
ECE503 Homework Assignment Number 7 Solution

Due by 8:50pm on Monday 26-Mar-2012

1. 3 points. Suppose a discrete-time signal

x[n] =

{
0.9n n = 0, . . . , 9

0 otherwise.

is sent through an ideal reconstruction filter with sampling period T = 1
10 seconds to generate

a continuous-time signal x(t).

(a) Note that x[n] = 0 for all n < 0. Does x(t) = 0 for all t < 0? Why or why not?
Solution: The ideal reconstruction formula states

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT )/T )

π(t− nT )/T

=

9∑
n=0

0.9n
sin(10π(t− n/10))

10π(t− n/10)
.

To see that x(t) is not equal to zero for all t < 0, let’s pick, for example, t = −1/20.
Then

x(t = −1/20) =
9∑

n=0

0.9n
sin(10π(−1/20− n/10))

10π(−1/20− n/10)

=
9∑

n=0

0.9n
sin(−π/2− nπ)

−π/2− nπ

=
9∑

n=0

0.9n
sin(π/2 + nπ)

π/2 + nπ

≈ 0.5036

The following figure shows x(t) and x[n] as related by the ideal interpolation formula
when T = 1

10 seconds.
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tt = -1:0.0001:2;

T = 1/10;

n = 0:9;

alpha = 0.9;

x = zeros(1,length(tt));

i1 = 0;

for t = tt,

i1 = i1+1;

x(i1) = sum((alpha.^n).*sin(pi*(t-n*T)/T)./(pi*(t-n*T)/T));

end

plot(tt,x);

hold on

stem(-1:T:2,[zeros(1,10) 0.9.^n zeros(1,11)],’r’);

xlabel(’time (sec)’);

ylabel(’x[n] and x(t)’)

(b) Determine the value of x(t) at time t = 0.5 seconds.
Solution: The ideal reconstruction formula states

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT )/T )

π(t− nT )/T

=

9∑
n=0

0.9n
sin(10π(0.5− n/10))

10π(0.5− n/10)

=

9∑
n=0

0.9n
sin(5π − nπ)

5π − nπ



Note
sin(5π − nπ)

5π − nπ
=

{
1 n = 5

0 n 6= 5.

So

x(t) =
∞∑
n=0

0.9nδ[n− 5]

= 0.95 ≈ 0.5905

Note that x(t = 0.5) = x[n = 5] since this time falls directly on a sampling instant.

(c) Now suppose the sampling period T = 1
5 seconds. Determine the value of x(t) at time

t = 0.5 seconds.
Solution: The ideal reconstruction formula states

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT )/T )

π(t− nT )/T

=

9∑
n=0

0.9n
sin(5π(0.5− n/5))

5π(0.5− n/5)

=

9∑
n=0

0.9n
sin(2.5π − nπ)

2.5π − nπ

≈ 0.8316

where the final result was computed in Matlab. Note this time instant falls between two
samples, so you have to compute the full sum.
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tt = -2:0.0001:4;

T = 1/5;

n = 0:9;

alpha = 0.9;

x = zeros(1,length(tt));

i1 = 0;

for t = tt,

i1 = i1+1;

x(i1) = sum((alpha.^n).*sin(pi*(t-n*T)/T)./(pi*(t-n*T)/T));

end

plot(tt,x);

hold on

stem(-2:T:4,[zeros(1,10) 0.9.^n zeros(1,11)],’r’);

xlabel(’time (sec)’);

ylabel(’x[n] and x(t)’)

2. 4 points. Suppose you have a real-valued continuous-time signal x(t) = cos(2π · 10 · t) and
this signal is ideally sampled at frequency FT = 30 Hertz to to generate a discrete-time signal
x[n].

(a) Sketch the magnitude of X(Ω) and the magnitude of X(ω), explicitly showing any pe-
riodicity in the spectra. Is there aliasing?
Solution: There is no aliasing. The spectra are sketched below.

Omega

omega

|X(Omega)|

|X(omega)|

2pi-2pi 2pi/3 4pi/3 8pi/3

20pi-20pi

1/2

15

(b) Now suppose x[n] is upsampled by a factor of two, resulting in y[n]. Sketch the magni-
tude of Y (ω), explicitly showing any periodicity in the spectrum.
Solution: There is still no aliasing here. The spectrum is sketched below. Note the
additional tones that appear because of the up sampling. These tones could be attenu-
ated/removed, if desired, with an interpolation filter.

omega

|Y(omega)|

2pi-2pi
1pi/3

15

pi2pi/3

(c) Now suppose x[n] is downsampled by a factor of two, resulting in z[n]. Sketch the
magnitude of Z(ω), explicitly showing any periodicity in the spectrum.



Solution: Now there is aliasing. The spectrum is sketched below. The images at ±2π
are shown in gray.

omega
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(d) Now suppose z[n] is sent to an ideal reconstruction filter to generate z(t). Note this
ideal reconstruction filter will use a period of T = 1

15 seconds because the sampling rate
of z[n] is 15 Hertz. Can you find a closed-form expression for z(t)?
Solution: In this case, reconstruction is easily analyzed in the frequency domain. The
ideal reconstruction filter will only pass normalized frequencies between −π and +π,
hence we can sketch the spectra of Z(ω) and Z(Ω) as
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reconstruction !lter passband

It is clear that z(t) = cos(2π · 5 · t). Aliasing in the downsampled signal caused the ideal
reconstruction filter output to be different than the original time domain signal x(t).

3. 4 points total. Suppose you wish to design a “bandpass” filter that has unity magnitude at
ω1 = π

4 and has magnitude 1√
2

at ω1 = π
4 ± ω0.

(a) 2 points. Design a filter that meets these specifications when ω0 = π/8. Use Matlab to
plot the magnitude response and confirm it agrees with the specifications. Is this a good
bandpass filter? Why or why not?
Solution:



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

normalized frequency (times /)

m
ag

ni
tu

de

w1 = pi/4;

w0 = pi/8;

w = [w1-w0 w1 w1+w0]’;

A = [2*cos(2*w) 2*cos(w) ones(3,1)];

b = [1/sqrt(2) 1 1/sqrt(2)]’;

alpha = inv(A)*b;

h = [alpha ; alpha(end-1:-1:1)].’;

[v,ww] = freqz(h,1,1024);

plot(ww/pi,abs(v),[0 0.5],[1/sqrt(2) 1/sqrt(2)],’r--’,...

w(1)/pi,1/sqrt(2),’rp’,w(3)/pi,1/sqrt(2),’rp’,w(2)/pi,1,’rp’);

grid on

xlabel(’normalized frequency (times \pi)’);

ylabel(’magnitude’);

axis([0 1 0 10]);

This is not a very good bandpass filter. Even though it meets the specifications, this
looks more like a highpass filter.

(b) 2 points. Discuss what happens as ω0 gets small.
Solution: The following plot shows what happens when ω0 = π/8, π/12, π/16, π/32,
including the magnitude response and the z-plane.
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The magnitude response shows that the “passband” of our bandpass filter is becoming nar-
rower, as we expected, but that the filter is becoming more like a bandstop filter as ω0 gets
small since the low and high frequencies are passed with higher gain than one. The z-plane
plots are also interesting. We see the zeros moving closer to e±jω1 as ω0 gets small, but in
order to keep the magnitude response of the filter unity at ω1 the overall gain of the filter
must increase. This explains why the high and low frequency gains of the filter increase as
ω0 gets small. Overall, this isn’t a very good way to design a narrowband bandpass filter.

4. 3 points. Suppose x[n] is a length-N sequence and y[n] is a length-2N sequence formed by
repeating x[n] twice, i.e.

y[n] =

{
x[n] n = 0, 1, . . . , N − 1

x[n−N ] n = N, . . . , 2N − 1.

Let Y [k] be the 2N -point DFT of y[n] for k = 0, . . . , 2N − 1 and let Z[k] = Y [2k] for
k = 0, 1, . . . , N − 1. Relate z[n] = IDFT{Z[k]} to x[n] for n = 0, . . . , N − 1.
Solution: Using what we covered in lecture about periodic extensions, we can say

Y [k] =

{
2X[k/2] k = 0, 2, 4, . . . , 2N − 2

0 k = 1, 3, . . . , 2N − 1.

Now, since Z[k] = Y [2k] (downsampling in the frequency domain), then Z[k] = 2X[k] for
k = 0, 1, . . . , N − 1, hence z[n] = 2x[n] for n = 0, 1, . . . , N − 1.



5. 4 points. Mitra 4.43. Suggested approach: Use z-domain analysis to find the zero-state
response. To find the zero-input response, find the homogeneous solution and apply the
initial conditions to solve for the unknown constants. Compute the total response as the
sum of the zero-state response and the zero-input response. You can check your answer with
Matlab.
Solution: Let’s work on the zero-state response first. Given x[n] = 3nµn, the transfer
function is easily computed as

H(z) =
Y (z)

X(z)
=

1

1− 0.7z−1 − 0.02z−2

with ROC extending outward from the largest magnitude pole at z = 0.7275 and X(z) =
1

1−3z−1 with ROC |z| > 3. Hence

Y (z) =
a

1− 0.7275z−1
+

b

1 + 0.0275z−1
+

c

1− 3−1

and we need to calculate a, b, and c. I get a = −0.3085, b = 0.0003, and c = 1.3081 using
Matlab’s residuez command. Hence, the zero-state response is

yzs[n] = a(0.7275)nµ[n] + b(−0.0275)nµ[n] + c(3)nµ[n].

The zero-input response can be determined by writing the complementary solution

yc[n] = α1(0.7275)n + α2(−0.0275)n

and solving for α1 and α2 based on the given initial conditions y[−1] = 3 and y[−2] = 0. So
we have two simultaneous equations

3 = α1(0.7275)−1 + α2(−0.0275)−1

0 = α1(0.7275)−2 + α2(−0.0275)−2

and I get α1 = 2.1030 and α2 = −0.0030. Hence, the zero-input response is

yzi[n] = α1(0.7275)n + α2(−0.0275)n

for n ≥ 0. Total response is then

y[n] = yzs[n] + yzi[n]

= α1(0.7275)nµ[n] + α2(−0.0275)nµ[n] + a(0.7275)nµ[n] + b(−0.0275)nµ[n] + c(3)nµ[n]

= 1.7945(0.7275)nµ[n]− 0.0027(−0.0275)nµ[n] + 1.3081(3)nµ[n].

This can be confirmed in Matlab.

6. 3 points. Compute the impulse response of the system in Mitra 4.43.
Solution: We can use basically the same approach as before except x[n] = δ[n] and the initial
conditions are all zero since the impulse response implies that the system is relaxed. Since
there is no zero-input response to worry about, we just have to find the inverse z-transform
of the transfer function. This can be done via partial fraction expansion

H(z) =
a

1− 0.7275z−1
+

b

1 + 0.0275z−1
=

1

1− 0.7z−1 − 0.02z−2
.

Solving for a and b, I get a = 0.9636 and b = 0.0364. Hence the impulse response of this
system is

h[n] = 0.9636(0.7275)nµ[n] + 0.0364(−0.0275)nµ[n].

which can also be confirmed in Matlab.



7. 4 points. Mitra 5.9.


