
ECE503 Homework Assignment Number 10 Solution

1. 5 points total.

(a) 3 points. Analytically confirm the result in equation (12.47), i.e. calculate the ma-
trix/vector products and apply any useful trigonometric identities to arrive at the final
result in Example 12.2.
Solution: We just do a little linear algebra and apply the necessary trig identities as
follows: [
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This is the desired result.

(b) 2 points. Numerically verify the result for a particular choice of pole locations r = 0.9,
θ = π/4, and coefficient quantization errors ∆α = 0.01 and ∆β = −0.01. In other
words, numerically compute the exact radial and angular displacement of the poles from
the transfer function with quantized and unquantized α and β and then use equation
(12.47) to compute the analytically predicted approximate displacement of the poles. Is
the analytical prediction accurate?
Solution: Here is my code.

% ECE503 Spring 2012

% original unquantized poles, coupled form parameters (see p.674)

r = 0.9;

theta = pi/4;

alpha = r*cos(theta);

beta = r*sin(theta);

lam = roots([1 -2*alpha (alpha^2+beta^2)]); % unquantized roots

% quantized roots
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delta_alpha = 0.01;

delta_beta = -0.01;

alphahat = alpha+delta_alpha;

betahat = beta+delta_beta;

lamhat = roots([1 -2*alphahat (alphahat^2+betahat^2)]); % exact quantized roots

rhat = abs(lamhat);

thetahat = angle(lamhat);

delta_r_exact = rhat - [r;r]

delta_theta_exact = thetahat - [theta;-theta]

% theoretical prediction via approximation

delta_r_approx = cos(theta)*delta_alpha + sin(theta)*delta_beta

delta_theta_approx = -(1/r)*sin(theta)*delta_alpha + (1/r)*cos(theta)*delta_beta

Here are my results.

delta_r_exact =

1.0e-03 *

0.1111

0.1111

delta_theta_exact =

-0.0157

0.0157

delta_r_approx =

1.7347e-18

delta_theta_approx =

-0.0157

The approximation says the roots should not change radially (the exact solution shows
that the radius of the roots changes very slightly, increasing by about 10−4). The
approximation also very accurately predicts the angular change of the roots caused by
the slight changes in the coupled form parameters α and β. The approximation says
that the angle of the first root will change by about −0.0157 (which it does). Since the
roots have to appear as complex conjugates, the angle of the second root changes by
+0.0157. Hence, the analytical prediction is quite accurate in this case.



2. 4 points. Mitra 12.2
Solution: Since we are concerned with pole sensitivity here, note that the denominator of
both the highpass and lowpass filters in Figure 8.34 is just B(z) = z−α. Since the coefficient
α is real, there is only one pole at z = α = rejθ with r = |α| and θ = 0 if α > 0 or θ = π if
α < 0.

When α is quantized to α̂, we have r̂ = |α̂| and θ̂ = 0 if α̂ > 0 or θ̂ = π if α̂ < 0.

As long as the quantization of α is such that α̂ has the same sign as α (which will be the case
for any reasonable quantization scheme), we can say that ∆θ = 0 and

∆r =

{
∆α α > 0

−∆α α < 0.

3. 6 points. Mitra 12.6
Solution to part (a):

Solution to part (b):



4. 5 points. Mitra 12.10(a)
Solution to part (a): We are given

H(z) =
(z + 4)(z − 1)

(z + 0.4)(z + 0.2)

and we do some long division to write

H(z) = 1 +
2.4z − 4.08

z2 + 0.6z + 0.08
= A+

Cz +D

z2 + bz + d
= H1(z) +H2(z).

We can use the algebraic techniques in Section 12.5.5 to compute the normalized output noise
variance as expressed in equation (12.85). Note R = 2, hence the double sum in (12.85) will
have four terms in it. Referring to table 12.4, we see that the contour integrals related to
H1(z)H2(z

−1)z−1 and H2(z)H1(z
−1)z−1 will be zero. Hence, equation (12.85) will result in

only two non-zero terms, one of the form of I1 and the other of the form I3.

We can easily compute I1 = 1. Plugging in our values for C, D, b, and d from above,
we can also compute I3 = 48.4565. Hence, the total normalized output noise variance is
σ2v,n = 49.4565. We can also confirm this via simulation, adapting the code provided in
lecture.

% output noise variance via simulation

% DRB ECE503 Spring 2012

delta = sqrt(12); % quantizer step size so that input noise variance is one

num = poly([-4 1]);

den = poly([-0.4 -0.2]);

N = 1e5;

% generate input quantization noise sequence

e = rand(1,N)*delta-delta/2;

disp([’Input noise variance : ’ num2str(var(e))]);

% filter

v = filter(num,den,e);



% compute output noise variance

disp([’Output noise variance : ’ num2str(var(v))]);

disp([’Ratio : ’ num2str(var(v)/var(e))]);

When I run this code, I get

Input noise variance : 0.99845

Output noise variance : 49.3297

Ratio : 49.4063

which is very close to the analytical prediction.



5. 5 points. Mitra 12.13(a)
Solution to part (a):






