ECE503 Homework Assignment Number 7 Solution

Due by 8:50pm on Monday 26-Mar-2012

1. 3 points. Suppose a discrete-time signal

0.9" n=0,...,9
z[n] = .
0 otherwise.

is sent through an ideal reconstruction filter with sampling period T' = %0 seconds to generate
a continuous-time signal z(t).

(a) Note that z[n] = 0 for all n < 0. Does z(t) = 0 for all ¢ < 0? Why or why not?
Solution: The ideal reconstruction formula states

B > sin(w(t —nT)/T)
w(t)= Y. =G T

9 :
o sin(107(t — n/10))
Z 09 107 (t — n/10)

To see that x(t) is not equal to zero for all ¢ < 0, let’s pick, for example, t = —1/20.
Then

ot = —1/20) =

ZO gnsm (10m(—1/20 — n/10))
10m(—1/20 — n/10)

_ Zognsm —m/2 — nm)

—77/2—n7r

ZO gnsm (7/2 + nm)
N /2 +nw
= 0.5036

The following figure shows x(¢) and z[n| as related by the ideal interpolation formula
when 7' = % seconds.
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t = -1:0.0001:2;
T = 1/10;
= 0:9;
alpha = 0.9;
x = zeros(1l,length(tt));
il = 0;
for t = tt,
il = i1+1;
x(i1) = sum((alpha."n).*sin(pi*(t-n*T)/T)./(pi*(t-n*T)/T));
end
plot(tt,x);
hold omn
stem(-1:T:2, [zeros(1,10) 0.9.°n zeros(1,11)],°’r’);
xlabel(’time (sec)’);
ylabel(’x[n] and x(t)’)

Determine the value of z(t) at time ¢ = 0.5 seconds.
Solution: The ideal reconstruction formula states

> sin(w(t —nT")/T
0= 5 e

n=—oo

ZO 9nsm (107 (0.5 — n/10))
107(0.5 — n/10)

Z 0.gn ST — n7) sin(bm — nm)

5T — nw



Note

5T — nmw

sin(br —nmw) )1 n=35
0 n#b.

So

z(t) =) _0.9"6[n — 5|
n=0
=0.9° ~ 0.5905

Note that (¢ = 0.5) = x[n = 5] since this time falls directly on a sampling instant.

(¢) Now suppose the sampling period T' = % seconds. Determine the value of z(t) at time
t = 0.5 seconds.
Solution: The ideal reconstruction formula states

o0

B sin(m(t —nT)/T)
z(t)= ), ] 7t —nT)/T

n=—oo

o sin(5m(0.5 —n/b))
= 209
57(0.5 —n/5)

~ 0.8316

where the final result was computed in Matlab. Note this time instant falls between two
samples, so you have to compute the full sum.
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tt = -2:0.0001:4;
T = 1/5;
n=0:9;
alpha = 0.9;
x = zeros(1l,length(tt));
il = 0;
for t = tt,
il = i1+1;
x(i1) = sum((alpha.n).*sin(pi* (t-n*T)/T)./(pi*(t-n*T)/T));
end
plot(tt,x);
hold on
stem(-2:T:4, [zeros(1,10) 0.9.°n zeros(1,11)],°r’);
xlabel(’time (sec)’);
ylabel(’x[n] and x(t)’)

2. 4 points. Suppose you have a real-valued continuous-time signal z(t) = cos(27 - 10 - ¢) and
this signal is ideally sampled at frequency Fr = 30 Hertz to to generate a discrete-time signal

(a) Sketch the magnitude of X () and the magnitude of X (w), explicitly showing any pe-
riodicity in the spectra. Is there aliasing?
Solution: There is no aliasing. The spectra are sketched below.

[X(Omega)|
‘\‘1/2
< T I T » Omega
-20pi 20p
[X(omega)|
15
< T | T T | T T I T » Omega
-2pi 2pi/3  4pi/3  2pi  8pi/3

(b) Now suppose x[n] is upsampled by a factor of two, resulting in y[n]. Sketch the magni-
tude of Y'(w), explicitly showing any periodicity in the spectrum.
Solution: There is still no aliasing here. The spectrum is sketched below. Note the
additional tones that appear because of the up sampling. These tones could be attenu-
ated /removed, if desired, with an interpolation filter.

[Y(omega)|

N N Mﬁmm,ﬁ --------

1pi/3 )
2pi/3 P!

(c) Now suppose z[n| is downsampled by a factor of two, resulting in z[n]. Sketch the
magnitude of Z(w), explicitly showing any periodicity in the spectrum.



Solution: Now there is aliasing. The spectrum is sketched below. The images at +27
are shown in gray.

|Z(omega)|

I T T I » Omega

-2pi 2pi/3  4pi/3  2pi  8pif3

(d) Now suppose z[n] is sent to an ideal reconstruction filter to generate z(t). Note this
ideal reconstruction filter will use a period of T' = % seconds because the sampling rate
of z[n] is 15 Hertz. Can you find a closed-form expression for z(t)?
Solution: In this case, reconstruction is easily analyzed in the frequency domain. The
ideal reconstruction filter will only pass normalized frequencies between —7 and +,
hence we can sketch the spectra of Z(w) and Z(£2) as

|Z(omega)|
reconstruction filter passband
475
< I T T I » Omega
-2pi 2p0i/3  4pi/3  2pi  8pi/3
|Z(Omega)|
‘\‘1/2
< T I » Omega
-10pi 10pi

It is clear that z(t) = cos(27-5-t). Aliasing in the downsampled signal caused the ideal
reconstruction filter output to be different than the original time domain signal z(t).

3. 4 points total. Suppose you wish to design a “bandpass” filter that has unity magnitude at
wy = 7 and has magnitude % at wy = 7 £ wo.

(a) 2 points. Design a filter that meets these specifications when wy = 7/8. Use Matlab to
plot the magnitude response and confirm it agrees with the specifications. Is this a good
bandpass filter? Why or why not?

Solution:



10

magnitude
6]
T

| | | | | |
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normalized frequency (times )

wl
w0

pi/4;
pi/8;

[wi-w0 wl wil+w0]’;

A [2*xcos (2*w) 2*cos(w) ones(3,1)];
b = [1/sqrt(2) 1 1/sqrt(2)]1’;

alpha = inv(A)*b;

w

h = [alpha ; alpha(end-1:-1:1)].°;

[v,ww] = freqz(h,1,1024);

plot(ww/pi,abs(v), [0 0.5],[1/sqrt(2) 1/sqrt(2)],’r--,...
w(1)/pi,1/sqrt(2),’rp’,w(3)/pi,1/sqrt(2),’rp’,w(2)/pi,1,’rp’);

grid on

xlabel(’normalized frequency (times \pi)’);

ylabel (’magnitude’) ;

axis([0 1 0 10]1);

This is not a very good bandpass filter. Even though it meets the specifications, this
looks more like a highpass filter.

2 points. Discuss what happens as wg gets small.
Solution: The following plot shows what happens when wy = «/8,7/12,7/16,7/32,
including the magnitude response and the z-plane.
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The magnitude response shows that the “passband” of our bandpass filter is becoming nar-
rower, as we expected, but that the filter is becoming more like a bandstop filter as wgy gets
small since the low and high frequencies are passed with higher gain than one. The z-plane
plots are also interesting. We see the zeros moving closer to e*“! as wy gets small, but in
order to keep the magnitude response of the filter unity at w; the overall gain of the filter
must increase. This explains why the high and low frequency gains of the filter increase as
wo gets small. Overall, this isn’t a very good way to design a narrowband bandpass filter.

. 3 points. Suppose z[n] is a length-N sequence and y[n] is a length-2N sequence formed by
repeating z[n] twice, i.e.

n=0,1,..., N—1
n=N,...,2N — 1.

Let Y[k] be the 2N-point DFT of y[n| for k¥ = 0,...,2N — 1 and let Z[k] = Y[2k] for
k=0,1,...,N — 1. Relate z[n| = IDFT{Z[k|} to z[n] for n =0,...,N — 1.
Solution: Using what we covered in lecture about periodic extensions, we can say

2X1k/2] k=0,2,4,...,2N —2
Y[k]: [/] 5 “y Iy )
0 k=1,3,...,2N — 1.

Now, since Z[k] = Y[2k] (downsampling in the frequency domain), then Z[k] = 2X[k] for
k=0,1,...,N —1, hence z[n| = 2z[n] forn =0,1,...,N — 1.



5. 4 points. Mitra 4.43. Suggested approach: Use z-domain analysis to find the zero-state
response. To find the zero-input response, find the homogeneous solution and apply the
initial conditions to solve for the unknown constants. Compute the total response as the
sum of the zero-state response and the zero-input response. You can check your answer with
Matlab.

Solution: Let’s work on the zero-state response first. Given z[n] = 3"un, the transfer
function is easily computed as

Y(z) 1
X(z) 1-0.72z71-0.022"2

with ROC extending outward from the largest magnitude pole at z = 0.7275 and X (z) =

=7 with ROC |z| > 3. Hence

H(z)=

Y (2) a . b N c
Z) =
1—-0.72752=1  1+0.02752=1  1-3"1
and we need to calculate a, b, and c. I get a = —0.3085, b = 0.0003, and ¢ = 1.3081 using
Matlab’s residuez command. Hence, the zero-state response is

Yzs[n] = a(0.7275)" un] + b(—0.0275)" un] + ¢(3)" u[n].

The zero-input response can be determined by writing the complementary solution
Ye[n] = a1(0.7275)" 4+ a2 (—0.0275)"

and solving for oy and ag based on the given initial conditions y[—1] = 3 and y[—2] = 0. So
we have two simultaneous equations

3= a1(0.7275) 7 4 ap(—0.0275) !
0= 1(0.7275) 2 + ay(—0.0275) 2

and I get o = 2.1030 and oz = —0.0030. Hence, the zero-input response is
Yzi[n] = a1(0.7275)" 4+ aa(—0.0275)"
for n > 0. Total response is then

y[n] = Yzs[n] + yzi[n]
= a1(0.7275)" u[n] + a2 (—0.0275)" u[n] + a(0.7275)" u[n] + b(—0.0275)" u[n] + ¢(3)" u[n]
— 1.7945(0.7275)"un] — 0.0027(—0.0275)" s[n] + 1.3081(3)" p[n].

This can be confirmed in Matlab.

6. 3 points. Compute the impulse response of the system in Mitra 4.43.
Solution: We can use basically the same approach as before except x[n] = d[n] and the initial
conditions are all zero since the impulse response implies that the system is relaxed. Since
there is no zero-input response to worry about, we just have to find the inverse z-transform
of the transfer function. This can be done via partial fraction expansion

B a . b B 1
1 -—0.72752"1 N

H .
(2) 14002751 1—0721—0.022

Solving for a and b, I get a = 0.9636 and b = 0.0364. Hence the impulse response of this
system is
hin] = 0.9636(0.7275)" u[n] + 0.0364(—0.0275)" u[n).

which can also be confirmed in Matlab.



7. 4 points. Mitra 5.9.

N-1
(@) Ya[k]=£:0a"W go(awy _11fN:§V =11__aﬁ§.
(b)  Note that yb[n]={j: EZZ‘::=3{_DH+1.
Hence we can use the result from Part (a) and write:
k1= S W - ( %) + (WN].
n=0
Assume Wf, = =], Then:
(o) () [-(wd) o W) (=) frewd)
Yylk] =3 + =3
1- (WN") 1- (WN’C] (1 WN")(1+WN} (1-W§)(1+WN’C]
(1 1)”e32”“"][1 w") (1 332’*)(1+w’5]
) (1-wik )1+ W) (1 w1+ w5

(3_3WNk _ (1) ei2% +3[—1}Ne”"'d‘WNk]+[l+WNk _ 2Tk _ejzmka)
(1-wk )1+ w¥)
B 4 _wa'\kf _ 3(_1)Ne_i'2.1‘df +3(_1)N€J2MWNIC _ejE:rdc _ejgﬂkWNk
(1-wk (1 wk)
4 _3(_])N€j2:tk _ pd27k _Wk(z 3(-1 )Ne_;'Zﬂk +e;2_-;dc)

Wi )i wd)

Assume WNk =—1 <+ k = N/2 (where N is necessarily even). Then:
N-1 N-1

GIN/2I=3 D 1" + D(-1)" =2N.
n=0 n=0

Now, suppose Wﬁ =1< k=0. Then,

[n--p" ] _; N | N, for N even,
il 32( v* +2(1) ey I-(-D _2[1_(_]) I+N _{3+N‘ for N odd.



