
ECE503 Homework Assignment Number 9

1. 3 points. Mitra 11.12. If we measure “operations” as real multiplications, what is the asymp-
totic complexity of the DFT? What if we measure “operations” as real additions?
Solution: From the definition of the DFT we see that the computation of X[k] requires N
complex multiplications and N − 1 complex additions for each k = 0, . . . , N − 1. Recall, for
two complex numbers x = a + jb and y = c + jd, the product xy = ac − bd + j(ad + bc).
Hence, there are four real multiplications and two real additions. The sum x+ y requires two
real additions. Hence, the N complex multiplications result in 4N real multiplications and
2N real additions. The N − 1 complex additions in the computation of X[k] result in 2N − 2
real additions. The totals for each k = 0, . . . , N − 1 are then

• 4N real multiplications

• 4N − 2 real additions

which means that the computation of the DFT requires 4N2 real multiplications and 4N2−2N
real additions. The asymptotic complexity is O(N2) irrespective of whether we use complex
multiplies, complex additions, real multiplies, or real additions as our measure of operations.

2. 4 points. Mitra 11.27.
Solution to part (a):

1

Solution to part (b):

3. 3 points. Mitra 11.32.
Solution to part (a): The number of zero-valued samples to be added is 256− 197 = 59.

Solution to part (b): The DFT will require N2 = 38809 complex multiplications and
N2 −N = 38612 complex additions, where N = 197 in this case.

Solution to part (c): The FFT will require N log2N = 2048 complex multiplications
and N log2N = 2048 complex additions, where N = 256 in this case. This 19× less than
direct DFT computation, even though the number of points used to compute the FFT is
greater than the number of points used to compute the FFT. Note: The Mitra textbook also
mentions a symmetry condition (p. 625 and Figure 11.23) that can be used to cut the number
of multiplications required in half. With this clever trick, the FFT will require N

2 log2N =

1024 complex multiplications, which is even better. But the asymptotic complexity remains
O(N log2N) even with this trick.

4. 7 points total. Suppose you have a causal IIR digital filter with transfer function

H(z) =
1 + 0.5z−1

1− 1.4z−1 + 0.98z−2

(a) 1 point. Use Matlab to plot the magnitude response of this filter. Is this filter stable?
Solution to part (a):

b = [1 0.5 0]

a = [1 -1.4 0.98]

freqz(b,a)

Since abs(roots(a)) = [0.9899,0.9899] and the filter is causal, the ROC extends
outward from |z| > 0.9899. Hence, the ROC contains the unit circle and the filter is
stable. The magnitude and phase responses of this filter are plotted below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency (×/ rad/sample)

Ph
as

e
(d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

Normalized Frequency (×/ rad/sample)

M
ag

ni
tu

de
 (d

B)

(b) 3 points. Now suppose the filter coefficients are quantized to 8-bit signed fixed-point
data-types with 4 fractional bits. Compute the quantized coefficients and write them in
base-10 and binary representations, showing the binary decimal point explicitly. Re-plot
the magnitude response of your filter with these quantized coefficients, comparing the
results with the unquantized filter. Is the quantized filter stable?
Solution to part (b):

% compute quantized filter coefficients with 4 fractional bits

% we don’t need to worry about overflow here since the 8-bit/4-frac signed

% fixed-point number is large enough to capture the numerator and denominator coeffs

bq = round(b*2^4)/2^4

aq = round(a*2^4)/2^4

[hq,wq] = freqz(bq,aq,4096);

[h,w] = freqz(b,a,4096);

plot(w/pi,20*log10(abs(h)),wq/pi,20*log10(abs(hq)))

grid on

xlabel(’Normalized Frequency (x\pi rad/sample)’);

ylabel(’Magnitude (dB)’);

legend(’unquantized’,’quantized (fixed-point)’);

The numerator is unchanged by the conversion to 8-bit signed fixed-point data-types
with 4 fractional bits. In binary, the first numerator coefficient is 0001∆0000 and the
second numerator coefficient is 0000∆1000. There is no quantization error.

The denominator is changed by the conversion to 8-bit signed fixed-point data-types
with 4 fractional bits. In decimal, the denominator coefficients become [1,−1.375, 1]. In
binary, the first denominator coefficient is 0001∆0000, the second numerator coefficient
is 1110∆1010, and the first denominator coefficient is 0001∆0000.

The magnitude response of the quantized filter is plotted below and compared to the
unquantized filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

50

60

70

80

Normalized Frequency (x/ rad/sample)

M
ag

ni
tu

de
 (d

B)

unquantized
quantized (fixed−point)

The quantized/fixed-point filter is not stable since the magnitude of the poles is one,
hence the ROC can’t contain the unit circle. We see this instability manifested as a very
high gain peak at normalized frequency ≈ 0.26π.

(c) 3 points. Given your filter coefficients must be quantized to 8-bit signed fixed-point data-
types, what is the optimum number of fractional bits to use here? Can you improve the

frequency response of your quantized-coefficient filter by using less/more fractional bits?
Solution to part (c): The largest magnitude filter coefficient we need to quantize is
the −1.375 coefficient, hence we only need one non-fractional bit (in addition to the sign
bit). Hence, we can have 6 fractional bits and avoid overflow. Here is my Matlab code:

% compute quantized filter coefficients with 6 fractional bits

% we don’t need to worry about overflow here since the 8-bit/6-frac

% signed fixed-point number is large enough to capture the numerator

% and denominator coeffs

bq = round(b*2^6)/2^6;

aq = round(a*2^6)/2^6;

[hq,wq] = freqz(bq,aq,4096);

[h,w] = freqz(b,a,4096);

plot(w/pi,20*log10(abs(h)),wq/pi,20*log10(abs(hq)))

grid on

xlabel(’Normalized Frequency (x\pi rad/sample)’);

ylabel(’Magnitude (dB)’);

legend(’unquantized’,’quantized (fixed-point)’);

In this case, the deniminator coefficients become aq = [1,−1.4062, 0.9844] (or

[01∆000000, 10∆100110, 00∆111111]

in binary) and the quantized filter is stable. The magnitude response of the quantized filter
with 6 fractional bits for all coefficients is plotted below and compared to the unquantized
filter. We see this fixed-point filter is giving a pretty good approximation of the unquantized
filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

50

Normalized Frequency (x/ rad/sample)

M
ag

ni
tu

de
 (d

B)

unquantized
quantized (fixed−point)

5. 4 points. Represent x[n] = n(−π)n in an 8-bit signed fixed-point data type with two fractional
bits for n = 0, . . . , 3 in both saturation overflow and wrapped overflow. Write your results
in base-10 and binary and show your binary decimal point explicitly. Also compute the
quantization error.
Solution: The unquantized values of x[n] can be computed as [0,−3.1416, 19.7392,−93.0188].
The following table provides the 8-bit signed fixed-point data type with two fractional bits
binary representations with saturation overflow and wrapped overflow. The largest positive
value we can represent with this datatype is 31.75 and the largest negative value we can
represent is -32. Hence overflow only occurs when n = 3.

Unquantized Quantized decimal Quantized binary (saturated) Quantized binary (wrapped)

0 0.00 000000∆00 000000∆00

-3.1416 -3.25 111100∆11 111100∆11

19.7392 19.75 010011∆11 010011∆11

-93.0188 -93.00 100000∆00 100011∆00

Note 100011∆00 is in -29 in decimal. This makes sense because -93 the wrapping effectively
adds/subtracts 64 to the value to make it fall between -32 and +31.75. Here, if we add 64 to
-93, we get -29. Saturation overflow is slightly better in this case because the saturated value
when n = 3 is -32.

6. 4 points. Mitra 11.49. This problem assumes wrapped overflow. Also compute the final result
assuming saturation overflow.
Solution:

If we were to do this with saturation overflow, then η1 + η2 = 0∆11111, which is the largest
positive number we can represent with this fixed-point data type. Then, adding η3, we
get (η1 + η2) + η3 = 0∆00101 = 9

32 6= 0.625, hence the result is clearly incorrect. Usually
saturation overflow is better, but this is one case where wrapped overflow is better than
saturation overflow.

