ECE503 Homework Assignment Number 7 Solution

Due by $8: 50 \mathrm{pm}$ on Monday 26-Mar-2012

1. 3 points. Suppose a discrete-time signal

$$
x[n]= \begin{cases}0.9^{n} & n=0, \ldots, 9 \\ 0 & \text { otherwise }\end{cases}
$$

is sent through an ideal reconstruction filter with sampling period $T=\frac{1}{10}$ seconds to generate a continuous-time signal $x(t)$.
(a) Note that $x[n]=0$ for all $n<0$. Does $x(t)=0$ for all $t<0$? Why or why not?

Solution: The ideal reconstruction formula states

$$
\begin{aligned}
x(t) & =\sum_{n=-\infty}^{\infty} x[n] \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T) / T} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (10 \pi(t-n / 10))}{10 \pi(t-n / 10)} .
\end{aligned}
$$

To see that $x(t)$ is not equal to zero for all $t<0$, let's pick, for example, $t=-1 / 20$. Then

$$
\begin{aligned}
x(t=-1 / 20) & =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (10 \pi(-1 / 20-n / 10))}{10 \pi(-1 / 20-n / 10)} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (-\pi / 2-n \pi)}{-\pi / 2-n \pi} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (\pi / 2+n \pi)}{\pi / 2+n \pi} \\
& \approx 0.5036
\end{aligned}
$$

The following figure shows $x(t)$ and $x[n]$ as related by the ideal interpolation formula when $T=\frac{1}{10}$ seconds.

tt $=-1: 0.0001: 2 ;$
T = 1/10;
n $=0: 9$;
alpha $=0.9$;
$\mathrm{x}=\mathrm{zeros}(1, \mathrm{length}(\mathrm{tt}))$;
i1 = 0;
for $t=t t$,
i1 = i1+1;
$x(i 1)=\operatorname{sum}\left(\left(a l p h a .{ }^{\wedge} n\right) . * \sin (\mathrm{pi} *(\mathrm{t}-\mathrm{n} * \mathrm{~T}) / \mathrm{T}) . /(\mathrm{pi} *(\mathrm{t}-\mathrm{n} * \mathrm{~T}) / \mathrm{T})\right)$;
end
plot(tt,x);
hold on
stem(-1:T:2,[zeros $\left.\left.(1,10) 0.9 .^{\wedge} n \operatorname{zeros}(1,11)\right], r^{\prime}\right)$;
xlabel('time (sec)');
ylabel('x[n] and $x(t)$ ')
(b) Determine the value of $x(t)$ at time $t=0.5$ seconds.

Solution: The ideal reconstruction formula states

$$
\begin{aligned}
x(t) & =\sum_{n=-\infty}^{\infty} x[n] \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T) / T} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (10 \pi(0.5-n / 10))}{10 \pi(0.5-n / 10)} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (5 \pi-n \pi)}{5 \pi-n \pi}
\end{aligned}
$$

Note

$$
\frac{\sin (5 \pi-n \pi)}{5 \pi-n \pi}= \begin{cases}1 & n=5 \\ 0 & n \neq 5\end{cases}
$$

So

$$
\begin{aligned}
x(t) & =\sum_{n=0}^{\infty} 0.9^{n} \delta[n-5] \\
& =0.9^{5} \approx 0.5905
\end{aligned}
$$

Note that $x(t=0.5)=x[n=5]$ since this time falls directly on a sampling instant.
(c) Now suppose the sampling period $T=\frac{1}{5}$ seconds. Determine the value of $x(t)$ at time $t=0.5$ seconds.
Solution: The ideal reconstruction formula states

$$
\begin{aligned}
x(t) & =\sum_{n=-\infty}^{\infty} x[n] \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T) / T} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (5 \pi(0.5-n / 5))}{5 \pi(0.5-n / 5)} \\
& =\sum_{n=0}^{9} 0.9^{n} \frac{\sin (2.5 \pi-n \pi)}{2.5 \pi-n \pi} \\
& \approx 0.8316
\end{aligned}
$$

where the final result was computed in Matlab. Note this time instant falls between two samples, so you have to compute the full sum.


```
tt = -2:0.0001:4;
T = 1/5;
n = 0:9;
alpha = 0.9;
x = zeros(1,length(tt));
i1 = 0;
for t = tt,
    i1 = i1+1;
    x(i1) = sum((alpha. ^n).*sin(pi*(t-n*T)/T)./(pi*(t-n*T)/T));
end
plot(tt,x);
hold on
stem(-2:T:4,[zeros(1,10) 0.9.^n zeros(1,11)],'r');
xlabel('time (sec)');
ylabel('x[n] and x(t)')
```

2. 4 points. Suppose you have a real-valued continuous-time signal $x(t)=\cos (2 \pi \cdot 10 \cdot t)$ and this signal is ideally sampled at frequency $F_{T}=30 \mathrm{Hertz}$ to to generate a discrete-time signal $x[n]$.
(a) Sketch the magnitude of $X(\Omega)$ and the magnitude of $X(\omega)$, explicitly showing any periodicity in the spectra. Is there aliasing?
Solution: There is no aliasing. The spectra are sketched below.

(b) Now suppose $x[n]$ is upsampled by a factor of two, resulting in $y[n]$. Sketch the magnitude of $Y(\omega)$, explicitly showing any periodicity in the spectrum.
Solution: There is still no aliasing here. The spectrum is sketched below. Note the additional tones that appear because of the up sampling. These tones could be attenuated/removed, if desired, with an interpolation filter.

(c) Now suppose $x[n]$ is downsampled by a factor of two, resulting in $z[n]$. Sketch the magnitude of $Z(\omega)$, explicitly showing any periodicity in the spectrum.

Solution: Now there is aliasing. The spectrum is sketched below. The images at $\pm 2 \pi$ are shown in gray.

(d) Now suppose $z[n]$ is sent to an ideal reconstruction filter to generate $z(t)$. Note this ideal reconstruction filter will use a period of $T=\frac{1}{15}$ seconds because the sampling rate of $z[n]$ is 15 Hertz. Can you find a closed-form expression for $z(t)$?
Solution: In this case, reconstruction is easily analyzed in the frequency domain. The ideal reconstruction filter will only pass normalized frequencies between $-\pi$ and $+\pi$, hence we can sketch the spectra of $Z(\omega)$ and $Z(\Omega)$ as

It is clear that $z(t)=\cos (2 \pi \cdot 5 \cdot t)$. Aliasing in the downsampled signal caused the ideal reconstruction filter output to be different than the original time domain signal $x(t)$.
3. 4 points total. Suppose you wish to design a "bandpass" filter that has unity magnitude at $\omega_{1}=\frac{\pi}{4}$ and has magnitude $\frac{1}{\sqrt{2}}$ at $\omega_{1}=\frac{\pi}{4} \pm \omega_{0}$.
(a) 2 points. Design a filter that meets these specifications when $\omega_{0}=\pi / 8$. Use Matlab to plot the magnitude response and confirm it agrees with the specifications. Is this a good bandpass filter? Why or why not?
Solution:


```
w1 = pi/4;
w0 = pi/8;
w = [w1-w0 w1 w1+w0]';
A = [2*\operatorname{cos}(2*W) 2*\operatorname{cos}(w) ones(3,1)];
b = [1/sqrt(2) 1 1/sqrt(2)]';
alpha = inv(A)*b;
h = [alpha ; alpha(end-1:-1:1)].';
[v,ww] = freqz(h,1,1024);
plot(ww/pi,abs(v),[0 0.5],[1/sqrt(2) 1/sqrt(2)],'r--',...
    w(1)/pi,1/sqrt(2), 'rp',w(3)/pi,1/sqrt(2), 'rp',w(2)/pi,1, 'rp');
grid on
xlabel('normalized frequency (times \pi)');
ylabel('magnitude');
axis([0}11% 0 10])
```

This is not a very good bandpass filter. Even though it meets the specifications, this looks more like a highpass filter.
(b) 2 points. Discuss what happens as ω_{0} gets small.

Solution: The following plot shows what happens when $\omega_{0}=\pi / 8, \pi / 12, \pi / 16, \pi / 32$, including the magnitude response and the z-plane.

The magnitude response shows that the "passband" of our bandpass filter is becoming narrower, as we expected, but that the filter is becoming more like a bandstop filter as ω_{0} gets small since the low and high frequencies are passed with higher gain than one. The z-plane plots are also interesting. We see the zeros moving closer to $e^{ \pm j \omega_{1}}$ as ω_{0} gets small, but in order to keep the magnitude response of the filter unity at ω_{1} the overall gain of the filter must increase. This explains why the high and low frequency gains of the filter increase as ω_{0} gets small. Overall, this isn't a very good way to design a narrowband bandpass filter.
4. 3 points. Suppose $x[n]$ is a length $-N$ sequence and $y[n]$ is a length $2 N$ sequence formed by repeating $x[n]$ twice, i.e.

$$
y[n]= \begin{cases}x[n] & n=0,1, \ldots, N-1 \\ x[n-N] & n=N, \ldots, 2 N-1\end{cases}
$$

Let $Y[k]$ be the $2 N$-point DFT of $y[n]$ for $k=0, \ldots, 2 N-1$ and let $Z[k]=Y[2 k]$ for $k=0,1, \ldots, N-1$. Relate $z[n]=\operatorname{IDFT}\{Z[k]\}$ to $x[n]$ for $n=0, \ldots, N-1$.
Solution: Using what we covered in lecture about periodic extensions, we can say

$$
Y[k]= \begin{cases}2 X[k / 2] & k=0,2,4, \ldots, 2 N-2 \\ 0 & k=1,3, \ldots, 2 N-1 .\end{cases}
$$

Now, since $Z[k]=Y[2 k]$ (downsampling in the frequency domain), then $Z[k]=2 X[k]$ for $k=0,1, \ldots, N-1$, hence $z[n]=2 x[n]$ for $n=0,1, \ldots, N-1$.
5. 4 points. Mitra 4.43. Suggested approach: Use z-domain analysis to find the zero-state response. To find the zero-input response, find the homogeneous solution and apply the initial conditions to solve for the unknown constants. Compute the total response as the sum of the zero-state response and the zero-input response. You can check your answer with Matlab.
Solution: Let's work on the zero-state response first. Given $x[n]=3^{n} \mu n$, the transfer function is easily computed as

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-0.7 z^{-1}-0.02 z^{-2}}
$$

with ROC extending outward from the largest magnitude pole at $z=0.7275$ and $X(z)=$ $\frac{1}{1-3 z^{-1}}$ with ROC $|z|>3$. Hence

$$
Y(z)=\frac{a}{1-0.7275 z^{-1}}+\frac{b}{1+0.0275 z^{-1}}+\frac{c}{1-3^{-1}}
$$

and we need to calculate a, b, and c. I get $a=-0.3085, b=0.0003$, and $c=1.3081$ using Matlab's residuez command. Hence, the zero-state response is

$$
y_{z s}[n]=a(0.7275)^{n} \mu[n]+b(-0.0275)^{n} \mu[n]+c(3)^{n} \mu[n] .
$$

The zero-input response can be determined by writing the complementary solution

$$
y_{c}[n]=\alpha_{1}(0.7275)^{n}+\alpha_{2}(-0.0275)^{n}
$$

and solving for α_{1} and α_{2} based on the given initial conditions $y[-1]=3$ and $y[-2]=0$. So we have two simultaneous equations

$$
\begin{aligned}
& 3=\alpha_{1}(0.7275)^{-1}+\alpha_{2}(-0.0275)^{-1} \\
& 0=\alpha_{1}(0.7275)^{-2}+\alpha_{2}(-0.0275)^{-2}
\end{aligned}
$$

and I get $\alpha_{1}=2.1030$ and $\alpha_{2}=-0.0030$. Hence, the zero-input response is

$$
y_{z i}[n]=\alpha_{1}(0.7275)^{n}+\alpha_{2}(-0.0275)^{n}
$$

for $n \geq 0$. Total response is then

$$
\begin{aligned}
\left.y_{[} n\right] & =y_{z s}[n]+y_{z i}[n] \\
& =\alpha_{1}(0.7275)^{n} \mu[n]+\alpha_{2}(-0.0275)^{n} \mu[n]+a(0.7275)^{n} \mu[n]+b(-0.0275)^{n} \mu[n]+c(3)^{n} \mu[n] \\
& =1.7945(0.7275)^{n} \mu[n]-0.0027(-0.0275)^{n} \mu[n]+1.3081(3)^{n} \mu[n] .
\end{aligned}
$$

This can be confirmed in Matlab.
6. 3 points. Compute the impulse response of the system in Mitra 4.43.

Solution: We can use basically the same approach as before except $x[n]=\delta[n]$ and the initial conditions are all zero since the impulse response implies that the system is relaxed. Since there is no zero-input response to worry about, we just have to find the inverse z-transform of the transfer function. This can be done via partial fraction expansion

$$
H(z)=\frac{a}{1-0.7275 z^{-1}}+\frac{b}{1+0.0275 z^{-1}}=\frac{1}{1-0.7 z^{-1}-0.02 z^{-2}}
$$

Solving for a and b, I get $a=0.9636$ and $b=0.0364$. Hence the impulse response of this system is

$$
h[n]=0.9636(0.7275)^{n} \mu[n]+0.0364(-0.0275)^{n} \mu[n] .
$$

which can also be confirmed in Matlab.
7. 4 points. Mitra 5.9.
(a) $\quad Y_{a}[k]=\sum_{n=0}^{N-1} \alpha^{n} W_{N}^{k n}=\sum_{n=0}^{N-1}\left(\alpha W_{N}^{k}\right)^{n}=\frac{1-\alpha^{N} W_{N}^{k N}}{1-\alpha W_{N}^{k}}=\frac{1-\alpha^{N}}{1-\alpha W_{N}^{k}}$.
(b) Note that $y_{b}[n]=\left\{\begin{array}{ll}+4, & \text { for } n \text { even, } \\ -2, & \text { for } n \text { odd, }\end{array}=3(-1)^{n}+1\right.$.

Hence we can use the result from Part (a) and write:

$$
Y_{b}[k]=\sum_{n=0}^{N-1}\left[3(-1)^{n}+1\right] W_{N}^{k n}=3 \sum_{n=0}^{N-1}\left(-W_{N}^{k}\right)^{n}+\sum_{n=0}^{N-1}\left(W_{N}^{k}\right)^{n} .
$$

Assume $W_{N}^{k} \neq \pm 1$. Then:

$$
\begin{aligned}
Y_{b}[k] & =3 \frac{1-\left(-W_{N}^{k}\right)^{N}}{1-\left(-W_{N}^{k}\right)}+\frac{1-\left(W_{N}^{k}\right)^{N}}{1-\left(W_{N}^{k}\right)}=3 \frac{\left(1-\left(-W_{N}^{k}\right)^{N}\right)\left(1-W_{N}^{k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)}+\frac{\left(1-\left(W_{N}^{k}\right)^{N}\right)\left(1+W_{N}^{k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)} \\
& =3 \frac{\left(1-(-1)^{N} e^{j 2 \pi k}\right)\left(1-W_{N}^{k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)}+\frac{\left(1-e^{j 2 \pi k}\right)\left(1+W_{N}^{k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)} \\
& =\frac{\left(3-3 W_{N}^{k}-3(-1)^{N} e^{j 2 \pi k}+3(-1)^{N} e^{j 2 \pi k} W_{N}^{k}\right)+\left(1+W_{N}^{k}-e^{j 2 \pi k}-e^{j 2 \pi k} W_{N}^{k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)} \\
& =\frac{4-2 W_{N}^{k}-3(-1)^{N} e^{j 2 \pi k}+3(-1)^{N} e^{j 2 \pi k} W_{N}^{k}-e^{j 2 \pi k}-e^{j 2 \pi k} W_{N}^{k}}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)} \\
& =\frac{4-3(-1)^{N} e^{j 2 \pi k}-e^{j 2 \pi k}-W_{N}^{k}\left(2-3(-1)^{N} e^{j 2 \pi k}+e^{j 2 \pi k}\right)}{\left(1-W_{N}^{k}\right)\left(1+W_{N}^{k}\right)} .
\end{aligned}
$$

Assume $W_{N}^{k}=-1 \Leftrightarrow k=N / 2$ (where N is necessarily even). Then:
$Y_{b}[N / 2]=3 \sum_{n=0}^{N-1}(1)^{n}+\sum_{n=0}^{N-1}(-1)^{n}=2 N$.
Now, suppose $W_{N}^{k}=1 \Leftrightarrow k=0$. Then,
$Y_{b}[0]=3 \sum_{n=0}^{N-1}(-1)^{n}+\sum_{n=0}^{N-1}(1)^{n}=3 \frac{\left[1-(-1)^{N}\right]}{1-(-1)}+N=\frac{3}{2}\left[1-(-1)^{N}\right]+N=\left\{\begin{array}{cc}N, & \text { for } N \text { even }, \\ 3+N, & \text { for } N \text { odd } .\end{array}\right.$

