ECE503 Homework Assignment Number 5 Solution

1. 3 points. Mitra 7.25.
Solution:
v[n] = x[-n])® k[n], and u[n] =v[-n] = x[n]® h[-n]. Hence,

y[n] = (h[n]+h[-n])@ x[n]. Therefore, G(e/®) = H(e/®)+ H * (¢/?). Thus, the

equivalent frequency response is real and has zero phase.

2. 3 points. Mitra 7.30.

Solution:

Hy(2) =25(1-16¢7 + 207214 27141627 + 272 1-0827 405272

@ Hy(d)=25(2-162" 412721427 141627 4 27210827 +0.5272)

=5+577 1404724152773 +4.1777% 4105775 075776 +1.25777
(b) Hs(z) = 2.5(1 ~1677! +2z'2)(1+z'1)(1 +1.6771 +z'2)(0.5 ~0877 1+ 1z'2]

=125-075z"1 4105272 +4.17773 +1.5277 404275 +5770 + 5777

(¢) H4(z)=H (z). There is only mixed-phase transfer function with the same
magnitude response.

(d) There are 3 total combinations having the same magnitude response. All 3 are
listed here, and there are 0 others.



3. 3 points. Mitra 7.64 (a)
Solution to part (a):
(a) Using Eq. (7.81), we get 5 = cos(0.551) = 0.4540. Next, from Eq. (7.83), we

get Eaz = ¢0s(0.15x) =0.8910, or, equivalently, 0.8910a® -2 +0.8910 =0,
l+a

Solution of this quadratic equation yields & =1.6319 and a =0.6128.

Substituting « =1.6319 and f=0.4540 in Eq.(7.82) we arrive at the denominator

polynomial of the transfer function Hgp(z)as D(z) =1- 1.194977" +1.6319272.
Comparing with Eq. (7.161) we note d; = -1.1949 and 45 =1.6319. Since the
condition of Eq. (7.164) is not satisfied, the corresponding H p(z) is unstable.

Substituting ¢ =0.6128 and f§=0.4540 in Eq.(7.82) we arrive at the
denominator polynomial of the transfer function H gp(z)as

D(z) =1-0.7322z"" +0.61282 2, Comparing with Eq. (7.161) we note
d; =-0.7322 and d, =0.6128. Since the conditions of Eqs. (7.164) and (7.166)

are satisfied, the corresponding H ;p(z) is a stable transfer function. Hence, the
0.1936(1 -z 2)
1-0.7322771 +0.6128772

desired transfer function is Hpp(z) =

4. 3 points. Mitra 7.76 (b)
Solution to part (b):

(b) Hgs(z}-%{l+z_2}{—l+5z_2 ~z™%). Thus,

Hyp(@) =2 - 1]_.5(1 +2 )(-14+6z22-74= %U -5z 416272 =574+ 279).

5. 3 points. Mitra 7.89 (a)
Solution to part (a):

4.15+35z7 1 +4.15772
(a) Hy(z) =
“ 62+3577 1 +2.1772

-1 -2
= §;+ z'iz_] * 2'23_2 is an allpass function. Hence, the power
2+357 +2.1z

= %[] +.A(z)] where

A(2)

complementary transfer function of H,,(z) is given by

1 1|, 2.1+35z7'+62272 205(1-z"2)
G,(z) = _[1 = A{Z}] =-|1- —1 2|7 -1 2"
2 2 62+3.5z +2.1z 62+35z27 +2.1z




6. 3 points. Mitra 7.90
Solution:
224577 )(1-3.1z""
(o) - 225X )
(1+081z " N(1-0.62z7")
require the transfer function G(z) to satisfy the following property
; 1
|G{e~m')| _——
)
1 (1+081z7hHa-062z"

Gq(z) = =

d H(z) (22+5:7H1-3127YH
circle, making G,4(z) unstable.
To develop a stable transfer function with magnitude response same as Gy(z), we

22+57H(1-3.127H
(5+2277 H(=3.1+271)
(1+081z H(1-0.62z"")
(5+2277 )(=3.1+z7)
solution satisfying the condition ‘G{EJW)HH(H m]|| =1.

. In order to correct for magnitude distortion we

. Hence, one possible solution is

. Note that both poles are outside the unit

multiply it with the stable allpass function resulting in the

transfer function G(z) = which is the desired stable



7. 4 points. Mitra 7.92 (a) and (b).
Solution to part (a):

We make use of Egs. (7.135) and (7.136):  A[0] =% and
n-1
- h[k)x[n - k
g 21 Do hlkIxln o
x[0]
@ {uln}={2, -1 3, 1}, {nln}={4, -6, 14, -7, 7, 3}. Thus,
~wmlo] 4 _ =m0l -6-2x(-1)
O 2R T e T T
2] = 2121 =m0 2] = Ayl 1] 14-2x3-(-2)x (1) _,
: x4[0] 2 '

Hence {hl[n]} ={2, -2, 3}.

Solution to part (b):

®) {xalnl} ={3, 2, -1}, {yalnl}={6. -5. -5 -1, -5 2}
y2[0] 6 }'zlll-hzlﬂl-rz[lJ=-5-2x2=_3
x,[0] 3 ’
(015121 - by [Ixp[1]_ =5 =2x (1) (-3} x2 _
x,[0] 3
yal3] = hyll1x[2] - hp[21xp[1) _ ~1-(=3)x (=) =1x2 _
x,[0] 3
Hence {hy[nl} ={2, -3, 1, -2}.

ol

1,

2.

hy (3] =



8. 3 points. Mitra M7.9.

Solution: We follow the procedure in 7.4.2 for the lowpass filter. Given w,. = 0.27, we can

use (7.78b) to solve o = %ﬁfe = 0.5095 which we plug in to the scaled transfer function

T

Hupz) = ===

This same « can be used for the high pass filter

l4a 1—2z1
2 1—az V'

Hyp(z) =

The following Matlab code plots the magnitude response of both filters on the same plot and
shows these transfer functions are allpass complementary and power complementary.

% Mitra M7.9
% DRB 08-Feb-2012

wc = 0.2%pi;
alpha = (1-sin(wc))/cos(wc);

blp = (1-alpha)/2%[1 1];

alp = [1 -alphal;

bhp = (1+alpha)/2%[1 -1];

ahp = [1 -alphal;

w = 0:0.001:pi; % normalized frequency scale
hlp = freqz(blp,alp,w);

hhp = freqz(bhp,ahp,w);

figure(1)

plot(w,abs(hlp) ,w,abs(hhp), [0.2 0.2]*pi, [0 1.1],°--");
legend(’lowpass’, ’highpass’,’cutoff freq’);

xlabel (’normalized freq (rad/sample)’);
ylabel(’magnitude response’);

axis([0 pi 0 1.11);

bsum = blp+bhp; % add numerators

asum = alp; % same denominator for LP and HP
hsum = freqz(bsum,asum,w);

figure(2)

plot (w,abs (hsum)) ;
legend (’ |HLP (w)+HHP(w) | 7) ;



xlabel (’normalized freq (rad/sample)’);
ylabel (’magnitude response’);
axis([0 pi 0 1.11);

pc = abs(hlp)."2 + abs(hhp)."2; 7 sum squared magnitude responses
figure(3)

plot(w,pc);

legend (°’ |[HLP(w) | "2+ |HHP (w) | 27) ;

xlabel (’normalized freq (rad/sample)’);

ylabel (’total squared magnitude response’);

axis([0 pi 0 1.11);

The magnitude response plot is given below.
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The complementary properties are easy to verify analytically, but the following plot confirms
these filters are allpass complementary.
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The following plot confirms these filters are power complementary.
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