ECE503 Homework Assignment Number 2

Due by 8:50pm on Monday 30-Jan-2012

IMPORTANT: Please place your ECE mailbox number on all homework assignments. Your
ECE mailbox number can be found on the course web page.

Make sure your reasoning and work are clear to receive full credit for each problem. Points will
be deducted for a disorderly presentation of your solution. Please also refer to the course academic
honesty policies regarding collaboration on homework assignments.
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Mitra 4.3.

Mitra 4.22.

Mitra 4.40.

Mitra 4.42. You can use Matlab to verify your answer.
Mitra 4.45. You can use Matlab to verify your answer.

Mitra 4.64. You can use Matlab to verify your answer for particular values of o

Mitra 4.69. Use Matlab to verify your filter blocks the low frequency component.
Mitra M4.3.



1. Mitra 4.3

(a) Given y[n] = x[n + 3]. For an input x;[n], i =1,2, the output is
yiln]l=x;[n+3], i=12.

Then, for an input x[n] = Ax;[n]+ Bx;[n], the output is:

yln] = Ax [n + 3]+ Bxy[n + 3] = Ay,[n] + By,[n].

Hence the system is linear. For an input x[n] = 8[n], the output is the impulse response
h[n]=08[n+3).For n =3, h[n] =8[0] =1. Thus, h[n]=0 for n <0.Hence, the system is

not causal.

For a bounded input |x[n]) s B < , the magnitude of the output samples are:
|y[n]| =B <,

As the output is also a bounded sequence, the system is BIBO stable. Finally, let y[n]
and y;[n] be the outputs for inputs x[n] and x,[n], respectively. If:

xlnl=xln-n,]  then yjln]=x[n-n,+3]=yln-n,.

Hence, the system is time-invariant.

(b) Given y[n] = x[2 — n]+ a with o nonzero constant.

For an input x;[n], i =12, the output is y;[n] = x;[2 —n]+ a,i =1,2. Then, for an input
x[n] = Ax,[n]+ Bx,[n], the output is:

yln]=x[2-nl]+ a = Ax|[2 - n]+ Bxy[2 - n]+a.
On the other hand
Ay, [n]+ By;[n] = Ax|[2 - n]+ Aa + Bx|[2 —n] + Ba = y[n].

Hence the system is nonlinear.

For an input x[n] = 6[n], the output is the impulse response h[n]=6[2-n]+oa For
n <2, h[n] = a. Thus, the system is non-causal.

For a bounded input |x[n]| s B < =, the magnitude of the output samples are:

in] =B +al <.

As the output is also a bounded sequence, the system is BIBO stable.

Finally, let y[n] and y,[n] be the outputs for inputs x[n] and x,[n], respectively. Let
x[n] = n.Then, y[n]=2-n+a. Let x;[n] =x{n-1]=n-1. Then,

y[n]=x;[2-n]+a=3-n+a. Onthe other hand,
yin-1=2-n-l+a=1-n+a=y/n].

Hence, the system is not time-invariant.

(c) Given y[n] = ln(l - |x[n]|). For an input x;[n], i =1,2, the output is y,[n] = ln(l - ‘xi[n]D.
For an input x{n] = Ax[n]+ Bx,[n], the output is:

yin] = ln(l -|ax,(n1+ sz[n]D = Ay,[n]+ By, [n].

Hence the system is nonlinear.

For an input x[n] = é[n], the output is the impulse response h[n]+ ln(l - |6[n]|). For
n <0, h[n] =1n(l) = 0. Thus, the system is causal.

For a bounded input |x[n]| s B < , the magnitude of the output samples are
[y(n] < In(1 - B) < =. As the output is also a bounded sequence, the system is BIBO
stable.



(c) Given y[n] = ln(l - |x[n]|). For an input x;[n], i =1,2, the outputis y,[n] = ln(l - ‘xi[n]l).
For an input x[n] = Ax;[n]+ Bx,[n], the output is:

yin]= 1n(1 -|ax,n) +Bx2[n]|) = Ay,[n]+ By,[n].

Hence the system is nonlinear.

For an input x[n] = 8[n], the output is the impulse response h[n]+ ln(l - |6[n]|). For
n <0, h[n] =In(l) = 0. Thus, the system is causal.

For a bounded input |x[n] s B < %, the magnitude of the output samples are
[y[n]| s In(1 - B) < . As the output is also a bounded sequence, the system is BIBO
stable.

Finally, let y[n] and y,[n] be the outputs for inputs x[n] and x,[n], respectively. If
xy[n] = x[n - n,] then: y[nl= ln(l - ‘x[n - no]l) =yln-n,.

Hence, the system is time-invariant.

3
(d) Given y[n]= S+ Ex[n —£], with B a nonzero constant. For an input x;[n], i =12,
f=-1

3
the outputis: y;[n]= B+ Exi[n -{].
f=-1

Then, for an input x[n] = Ax,[n] + Bx,[n], the output is:
3

3 3
yinl= B+ X(Axiln-£1+Bxyln - £]) = B+ D Axjln—£]+ Y Bxyln-£]
f==1 f==1 f=-1
= Ay, [n]+ By,[n].

Hence the system is nonlinear.

3
y[0]1= B+ Y x[n-£]=pB+x[3]+x[-2]+x[0]+ x[1]. Since the output at n = 0 depends
£=-1
on the future value of x[n] at n = 1, the system is causal.

For a bounded input |x[n] s B < , the magnitude of the output samples are
|y(n] < B+5B <. As the output is also a bounded sequence, the system is BIBO stable.

Finally, let y[n] and y;[n] be the outputs for inputs X[1] and x,[n], respectively. If
3
xi[n] = x{n - n,] then: yj[n] = B+ 3 x[n ~n,—£] = yln —n,).

f==1
Hence, the system is time-invariant.



2. Mitra 4.22

The convolution with the periodic sequence is given by: y[n] = E h[m)x[n - m].

M=—0C
o

Hence: y[n+kN]= Y, h{m)i{n+kN-m]= Y h{m)x{n -m]=y[n).

m=-0 M=

Thus, y[n]is also a periodic sequence with a period N.

3. Mitra 4.40
The difference equation for a first order complex coefficient digital filter is given by:

yln] = ay[n - 1]+ x[n].

Denoting y[n] =y, [n]+ jy;,[n], and a =a+ jb, we get:

Yreln]+ jyimln] = (a+ jb)(ypeln =11+ jyimln ~1]) + x[n].

Equating the real and the imaginary parts, and noting that x[»n] is real, we get:

Yrelnl = aypeln —1] = byj[n - 1] + x[n],
Yimlnl = by, [n =11+ ay;,[n —1].

From the second equation we have: y;,[n-1] = %yim[n] - %yre[n -1].

Substituting this equation in the top left equation we arrive at
2

b b
yre[n] = ayre[n - 1] - ;yim[n] + 7}’78[" - 1] + x[n],
From this we get: by;,[n —1] = —ay,e[n - 1]+ (a> + b%)y,e[n - 2] + ax[n - 1.
Substituting the above equation in the equation y,.[n] = ay,.[n - 1] - by;,[n - 1]+ x[n]

we arrive at: y,.[n] =2ay,.[n-1] - (a2 +b2)y,e[n =2]+ x[n]-ax[n-1].

This is a second-order difference equation representing y,,[n] in terms of x[n].



4. Mitra 4.42
The difference equation to solve is given by: y[n] -0.16y[n -1] =5.88u[n], y[-1]=5.
The total solution is given by: y[n] =y [n]+y p[n], where, y.[n] is the complementary
solution and y ,[n] is the particular solution. The complementary solution is obtained by
solving: y.[n]-0.16y.[n-1] =0.

To this end we set y.[n] = A", which yields: aA” —-0.16aA"! =0, or

r(1-%¢) -o.

A
This implies that A =0.16, hence y.[n] = @(0.16)".

For the particular solution we choose y plnl = B. Substituting this solution in the
difference equation representing the system we get: 8-0.168 = 5.88 u[n].

Settingn =0 we get B-0.16=5.88 and hence B =5.88/0.84 = 7. Therefore:
y[nl =y [nl+ypln] = a(0.16)" + 7.

For n = -1, we thus have y[-1]=5= oz(0.16)'l +7.

This implies @ = -0.32 and thus the total solution is thus given by:
y[n] =-0.32(0.16)" +7, n=0.

To verify this is correct in Matlab, we have to first convert the initial conditions as
specified in the problem to the format that Matlab wants. The filter structure is
pretty simple this time:

~[n]
(o] 1
2|E"'3 | |C'\'|
(+) I 2" ri—l’ —> 4[]
[o6]
L

we reed 2[-1] but we haw vEII=5
Note ylo)= 2,0-1] +xlo]  (fomme block oliagran)

From e DE | wre kviow \()Qo] = o,h',.o[-\] + 5,88

so 2,1)=ylo) -xle] = 0.16%5 +5.5¢-5.¥8
= 0,8



Hence z1[-1] = 0.8, which we use in the Matlab script below.

3R X

DRB 24-Jan-2012
= 50;
= O:N;

o 2

%
%

1;

= [1 -0.16];
5.88*ones(1,N+1);
0.8;
filter(b,a,x,zi);

X o O
|
SN

zi
ym

y = -0.32%(0.16).7n+7; %
subplot(2,1,1);
stem(n,y);

hold on

stem(n,ym, 'r');

hold off

xlabel('sample index n');
ylabel('output y[n]");
subplot(2,1,2);
stem(n,y-ym);
xlabel('sample index n');

Matlab verification of Mitra 4.42

maximum sample index
sample indices

feedforward coefficients

feedback coefficients
input signal

analytical solution

ylabel('difference in solutions at time n');

The results are shown on the next page.



Note the “spikes” in the error plot on the bottom are on the order of 1E-15, which
we can attribute to computational precision effects.



5. Mitra 4.45

We can use the complementary solution from Problem 4.42 in order to find the impulse
response, as described in Section 4.6.3: h[n] = a(0.16)".

To solve for a, we set n = 0 while letting x[n] = 8[n] and get: A[0] = a(0.16)0 =a=1.

Therefore, the impulse response is: h[n] = (0.16)".

To check this in Matlab, we can extend our code for the previous problem by adding

the following lines:

% impulse response
x = [1 zeros(1,N)]; % impulse

zi = 0; % relaxed conditions

hm = filter(b,a,x,zi);
h = 0.16."n;

subplot(2,1,1);

stem(n,h);

hold on

stem(n,hm, 'r');

hold off

xlabel('sample index n');
ylabel('impulse response h[n]');
subplot(2,1,2);

stem(n,h-hm);

xlabel('sample index n');
ylabel('difference in imp responses at time

The results are shown on the next page.



Again, the error “spikes” are very small (around 1E-19), which we can attribute to
computational precision effects.
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6. Mitra 4.64
Given two LTI systems: hj[n] = ad[n] +6[n —1] and hy[n] = " u[n].
The impulse response of the cascade is given by

hin] = hy[n)®hyln] = (ad[n] +8[n —l])@(ﬁ"u{n]).

The frequency response of the cascade is thus
. : 1 -jo
H(e-’w)=(a+e_-'w) -[22E

1- Be”w 1- Be—Jw '

We can verify our analysis above for particular values of alpha and beta as follows:

% Matlab verification of Mitra 4.64

% DRB 24-Jan-2012

alpha = 2;

beta = 2*rand-1;

b [alpha 1];

a [1 -beta];

w = linspace(-pi,pi,1024);

H (alpha+exp(-1i*w))./(1-beta*exp(-1i*w)); % analytical solution
Hm = freqz(b,a,w); % matlab solution
subplot(2,1,1)

plot(w,abs(H),w,abs(Hm));

xlabel('normalized freq (rad/sample)’');
ylabel('magnitude');

subplot(2,1,2)
plot(w,unwrap(angle(H)),w,unwrap(angle(Hm)));
xlabel('normalized freq (rad/sample)’');
ylabel('phase');

magnitude

nomalized freq (radisample)

We see the analytical and Matlab solutions agree perfectly.



The following shows the analysis of the relationship between alpha and beta to
cause |H(omega)| = 1.
o+ e
H(w)= [— Be ~o¥

We want [Hlw)| =1 <> ”"‘(u)lz"
(o + coslw)) + (g ~sta(2)) )
(1 + ¥ )24-(()-0-7{._,_z D

whare N, 2 — (g, cosly) + By sinle)
fs = =t (-sink) + Ba caid)

S'\N\\o\'\{:\,{ A ...

11

Numevoduoy : ol: + 2"'2 cos{w) T CO_cz(w) + \Z:i" PR S:lnlu) '('Q.Il\zl“")

N dﬁz"“{;*lﬁ_ cos (W) -2 04 Sin(w) + L

= ot )21 4 2xp cos (W) ~2 %z Sinlw)

Ve ooty (l"- Br tos (W) ~px S'\n(w)yl * (B; eoslu) ~fe s\»«(w))l

= {*ﬁﬂz“.\‘zlu) -r/?»;—z s\n"(u) -2Br tu:(w) - 2Bz S (w)
+ 2By R Coslw) Sinlw) + BT cos?lw) +07 sin (%)
-2pP=x Br tos(w) sin (w)

= |+Bg +BY T2Rgcos(w)=2Rxsinlw)

TR | <28 carlw) = 2 sin(w)
Note Twar auweretor = dunominatsy W op= -Bp ond oy =f;
1A sy wods ¢ Q=c\+‘Jb “win o= —a+)b causes
IH(“}\"“ I Aw, Twis  con eou;‘\l\o be werifed 1a Motlab
$ov spec'n‘p\c vodines of A,



7. Mitra 4.69
The frequency response is given by:

H(e'®) = h{0] + h{1]e™7® + h{0]e 72 = h[0](1+ e™2%) + h[1]e 1

= ¢™?(2h[0]cos(w) + A[1]).

We require that: ‘H(e-" 0'2)‘ =2h[0]cos(0.2) + A[1] =0,

Solving these two equations we get h[0] = —4.8788 and A[1] = 9.5631.

The code for this is similar to what I demonstred in lecture.

% Matlab verification of Mitra 4.69
% DRB 24-Jan-2012

omegad = 0.2;
omegal = 0.5;
co =1;

cl =1;

n = 0:100;

X = cO*cos(omega@*n)+cl*cos(omegal*n);
alphao = 1/(2*(cos(omegal)-cos(omega®)));
alphal = 1-2*alpha@*cos(omegal);

h = [alpha® alphal alphao];

y = filter(h,1,x);

subplot(3,1,1)

stem(n,x);

xlabel('sample index n');
ylabel('input to filter x[n]');

grid on

subplot(3,1,2)

stem(n,y);

axis([@ max(n) -2 2]);

xlabel('sample index n');
ylabel('output of filter y[n]');

grid on

subplot(3,1,3)

[h,w]=freqz(h,1,1024);

12

H(ef°~5)\ = 2h[0]cos(0.5) + h[1] =1.

plot(w,10*1logle(abs(h).”2),[omega® omegad®],[-80 0],[omegal omegal],[-80

0]);
xlabel('normalized freq (rad/sample)’');

ylabel('magnitude response of the simple filter (dB)');

grid on

The results are shown on the following page.
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8. Mitra M4.3
Note you can’t use the filter command here because this is a nonlinear system.

Solution to Mitra M4.3

DRB 24-Jan-2012

Implementation of y[n] = x[n]-y*2[n-1]+y[n-1]
with y[-1] = 1 and x[n] = alpha u[n]

As n->infty, y[n]->sqgrt(alpha)

3R 3R 3R 3R R X ¥ X

N = 40; % largest sample index

alpha = 0.8; % number to compute square root of
% —— e e — — —— — — — —— — — — —— —— — —— —— ——————

n = 0:N; sample indices

<
1}

%
zeros(1,N+1); % pre-allocate output array
y(1) = alpha-1+1; % compute y[@] given y[-1] =1
for i=2:N+1,
% note n = i-1
y(i) = alpha-y(i-1)"2+y(i-1); % compute y[i]
end
subplot(2,1,1)
stem(n,y);
xlabel('sample index n');
ylabel('output y[n]");
grid on
hold on
plot([@ N],[sqrt(alpha) sqrt(alpha)],'r--");
hold off
subplot(2,1,2)
stem(n,y-sqrt(alpha));
xlabel('sample index n');
ylabel('error at sample index n');
grid on

The results for alpha=0.8 are shown on the following page.



15

o . : 5 : i :
0.9 Fopeonnbonnatin Qo Qe sy Qg e g e gre G G DU D B DU DU BT OO UH U @ P @ =6 56 G (¥ Gy =

outputy[n]
o
o
T
|

0 5 10 15 20 25 30 35 40
sampleindexn

g T T T T ! T T

W TTTTET ...... - ................. _

004 oo FO ................... ................... ................... ................. -

emoratsample indexn

0,08 -G S SRS R—— S— S SRR SN _

0 5 10 15 20 25 30 35 40
sampleindexn

If you want to compute the square root of a value of alpha greater than 1, you can
pre-divide the number by a larger number with a known square root. For example,
suppose you want to compute the square root of alpha=5. You pre-divide 5 by 9
(which has a known square root of 3) to get alpha’ =5/9 < 1. Now run the program
to compute the square root of alpha’ = 0.7454. Then sqrt(alpha) = 3*0.7454 =
2.2361, which is the correct answer for sqrt(5).



