ECE503 Homework Assignment Number 10 Solution

- 1. 5 points total.
 - (a) 3 points. Analytically confirm the result in equation (12.47), i.e. calculate the matrix/vector products and apply any useful trigonometric identities to arrive at the final result in Example 12.2.

Solution: We just do a little linear algebra and apply the necessary trig identities as follows:

$$\begin{bmatrix} \Delta r \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \frac{1}{2r} & 0 \\ \frac{1}{2r^2 \tan \theta} & -\frac{1}{2r \sin \theta} \end{bmatrix} \begin{bmatrix} 2r \cos \theta & 2r \sin \theta \\ 2 & 0 \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{1}{r} \frac{\cos \theta}{\tan \theta} - \frac{1}{r \sin \theta} & \frac{1}{r} \frac{\sin \theta}{\tan \theta} \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{1}{r} \frac{\cos^2 \theta}{\sin \theta} - \frac{1}{r \sin \theta} & \frac{1}{r} \cos \theta \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{1 - \sin^2 \theta}{r \sin \theta} - \frac{1}{r \sin \theta} & \frac{1}{r} \cos \theta \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{1 - \sin^2 \theta}{r \sin \theta} & \frac{1}{r} \cos \theta \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{- \sin^2 \theta}{r \sin \theta} & \frac{1}{r} \cos \theta \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ \frac{- \sin^2 \theta}{r \sin \theta} & \frac{1}{r} \cos \theta \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix}$$

This is the desired result.

(b) 2 points. Numerically verify the result for a particular choice of pole locations r = 0.9, $\theta = \pi/4$, and coefficient quantization errors $\Delta \alpha = 0.01$ and $\Delta \beta = -0.01$. In other words, numerically compute the *exact* radial and angular displacement of the poles from the transfer function with quantized and unquantized α and β and then use equation (12.47) to compute the analytically predicted approximate displacement of the poles. Is the analytical prediction accurate?

Solution: Here is my code.

```
% ECE503 Spring 2012
% original unquantized poles, coupled form parameters (see p.674)
r = 0.9;
theta = pi/4;
alpha = r*cos(theta);
beta = r*sin(theta);
lam = roots([1 -2*alpha (alpha^2+beta^2)]); % unquantized roots
```

```
% quantized roots
```

```
delta_alpha = 0.01;
delta_beta = -0.01;
alphahat = alpha+delta_alpha;
betahat = beta+delta_beta;
lamhat = roots([1 -2*alphahat (alphahat^2+betahat^2)]); % exact quantized roots
rhat = abs(lamhat);
thetahat = angle(lamhat);
delta_r_exact = rhat - [r;r]
delta_theta_exact = thetahat - [theta;-theta]
% theoretical prediction via approximation
delta_r_approx = cos(theta)*delta_alpha + sin(theta)*delta_beta
```

delta_theta_approx = -(1/r)*sin(theta)*delta_alpha + (1/r)*cos(theta)*delta_beta

Here are my results.

delta_r_exact =
 1.0e-03 *
 0.1111
 0.1111
delta_theta_exact =
 -0.0157
 0.0157
delta_r_approx =
 1.7347e-18

delta_theta_approx =

-0.0157

The approximation says the roots should not change radially (the exact solution shows that the radius of the roots changes very slightly, increasing by about 10^{-4}). The approximation also very accurately predicts the angular change of the roots caused by the slight changes in the coupled form parameters α and β . The approximation says that the angle of the first root will change by about -0.0157 (which it does). Since the roots have to appear as complex conjugates, the angle of the second root changes by +0.0157. Hence, the analytical prediction is quite accurate in this case.

2. 4 points. Mitra 12.2

Solution: Since we are concerned with pole sensitivity here, note that the denominator of both the highpass and lowpass filters in Figure 8.34 is just $B(z) = z - \alpha$. Since the coefficient α is real, there is only one pole at $z = \alpha = re^{j\theta}$ with $r = |\alpha|$ and $\theta = 0$ if $\alpha > 0$ or $\theta = \pi$ if $\alpha < 0$.

When α is quantized to $\hat{\alpha}$, we have $\hat{r} = |\hat{\alpha}|$ and $\hat{\theta} = 0$ if $\hat{\alpha} > 0$ or $\hat{\theta} = \pi$ if $\hat{\alpha} < 0$.

As long as the quantization of α is such that $\hat{\alpha}$ has the same sign as α (which will be the case for any reasonable quantization scheme), we can say that $\Delta \theta = 0$ and

$$\Delta r = \begin{cases} \Delta \alpha & \alpha > 0\\ -\Delta \alpha & \alpha < 0. \end{cases}$$

3. 6 points. Mitra 12.6

Solution to part (a):

(a) For direct form implementation
$$B(z) = (z - z_1)(z - z_2)(z - z_3)$$
, where
 $z_1 = r_1 e^{j\theta_1}$, $z_2 = r_2 e^{j\theta_2}$, and $z_3 = r_3 e^{j\theta_3}$. Thus, $B(z) = (z^2 - 2r_1 \cos\theta_1 z + r_1^2)(z - r_3)$
 $= (z^2 - 0.5z + 0.25)(z + 0.75)$. This implies, $2r_1 \cos\theta_1 = 0.5$, $r_1^2 = 0.25$, $r_3 = -0.75$, and $\theta_3 = \pi$.
Thus, $r_1 = \sqrt{0.25} = 0.5$ and $\cos\theta_1 = \frac{0.5}{2 \times 0.5} = 0.5$. Now, $\frac{1}{B(z)} = \frac{1}{(z^2 - 0.5z + 0.25)(z + 0.75)}$
 $= \frac{-0.4211 - j0.972}{z - 0.25 - j0.433} + \frac{-0.4211 + j0.972}{z - 0.25 + j0.433} + \frac{0.8421}{z + 0.75}$.
 $\mathbf{P}_1 = [\cos\theta_1 \quad r_1 \quad r_1^2 \cos\theta_1] = [0.5 \quad 0.5 \quad 0.125],$
 $\mathbf{Q}_1 = [\sin\theta_1 \quad 0 \quad r_1^2 \sin\theta_1] = [0.866 \quad 0 \quad 0.2165], R_1 = -0.4211$, and $X_1 = 0.972$. Likewise,
 $\mathbf{P}_3 = [\cos\theta_3 \quad r_3 \quad r_3^2 \cos\theta_3] = [-1 \quad 0.75 \quad 0.5625],$
 $\mathbf{Q}_3 = [\sin\theta_3 \quad 0 \quad r_3^2 \sin\theta_3] = [0 \quad 0 \quad 0], R_3 = 0.8421$, and $[\overline{X_3} = 0]$.
Thus, $\Delta r_1 = (-R_1\mathbf{P}_1 + X_1\mathbf{Q}_1)$: $\Delta \mathbf{B} = 1.0523 \, \Delta b_0 + 0.2105 \, \Delta b_1 + 0.2631 \, \Delta b_2$,
 $\Delta \theta_1 = -\frac{1}{r_1}(X_1\mathbf{P}_1 + R_1\mathbf{Q}_1)$: $\Delta \mathbf{B} = 0.8509 \Delta b_0 - 0.5509 \Delta b_1 - 0.1377 \Delta b_2$,
 $\Delta r_3 = (-R_3\mathbf{P}_3 + X_3\mathbf{Q}_3)$: $\Delta \mathbf{B} = 0.8421 \Delta b_0 - 0.6316 \Delta b_1 + 0.4737 \Delta b_2$, and
 $\Delta \theta_3 = -\frac{1}{r_3}(X_3\mathbf{P}_3 + R_3\mathbf{Q}_3)$: $\Delta \mathbf{B} = 0$.

Solution to part (b):

(b) Cascade form:
$$B(z) = (z^2 + c_1 z + c_0)(z + d_0) = B_1(z)B_2(z)$$
, where
 $B_1(z) = z^2 + c_1 z + c_0 = z^2 - 0.5z + 0.25 = (z - r_1 e^{j\theta_1})(z - r_1 e^{-j\theta_1}) = z^2 - 2r\cos\theta_1 z + r_1^2$ and
 $B_2(z) = z + d_0 = z = 0.75 = z - r_3 e^{j\theta_3}$. Comparing we get $2r_1 \cos\theta_1 = 0.5$, $r_1^2 = 0.25$,

$$r_{3} = 0.75, \ \theta_{3} = \pi. \text{ Solving the first two equations we get } \eta = \sqrt{0.25} = 0.5 \text{ and}$$

$$\cos\theta_{1} = \frac{0.5}{2\sqrt{0.25}} = 0.5.$$
Now,
$$\frac{1}{B(z_{1})} = \frac{-j1.1547}{z - 0.25 - j0.433} + \frac{j1.1547}{z - 0.25 + j0.433}.$$
 Hence, $R_{1} = 0$ and $X_{1} = -1.1547.$

$$P_{1} = [\cos\theta_{1} \quad n_{1}] = [0.5 \quad 0.5], \ Q_{1} = [-\sin\theta_{1} \quad 0] = [0.866 \quad 0].$$
Next,
$$\frac{1}{B_{2}(z)} = \frac{1}{z + 0.75}.$$
 Hence, $R_{3} = 1$ and $X_{3} = 0.$ Here, $P_{3} = \cos\theta_{3} = -1,$ and $Q_{3} = -\sin\theta_{3} = 0.$ Thus,

$$\Delta r_{1} = (-R_{1}P_{1} + X_{1}Q_{1}) \cdot [\Delta c_{0} \quad \Delta c_{1}]^{t} = X_{1}Q_{1} \cdot [\Delta c_{0} \quad \Delta c_{1}]^{t} = -1.0\Delta c_{0},$$

$$\Delta\theta_{1} = -\frac{1}{r_{1}}(X_{1}P_{1} + R_{1}Q_{1}) \cdot [\Delta c_{0} \quad \Delta c_{1}]^{t} = -\frac{1}{r_{1}} \cdot X_{1}P_{1} \cdot [\Delta c_{0} \quad \Delta c_{1}]^{t} = 1.1547\Delta c_{0} + 1.1547\Delta c_{1},$$

$$\Delta r_{3} = (-R_{3}P_{3} + X_{3}Q_{3}) \cdot \Delta d_{0} = -\Delta d_{0}, \\ \Delta\theta_{3} = -\frac{1}{r_{0}}(X_{3}P_{3} + R_{3}Q_{3}) \cdot \Delta d_{0} = -\frac{1}{r_{0}}R_{3}Q_{3} \cdot \Delta d_{0} = 0.$$

4. 5 points. Mitra 12.10(a)

Solution to part (a): We are given

$$H(z) = \frac{(z+4)(z-1)}{(z+0.4)(z+0.2)}$$

and we do some long division to write

$$H(z) = 1 + \frac{2.4z - 4.08}{z^2 + 0.6z + 0.08} = A + \frac{Cz + D}{z^2 + bz + d} = H_1(z) + H_2(z).$$

We can use the algebraic techniques in Section 12.5.5 to compute the normalized output noise variance as expressed in equation (12.85). Note R = 2, hence the double sum in (12.85) will have four terms in it. Referring to table 12.4, we see that the contour integrals related to $H_1(z)H_2(z^{-1})z^{-1}$ and $H_2(z)H_1(z^{-1})z^{-1}$ will be zero. Hence, equation (12.85) will result in only two non-zero terms, one of the form of I_1 and the other of the form I_3 .

We can easily compute $I_1 = 1$. Plugging in our values for C, D, b, and d from above, we can also compute $I_3 = 48.4565$. Hence, the total normalized output noise variance is $\sigma_{v,n}^2 = 49.4565$. We can also confirm this via simulation, adapting the code provided in lecture.

```
% output noise variance via simulation
% DRB ECE503 Spring 2012
delta = sqrt(12);  % quantizer step size so that input noise variance is one
num = poly([-4 1]);
den = poly([-0.4 -0.2]);
N = 1e5;
% generate input quantization noise sequence
e = rand(1,N)*delta-delta/2;
disp(['Input noise variance : ' num2str(var(e))]);
% filter
v = filter(num,den,e);
```

: ' num2str(var(v))]);
: ' num2str(var(v)/var(e))]);

When I run this code, I get

Input noise variance	:	0.99845
Output noise variance	:	49.3297
Ratio	:	49.4063

which is very close to the analytical prediction.

5. 5 points. Mitra 12.13(a) Solution to part (a):

<u>Cascade Structure #1</u>: $G(z) = \frac{(1 - 0.6z^{-1})(1 + 0.3z^{-1})}{(1 - 0.2z^{-1})(1 + 0.9z^{-1})}$. The noise model of this structure is as

below

The noise transfer function from the noise source $e_1[n]$ to the filter output is $G_1(z) = \frac{(z-0.6)(z+0.3)}{(z-0.2)(z+0.9)} = 1 + \frac{-0.9091}{z-0.2} + \frac{0.9091}{z+0.9}.$

The corresponding normalized noise variance at the output is

$$\sigma_{1,n}^2 = 1 + \frac{(-0.9091)^2}{1 - (-0.2)^2} + \frac{(0.9091)^2}{1 - (0.9)^2} + \frac{2 \times (-0.9091) \times 0.9091}{1 - 0.9 \times (-0.2)} = 4.8098.$$
Output of Program 12, 4 m is 4.8098.

The noise transfer function from the noise sources $e_2[n]$ and $e_3[n]$ to the filter output is $G_2(z) = \frac{z+0.3}{z+0.9} = 1 - \frac{0.6}{z+0.9}.$

The normalized noise variance at the output due to each of these noise sources is

$$\sigma_{2,n}^2 = 1 + \frac{(0.6)^2}{1 - (0.9)^2} = 2.8947.$$

Output of Program 12_4.m is 2.8947.

The noise transfer function from the noise source $e_4[n]$ to the filter output is $G_4(z) = 1$. The corresponding normalized noise variance at the output is $\sigma_{4,n}^2 = 1$. Hence the total normalized noise variance at the output is $\sigma_n^2 = \sigma_{1,n}^2 + 2\sigma_{2,n}^2 + \sigma_{4,n}^2 = 11.5092$.

<u>Cascade Structure #2</u>: $G(z) = \frac{(1+0.3z^{-1})(1-0.6z^{-1})}{(1-0.2z^{-1})(1+0.9z^{-1})}$. The noise model of this structure is as

below:

 $\sigma_{1,n}^2 = 4.8098$ as in Structure#1.

The noise transfer function from the noise sources $e_2[n]$ and $e_3[n]$ to the filter output is

$$G_2(z) = \frac{z - 0.6}{z + 0.9} = 1 + \frac{-1.5}{z + 0.9}$$
. Hence, $\sigma_{2,n}^2 = 1 + \frac{(-1.5)^2}{1 - (0.9)^2} = 12.8421$

Output of Program 12_4.m is 12.8421.

The noise transfer function from the noise source $e_4[n]$ to the filter output is $G_4(z) = 1$. The corresponding normalized noise variance at the output is $\sigma_{4,n}^2 = 1$. Hence the total normalized noise variance at the output is $\sigma_n^2 = \sigma_{1,n}^2 + 2\sigma_{2,n}^2 + \sigma_{4,n}^2 = 31.494$.

Cascade Structure #3: $G(z) = \frac{(1+0.3z^{-1})(1-0.6z^{-1})}{(1+0.9z^{-1})(1-0.2z^{-1})}$. The noise model of this structure is as

below:

 $\sigma_{1,n}^2 = 4.8098$ as in Structure#1.

The noise transfer function from the noise sources $e_2[n]$ and $e_3[n]$ to the filter output is

$$G_2(z) = \frac{z - 0.6}{z - 0.2} = 1 + \frac{-0.4}{z - 0.2}$$
. Hence, $\sigma_{2,n}^2 = 1 + \frac{(-0.4)^2}{1 - (-0.2)^2} = 1.1667$.

Output of Program 12_4.m is 1.1667.

The noise transfer function from the noise source $e_4[n]$ to the filter output is $G_4(z) = 1$. The corresponding normalized noise variance at the output is $\sigma_{4,n}^2 = 1$. Hence the total normalized noise variance at the output is $\sigma_n^2 = \sigma_{1,n}^2 + 2\sigma_{2,n}^2 + \sigma_{4,n}^2 = 8.1432$.

<u>Cascade Structure #4:</u> $G(z) = \frac{(1-0.6z^{-1})(1+0.3z^{-1})}{(1+0.9z^{-1})(1-0.2z^{-1})}$. The noise model of this structure is as

below:

 $\sigma_{1,n}^2 = 4.8098$ as in Structure#1.

The noise transfer function from the noise sources $e_2[n]$ and $e_3[n]$ to the filter output is

$$G_2(z) = \frac{z+0.3}{z-0.2} = 1 + \frac{0.5}{z-0.2}$$
. Hence, $\sigma_{2,n}^2 = 1 + \frac{(0.5)^2}{1 - (-0.2)^2} = 1.2604$.

Output of Program 12_4.m is 1.2604.

The noise transfer function from the noise source $e_4[n]$ to the filter output is $G_4(z) = 1$.

The corresponding normalized noise variance at the output is $\sigma_{4,n}^2 = 1$.

Hence the total normalized noise variance at the output is $\sigma_n^2 = \sigma_{1,n}^2 + 2\sigma_{2,n}^2 + \sigma_{4,n}^2 = 8.3306$.