ECES503 Homework Assignment Number 10 Solution

1. 5 points total.

(a)

3 points. Analytically confirm the result in equation (12.47), i.e. calculate the ma-
trix/vector products and apply any useful trigonometric identities to arrive at the final
result in Example 12.2.

Solution: We just do a little linear algebra and apply the necessary trig identities as
follows:
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This is the desired result.

2 points. Numerically verify the result for a particular choice of pole locations r = 0.9,
6 = m/4, and coefficient quantization errors Ao = 0.01 and A = —0.01. In other
words, numerically compute the exact radial and angular displacement of the poles from
the transfer function with quantized and unquantized « and 8 and then use equation
(12.47) to compute the analytically predicted approximate displacement of the poles. Is
the analytical prediction accurate?

Solution: Here is my code.

% ECE503 Spring 2012

% original unquantized poles, coupled form parameters (see p.674)
r = 0.9;

theta = pi/4;

alpha = r*cos(theta);

beta = r*sin(theta);

lam = roots([1 -2*alpha (alpha"2+beta~2)]); % unquantized roots

% quantized roots



delta_alpha = 0.01;

delta_beta = -0.01;

alphahat = alphat+delta_alpha;

betahat = betatdelta_beta;

lamhat = roots([1 -2*alphahat (alphahat~2+betahat~2)]); % exact quantized roots
rhat = abs(lamhat);

thetahat = angle(lamhat);

delta_r_exact = rhat - [r;r]

delta_theta_exact = thetahat - [theta;-theta]

% theoretical prediction via approximation
delta_r_approx = cos(theta)*delta_alpha + sin(theta)*delta_beta
delta_theta_approx = -(1/r)*sin(theta)*delta_alpha + (1/r)*cos(theta)*delta_beta

Here are my results.

delta_r_exact =
1.0e-03 =

0.1111
0.1111

delta_theta_exact =

-0.0157
0.0157

delta_r_approx =

1.7347e-18

delta_theta_approx =

-0.0157

The approximation says the roots should not change radially (the exact solution shows
that the radius of the roots changes very slightly, increasing by about 107*). The
approximation also very accurately predicts the angular change of the roots caused by
the slight changes in the coupled form parameters o and 5. The approximation says
that the angle of the first root will change by about —0.0157 (which it does). Since the
roots have to appear as complex conjugates, the angle of the second root changes by
+0.0157. Hence, the analytical prediction is quite accurate in this case.



2. 4 points. Mitra 12.2
Solution: Since we are concerned with pole sensitivity here, note that the denominator of
both the highpass and lowpass filters in Figure 8.34 is just B(z) = z — a. Since the coefficient
« is real, there is only one pole at z = a = rel? with r = |a| and § = 0 if @ > 0 or § = 7 if
a<0.
When « is quantized to &, we have # = |@&| and 0 = 0 if & > 0 or 0 = 7 if & < 0.

As long as the quantization of « is such that & has the same sign as a (which will be the case
for any reasonable quantization scheme), we can say that Af = 0 and

Ay — Ao a>0
-Aa a<0.

3. 6 points. Mitra 12.6
Solution to part (a):

(a) For direct form implementation B(z) = (z —z))(z - z2)(z - z3), where
Z1= .qejﬂ] » Z2= rgejﬁ2 ,and z3= rgej83 . Thus, B(z) =(z* -2ncosbz + nz)(z -r3)
=(z* 0.5z +0.25)(z +0.75). This implies, 2 cosf8; = 0.5, ?_12 =025,r3=-0.75,and 03 = 7.

Thus, r, =+/0.25 =0.5 and cos8, = 05 =0.5. Now, L 3 !
2x0.5 B(z) (z°-0.5z+025)(z+0.75)
_ —04211-j0972 -04211+;0.972 0.8421

T 2-025- 0433 " 7-025+ 0433 " 2+075"
P =[cos8; n rlcose;|=[05 05 0.125]

Q1=[sinel 0 rﬁsjnel]=[c.866 0 02165],R, = -0.4211,and X; =0.972. Likewise,
P;=[cosb 5 rfcosts|=[-1 075 05625]

Q3=[sin83 0 r3zsi1‘183]=[0 0 0],R; =0.8421, and X5 =0

Thus, Ari=(=R\P; + X;Q;)- AB = 10523 Aby +0.2105Ab, +0.2631Ab,

A8, = —%(XIPI +R,Q,) AB = —0.5509Ab, - 0.5509Ab, —0.1377Ab,,

r_‘.r3= (—R3P3 + X3Q3)' AB =0.842 lﬁbu - 06316551 + 0.4?37&52, and
Af5 =- ! (X3P3 + R3Q3) AB =0.
3

Solution to part (b):

(b) Cascade form: B(z) = (z2 +cjz+cg)(z+dy) = By(2)B,(z), where
B(z) = 2+ €1Z+cy = 22 -05z+025= (z- ,,lej91)(z - rle‘jel) = z° -2rcosfz+ r12 and
By(z)=z+dy=2z=075=z —r3ef93 . Comparing we get 2rjcosf; =0.5, qz =0.25,



ry =0.75, 83 = . Solving the first two equations we get n =+/0.25 =0.5 and
0.5

$6) = — o =

24/0.25
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" B(z;) z-025-j0433 z-025+j0433
P, =[cosB; nl=[0.5 05],Q; =[-sinB; 0]=[0.866 0].
1 1
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Q3 =-sinf3=0. Thus,

An =(-RiP, +X\Q)) [Acy Ac)' =X,Qp [Acy  Acq)f = -10Acy,

1 1
ABy = -—(X;P +R Q) [Acyg Acy) =-— X\P-[Acy  Ac]' =1.1547 Acy +1.1547Acy,
n n

1 1
Ars = (=R3P3 + X3Q3)- Adp = -Ady, A3 = - —(X3P3 + R3Q3)" Adp = -~ R3Q3 Adp =0.

No

Hence, R|=0 and X, = -1.1547.

Next, Hence, R3 =1 and X5 =0. Here, P; =cosf3 = -1, and

4. 5 points. Mitra 12.10(a)
Solution to part (a): We are given

(z+4)(z—1)
(24 0.4)(z +0.2)

H(z)=

and we do some long division to write

24:-408 _ , Cz4D
22 4+0.62 +0.08 224+ bz+d

H(z) =1+ = Hi(z) + Ha(2).

We can use the algebraic techniques in Section 12.5.5 to compute the normalized output noise
variance as expressed in equation (12.85). Note R = 2, hence the double sum in (12.85) will
have four terms in it. Referring to table 12.4, we see that the contour integrals related to
Hy(2)Ha(27 127t and Ha(2)Hyi(27 1)z~ will be zero. Hence, equation (12.85) will result in
only two non-zero terms, one of the form of I; and the other of the form I3.

We can easily compute I; = 1. Plugging in our values for C, D, b, and d from above,
we can also compute I3 = 48.4565. Hence, the total normalized output noise variance is
0'12)’” = 49.4565. We can also confirm this via simulation, adapting the code provided in
lecture.

% output noise variance via simulation
% DRB ECE503 Spring 2012
delta = sqrt(12); % quantizer step size so that input noise variance is one

num = poly([-4 1]1);
den = poly([-0.4 -0.2]);
N = 1e5;

% generate input quantization noise sequence
e = rand(1,N)*delta-delta/2;
disp([’Input noise variance : 7 num2str(var(e))]);

% filter
v = filter(num,den,e);



% compute output noise variance
disp([’Output noise variance : 7 num2str(var(v))]);
disp([’Ratio : 7 num2str(var(v)/var(e))]);

When I run this code, I get

Input noise variance : 0.99845
Output noise variance : 49.3297
Ratio : 49.4063

which is very close to the analytical prediction.



5. 5 points. Mitra 12.13(a)
Solution to part (a):

(1-0.6z"1)(1+03z7H

Cascade Structure #1: G(z) = . The noise model of this structure is as

(1-02z"1(1+09z71

below

f t
e 1 [“] 82[?3] e 3 ["] 34[-"']

The noise transfer function from the noise source e|[n] to the filter output is

(z-0.6)(z+0.3) 09091 0.9091
G = =1 )
1(2) (z-02)z+0.9) * z-02 + z+009

The corresponding normalized noise variance at the output is



2 2
o2 —1+ (-0.9091) . (0.9091) . 2 x(-0.9091) x 0.9091

T (02)? 12092 1-09x(-02)
Output of Program 12 4.m is 4.8098.

= 4.8098.

The noise transfer function from the noise sources e;[n] and es[n] to the filter output is
G U_z+(}.3_ 0.6

2= 09 T 2409
The normalized noise variance at the output due to each of these noise sources is

0.6)°
=1+ goar.
1-(0.9)

Output of Program 12_4.m is 2.8947.

The noise transfer function from the noise source e4[#] to the filter output is G4(z) =1.
The corresponding normalized noise variance at the output is oﬁ‘ a=L

Hence the total normalized noise variance at the output is crg = oﬁn - 20% nt of n =11.5092.

(1+03z H(1-06z"h

1 I The noise model of this structure is as
(1-02z"")31+09:z7")

Cascade Structure #2: G(z) =

below:

e,[n] e,[n] e5ln] e,ln]

of, = 4.8098 as in Structure#1,

The noise transfer function from the noise sources e;[n] and e3[n] to the filter output is
- _ 1 &2
z-06 _, ~-15 L 1.5)2

1-(0.9)

Gy (z) = Hence, 03, =1 =12.8421.

z+09  z+09°

Output of Program 12_4.m is 12.8421.
The noise transfer function from the noise source e4[n] to the filter output is G4 (z) =1.

The corresponding normalized noise variance at the output is aﬁ‘ a=L
Hence the total normalized noise variance at the output is cr,% = Uﬁn + 20% nt Uﬁ‘ n =31.494.

(1+03z H1-06z"1H
(1+09z° H1-02z7"h

Cascade Structure #3: G(z) = . The noise model of this structure is as

below:



f 1
ey[n] eln] e3ln] e4lnl

of, = 4.8098as in Structure#1.
The noise transfer function from the noise sources e;[n] and e3[n] to the filter output is

2
z-0.6 04 (-0.4)
“1+ . Hence, 05, =1+ ————— =1.1667.
z-02  z-02 2 L (c02)?
Output of Program 12_4.m is 1.1667.
The noise transfer function from the noise source e4[#] to the filter output is G4(z) =1.

Ga(z) =

The corresponding normalized noise variance at the output is o.‘} a=1L
Hence the total normalized noise variance at the output is 03 = oﬁn + 20%‘,1 + crf‘n =8.1432.

=1 =1
(1-06z )(1+03z ) . The noise model of this structure is as

Cascade Structure #4: G(z) =

(1+09z7 Ha-02z"h

below:

*.
"31[”] ez[n] 83[1"!] 34[;|]
of, = 4.8098as in Structure#1.

The noise transfer function from the noise sources e,[n] and e3[n] to the filter output is

2
2403 05 Hence, o3, =1+ (0.5) i
1-(-02)

=1.2604.

@)= = o

Output of Program 12_4.m is 1.2604.
The noise transfer function from the noise source e4[n] to the filter output is G4(z) =1.

The corresponding normalized noise variance at the output is U}} a=Ll

Hence the total normalized noise variance at the output is cr% = oﬁn + 20% nt af n =8.3306.



