain representation is necessary. With all this said, take
a look at Figure 8-10.

See how a real cosine wave and a real sinewave are depicted in our
complex frequency-domain representation on the right side of Figure 8-10.
Those bold arrows on the right of Figure 8-10 are not rotating phasors but




