ECE503 Homework Assignment Number 4 Solution

1. 3 points. Mitra 6.9.

Solution:

$v[n]=\alpha^{|n|}=\alpha^{n} \mu[n]+\alpha^{-n} \mu[-n-1]$. Now, $Z\left\{\alpha^{n} \mu[n]\right\}=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha|$. (See Table
6.1) and $Z\left\{\alpha^{-n} \mu[-n-1]\right\}=\sum_{n=-\infty}^{-1} \alpha^{-n} z^{-n}=\sum_{m=1}^{\infty} \alpha^{m} z^{m}=\sum_{m=0}^{\infty} \alpha^{m} z^{m}-1=\frac{1}{1-\alpha z}-1$
$=\frac{\alpha z}{1-\alpha z},|\alpha z|<1$. Therefore, $Z\{v[n]\}=V(z)=\frac{1}{1-\alpha z^{-1}}+\frac{\alpha}{z^{-1}-\alpha}=\frac{\left(1-\alpha^{2}\right) z^{-1}}{\left(1-\alpha z^{-1}\right)\left(z^{-1}-\alpha\right)}$ with its ROC given by $|\alpha|<|z|<|1 / \alpha|$.
2. 4 points. Mitra 6.27.

Solution to part (a):
(a) $X_{a}(z)=\frac{7}{1+0.3 z^{-1}-0.1 z^{-2}}=\frac{\rho_{1}}{1+0.5 z^{-1}}+\frac{\rho_{2}}{1-0.2 z^{-1}}$,
where $\rho_{1}=\left.\frac{7}{1-0.2 z^{-1}}\right|_{z=-0.5}=5, \quad \rho_{2}=\left.\frac{7}{1+0.5 z^{-1}}\right|_{z=0.2}=2$.
Therefore, $X_{a}(z)=\frac{5}{1+0.5 z^{-1}}+\frac{2}{1-0.2 z^{-1}}$.
There are three ROCs $-\mathcal{R}_{1}:|z|<0.2, \mathcal{R}_{2}: 0.2<|z|<0.5, \mathcal{R}_{3}:|z|>0.5$.
The inverse z-transform associated with the ROC \mathcal{R}_{1} is a left-sided sequence:

$$
Z^{-1}\left\{X_{a}(z)\right\}=x_{a}[n]=\left(5(-0.5)^{n}+2(0.2)^{n}\right) \mu[-n-1]
$$

The inverse z-transform associated with the ROC \mathcal{R}_{2} is a two-sided sequence:

$$
Z^{-1}\left\{X_{a}(z)\right\}=x_{a}[n]=5(-0.5)^{n} \mu[-n-1]+2(0.2)^{n} \mu[n]
$$

The inverse z-transform associated with the ROC \mathcal{R}_{3} is a right-sided sequence:

$$
Z^{-1}\left\{X_{a}(z)\right\}=x_{a}[n]=\left(5(-0.5)^{n}+2(0.2)^{n}\right) \mu[n]
$$

Solution to part (b):
(b) $X_{b}(z)=\frac{3 z^{2}+1.8 z+1.28}{(z-0.5)(z+0.4)^{2}}=\frac{3 z^{-1}+1.8 z^{-2}+1.28 z^{-3}}{\left(1-0.5 z^{-1}\right)\left(1+0.4 z^{-1}\right)^{2}}$
$=K+\frac{\rho_{1}}{1-0.5 z^{-1}}+\frac{\rho_{2}}{1+0.4 z^{-1}}+\frac{\rho_{3}}{\left(1+0.4 z^{-1}\right)^{2}}$.
$K=X_{b}(0)=\frac{1.28}{-0.5 \times(0.4)^{2}}=-16$,
$\rho_{1}=\left.\frac{3 z^{-1}+1.8 z^{-2}+1.28 z^{-3}}{\left(1+0.4 z^{-1}\right)^{2}}\right|_{z=0.5}=7.2346$,
$\rho_{3}=\left.\frac{3 z^{-1}+1.8 z^{-2}+1.28 z^{-3}}{\left(1-0.5 z^{-1}\right)}\right|_{z=-0.4}=-7.2222$,
$\rho_{2}=\left.\frac{1}{-0.4} \frac{d}{d z}\left(\frac{3 z^{-1}+1.8 z^{-2}+1.28 z^{-3}}{\left(1-0.5 z^{-1}\right)}\right)\right|_{z=-0.4}=15.9877$. Hence,
$X_{b}(z)=-16+\frac{7.2346}{1-0.5 z^{-1}}+\frac{-7.2222}{1+0.4 z^{-1}}+\frac{15.9877}{\left(1+0.4 z^{-1}\right)^{2}}$.
There are three ROCs $-\mathcal{R}_{1}:|z|<0.4, \mathcal{R}_{2}: 0.4<|z|<0.5, \mathcal{R}_{3}:|z|>0.5$.
The inverse z-transform associated with the ROC \mathcal{R}_{1} is a left-sided sequence:

$$
\begin{aligned}
Z^{-1}\left\{X_{b}(z)\right\}= & x_{b}[n]=-16 \delta[n]+7.2346(0.5)^{n} \mu[-n-1]-7.2222(-0.4)^{n} \mu[-n-1] \\
& +15.9877(n+1)(-0.4)^{n} \mu[-n-1] .
\end{aligned}
$$

The inverse z-transform associated with the ROC \mathcal{R}_{2} is a two-sided sequence:

$$
\begin{aligned}
Z^{-1}\left\{X_{b}(z)\right\}=x_{b}[n]= & -16 \delta[n]+7.2346(0.5)^{n} \mu[n]-7.2222(-0.4)^{n} \mu[-n-1] \\
& +15.9877(n+1)(-0.4)^{n} \mu[-n-1] .
\end{aligned}
$$

The inverse z-transform associated with the ROC \mathcal{R}_{3} is a right-sided sequence:

$$
\begin{aligned}
Z^{-1}\left\{X_{b}(z)\right\}= & x_{b}[n]=-16 \delta[n]+7.2346(0.5)^{n} \mu[n]-7.2222(-0.4)^{n} \mu[n] \\
& +15.9877(n+1)(-0.4)^{n} \mu[n] .
\end{aligned}
$$

3. 4 points. Mitra 6.42.

Solution:

$$
\begin{aligned}
& H(z)=H_{1}(z) H_{3}(z)+\left(1+H_{1}(z)\right) H_{2}(z) \\
& =11.06+8.51 z^{-1}+5.28 z^{-2}+5.12 z^{-3}+1.19 z^{-4}
\end{aligned}
$$

4. 4 points. Mitra 6.44 .

Solution to part (a):
(a) A partial-fraction expansion of $H(z)$ in z^{-1} using the M-file residuez yields $H(z)=-5+\frac{4.0909}{1+0.4 z^{-1}}+\frac{0.9091}{1-0.15 z^{-1}}$. Hence, from Table 6.1 we have
$h[n]=-5 \delta[n]+4.0909(-0.4)^{n} \mu[n]+0.9091(0.15)^{n} \mu[n]$.
Solution to part (b):
(b) $x[n]=2.1(0.4)^{n} \mu[n]+0.3(-0.3)^{n} \mu[n]$. Its z-transform is thus given by $X(z)=\frac{2.1}{1-0.4 z^{-1}}+\frac{0.3}{1+0.3 z^{-1}}=\frac{2.4+0.51 z^{-1}}{\left(1-0.4 z^{-1}\right)\left(1+0.3 z^{-1}\right)},|z|>0.4$. The z-transform of the output $y[n]$ is then given by
$Y(z)=H(z) X(z)=\left[\frac{2.4+0.51 z^{-1}}{\left(1-0.4 z^{-1}\right)\left(1+0.3 z^{-1}\right)}\right] \cdot\left[\frac{-1.5 z^{-1}+0.3 z^{-2}}{1+0.25 z^{-1}-0.06 z^{-2}}\right]$.
A partial-fraction expansion of $Y(z)$ in z^{-1} using the M -file residuez yields $Y(z)=\frac{9.2045}{1+0.4 z^{-1}}-\frac{3.15}{1-0.4 z^{-1}}-\frac{5}{1+0.3 z^{-1}}-\frac{1.0545}{1-0.15 z^{-1}},|z|>0.4$. Hence, from Table 6.1 we have $y[n]=\left(9.2045(-0.4)^{n}-3.15(0.4)^{n}-5(-0.3)^{n}-1.0545(0.15)^{n}\right) \mu[n]$.
5. 3 points. Mitra 6.48 (a).

Solution to part (a):
Let the output of the predictor of Figure P6.4(a) be denoted by $E(z)$. Then analysis of this structure yields $E(z)=P(z)[U(z)+E(z)]$ and $U(z)=X(z)-E(z)$. From the first equation we have $E(z)=\frac{P(z)}{1-P(z)} U(z)$ which when substituted in the second equation yields $H(z)=\frac{U(z)}{X(z)}=1-P(z)$.
Analyzing Figure P6.3(b) we get $Y(z)=V(z)+P(z) Y(z)$ which leads to $G(z)=\frac{Y(z)}{V(z)}=\frac{1}{1-P(z)}$, which is seen to be the inverse of $H(z)$.
Hence, for $P(z)=h_{1} z^{-1}$, we have $H(z)=1-h_{1} z^{-1}$ and $G(z)=\frac{1}{1-h_{1} z^{-1}}$.

Solution:

(a) $Y(z)=X(z)+\alpha X(z) z^{-M}$, therefore, $H(z)=\frac{Y(z)}{X(z)}=1+\alpha z^{-M}$ and $h[n]=\delta[n]+\alpha \delta[n-M]$.
(b) $G(z)=\frac{1}{H(z)}=\frac{1}{1+\alpha z^{-M}}=\sum_{k=0}^{\infty}(-1)^{k} \alpha^{k} z^{-k M}$ by long division. Therefore, $g[n]=\sum_{k=0}^{\infty}(-\alpha)^{k} \delta[n-k M]$.
(c) The ROC of the causal $g[n]$ is $|z|>\left|(-\alpha)^{1 / M}\right|$. As long as $\left|(-\alpha)^{1 / M}\right|<1$, the ROC will contain the unit circle and the inverse system will be stable.
7. 4 points. Mitra 6.83

Solution: Since $x[n]=\alpha^{n} \mu[n]$, we know from a simple table lookup that $X(z)=\frac{1}{1-\alpha z^{-1}}$ with $\operatorname{ROC}|z|>|\alpha|$. We now let

$$
X[k]=\left.X(z)\right|_{z=z_{k}=e^{j 2 \pi k / N}}=\frac{1}{1-\alpha e^{-j 2 \pi k / N}}
$$

Even though the notation looks like the DFT here, this isn't the DFT of $\{x[n]\}$ because $\{x[n]\}$ is an infinite length sequence and the DFT is only used on finite-length sequences.
Now we save that result for a bit and form a periodic extension of $\{x[n]\}$ as follows

$$
\begin{aligned}
\tilde{x}[n] & =\sum_{\ell=-\infty}^{\infty} x[n+\ell N] \\
& =\sum_{\ell=-\infty}^{\infty} \alpha^{n+\ell N} \mu[n+\ell N]
\end{aligned}
$$

Let $n=m N+p$ with $m \in \mathbb{Z}$ and $p=0,1, \ldots, N-1$. Then we can write

$$
\begin{aligned}
\tilde{x}[m N+p] & =\sum_{\ell=-\infty}^{\infty} \alpha^{m N+p+\ell N} \mu[m N+p+\ell N] \\
& =\alpha^{m N+p} \sum_{\ell=-m}^{\infty} \alpha^{\ell N} \\
& =\alpha^{m N+p} \frac{\alpha^{-m N}}{1-\alpha^{N}} \\
& =\frac{\alpha^{p}}{1-\alpha^{N}}
\end{aligned}
$$

for $n=m N+p$ and $p=0,1, \ldots, N-1$. If you plot this, you will see a periodic sawtooth type of waveform. Now we take the DFT of one period of $\tilde{x}[n]$. We can set $m=0$ so that
$\tilde{x}[n]=\tilde{x}[p]$ for $n=0, \ldots, N-1$ and write

$$
\begin{aligned}
\tilde{X}[k] & =\sum_{p=0}^{N-1} \tilde{x}[p] e^{-j 2 \pi k p / N} \\
& =\frac{1}{1-\alpha^{N}} \sum_{p=0}^{N-1} \alpha^{p} e^{-j 2 \pi k p / N} \\
& =\frac{1}{1-\alpha^{N}} \sum_{p=0}^{N-1} \beta^{p} \\
& =\frac{1}{1-\alpha^{N}} \sum_{p=0}^{N-1} \beta^{p} \\
& =\frac{1}{1-\alpha^{N}} \frac{1-\beta^{N}}{1-\beta} \\
& =\frac{1}{1-\alpha^{N}} \frac{1-\alpha^{N}}{1-\alpha e^{-j 2 \pi k / N}} \\
& =\frac{1}{1-\alpha e^{-j 2 \pi k / N}} \\
& =X[k]
\end{aligned}
$$

since $e^{-j 2 \pi k}=1$ for all integer k. So this problem establishes an interesting relationship between the z-transform of an infinite length sequence sampled at specific values of z on the unit circle (corresponding to the DFT frequencies) and the actual DFT of one period of the periodically-extended sequence.

