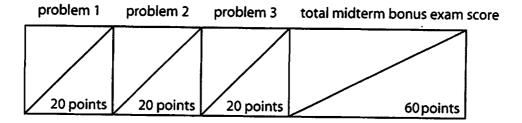
ECE503 Midterm Bonus Exam

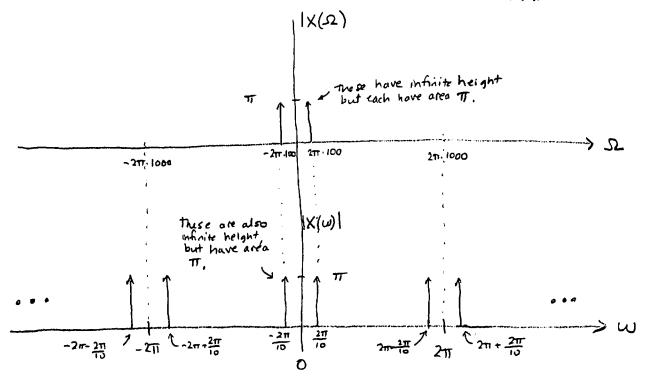
Your Name: _	SOLUTION	Your box #:
	April 9	2 2012

Tips:

- Look over all of the questions before starting.
- Budget your time to allow yourself enough time to work on each question.
- Write neatly and show your work! Points will be deducted for a disorderly presentation of your solution.
- This exam is worth a total of 60 points.
- This exam is to be completed in 60 minutes.
- You are permitted to consult your textbook, one handwritten "cheat sheet", and a calculator.
- Attach your "cheat sheet" to the exam when you hand it in.



1. 20 points. A continuous-time signal $x(t) = \cos(2\pi 100t)$ for all $-\infty < t < \infty$ is ideally sampled at $F_T = 1000$ Hz to get a discrete-time sequence $\{x[n]\}$ for $n = \ldots, -1, 0, 1, \ldots$ Neatly sketch the magnitude of $X(\Omega) = \text{CTFT}(x(t))$ and the magnitude of $X(\omega) = \text{DTFT}(x[n])$.



$$\chi(t) = \frac{1}{2}e^{j\Omega_{0}t} + \frac{1}{2}e^{-j\Omega_{0}t} \stackrel{CTFT}{\longleftarrow} \chi(\Omega) = \pi \delta(\Omega-\Omega_{0}) + \pi \delta(\Omega_{0}+\Omega_{0})$$

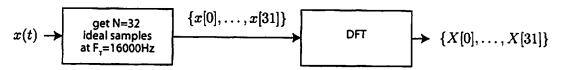
$$\chi(n) = \cos(\omega_{0}n) = \frac{1}{2}e^{j\omega_{0}n} + \frac{1}{2}e^{-j\omega_{0}n} \stackrel{DTFT}{\longleftarrow} \pi \stackrel{\sim}{\sum_{k=-\infty}^{\infty}} \delta(\omega-\omega_{0}+k2\pi)$$

$$+ \pi \sum_{k=-\infty}^{\infty} \delta(\omega+\omega_{0}+k2\pi)$$

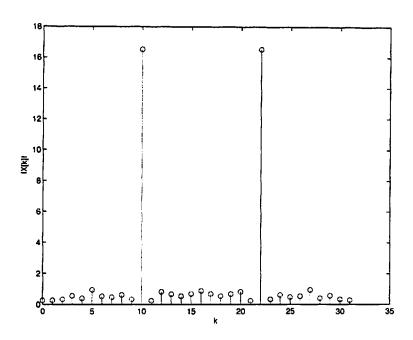
(full credit will be given on this problem if the sketch is neat and accurate — the areas under the delta-functions are not critical?

Note $X(u) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(\frac{\omega + k2\pi}{T})$ $X(\frac{\omega + k2\pi}{T}) = \pi d(\frac{\omega + k2\pi}{T} - \Omega_0) + \pi d(\frac{\omega + k2\pi}{T} + \Omega_0)$ $= \pi \delta(\frac{\omega - \omega_0 + k2\pi}{T}) + \pi \delta(\frac{\omega + \omega_0 + k2\pi}{T})$ $= \pi T \delta(\omega - \omega_0 + k2\pi) + \pi T \delta(\omega + \omega_0 + k2\pi)$ (s radius property of dirac δ -function) $\Rightarrow X(u) = \pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 + k2\pi) + \pi \sum_{k=-\infty}^{\infty} \delta(\omega + \omega_0 + k2\pi)$

2. 20 points. Consider the system shown below.



Suppose you plot the magnitude of the DFT, i.e. plot |X[k]| versus k, with the Matlab command stem(0:31,abs(fft(x))) and get the result shown below. What is/are the strong frequency/frequencies present in the original continuous time signal x(t)? Explain.



If we assume there was no aliasing, then we can convert $K \to W_0 \to \mathcal{R}_0$ as follows:

DFT index
$$k \rightarrow normalized$$
 frequency $w_0 = \frac{2\pi k}{N}$

$$\rightarrow non-normalized$$
 frequency $S_{20} = w_0 \cdot F_T = \frac{2\pi k F_T}{N}$

same

We see a strong signal at
$$k=10 \rightarrow W_0 = \frac{2\pi \cdot 10}{32}$$

Hence $\Omega_0 = \frac{2\pi \cdot 10 \cdot 16000}{32} = 2\pi \cdot 5000 \rightarrow 5kHz$

We see another strong signat at k=22. But this is just a spectral replica of our 5KHZ tone. Check:

$$2\pi - \frac{2\pi \cdot 22}{32} = \frac{32}{32} \cdot 2\pi - \frac{22}{32} \cdot 2\pi = \frac{10}{32} \cdot 2\pi =$$

So the only frequency (strongly) present in the signal is 5kHz.

3. 20 points. Suppose you have a discrete-time system described by the difference equation

$$y[n] = px[n] + qy[n-1] + ry[n-2] \quad \Leftarrow \text{cousal}$$

where p, q, r are all known constants. Write the transfer function for this system.

$$Y(z)[1-gz^{-1}-rz^{-2}] = \rho \times (z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{P}{1 - qz^{-1} - rz^{-2}}$$
 ROC extending adward from largest pole.

We can compute the poles via The quadratic eq: $\frac{g \pm \sqrt{g^2 + 4r}}{2}$