Solutions to Mitra 8.53 and 8.54

$$
\begin{aligned}
& 8.53 \text { (a) } H_{4}(z)=2+23 z^{-1}+73 z^{-2}+43 z^{-3}-15 z^{-4}, \\
& G_{4}(z)=-4-24 z^{-1}+85 z^{-2}+2 z^{-3}-3 z^{-4} . \\
& \delta_{4}=\frac{-15}{-3}=5, \gamma_{4}=\frac{-4}{2}=-2, K_{4}=\frac{1}{1+10}=\frac{1}{11} . \\
& H_{3}(z)=K_{4}\left(H_{4}(z)-\delta_{4} G_{4}(z)\right)=2+13 z^{-1}-32 z^{-2}+3 z^{-3}, \\
& G_{3}(z)=K_{4}\left(G_{4}(z)-\gamma_{4} H_{4}(z)\right)=2+21 z^{-1}+8 z^{-2}-3 z^{-3} . \\
& \delta_{3}=\frac{3}{-3}=-1, \gamma_{3}=\frac{2}{2}=1, K_{3}=\frac{1}{1+1}=0.5 . \\
& H_{2}(z)=K_{3}\left(H_{3}(z)-\delta_{3} G_{3}(z)\right)=2+17 z^{-1}-12 z^{-2}, \\
& G_{2}(z)=K_{3}\left(G_{3}(z)-\gamma_{3} H_{3}(z)\right)=4+20 z^{-1}-3 z^{-2} . \\
& \delta_{2}=\frac{-12}{-3}=4, \gamma_{2}=\frac{4}{2}=2, K_{2}=\frac{1}{1-8}=-\frac{1}{7} . \\
& H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=2+9 z^{-1}, G_{1}(z)=K_{2}\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=2-3 z^{-1} . \\
& \delta_{1}=\frac{9}{-3}=-3, \gamma_{1}=\frac{2}{2}=1, K_{1}=\frac{1}{1+3}=0.25 . \\
& \delta_{0}=H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=2, \gamma_{0}=G_{0}(z)=K_{1}\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=-3 .
\end{aligned}
$$

A realization of the transfer function pair $H_{4}(z)$ and $G_{4}(z)$ is shown below:

(b) $H_{4}(z)=3-17 z^{-1}-28 z^{-2}-37 z^{-3}+2 z^{-4}$, $G_{3}(z)=6-46 z^{-1}-111 z^{-2}-27 z^{-3}+2 z^{-4}$.
$\delta_{4}=\frac{2}{2}=1, \gamma_{4}=\frac{6}{3}=2, K_{4}=\frac{1}{1-2}=-1$.
$H_{3}(z)=K_{4}\left(H_{4}(z)-\delta_{4} G_{4}(z)\right)=3-29 z^{-1}-83 z^{-2}+10 z^{-3}$,
$G_{3}(z)=K_{4}\left(G_{4}(z)-\gamma_{4} H_{4}(z)\right)=12+55 z^{-1}-47 z^{-2}+2 z^{-3}$.
$\delta_{3}=\frac{10}{2}=5, \gamma_{3}=\frac{12}{3}=4, K_{3}=\frac{1}{1-20}=-\frac{1}{19}$.
$H_{2}(z)=K_{3}\left(H_{3}(z)-\delta_{3} G_{3}(z)\right)=3+16 z^{-1}-8 z^{-2}$,
$G_{2}(z)=K_{3}\left(G_{3}(z)-\gamma_{3} H_{3}(z)\right)=-9-15 z^{-1}+2 z^{-2}$.
$\delta_{2}=\frac{-8}{2}=-4, \gamma_{2}=\frac{-9}{3}=-3, K_{2}=\frac{1}{1-12}=-\frac{1}{11}$.
$H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=3+4 z^{-1}, G_{1}(z)=K_{2}\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=-3+2 z^{-1}$.
$\delta_{1}=\frac{4}{2}=2, \gamma_{1}=\frac{-3}{3}=-1, K_{1}=\frac{1}{1+2}=\frac{1}{3}$.
$\delta_{0}=H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=3, \gamma_{0}=G_{0}(z)=K_{1}\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=2$.
A realization of the transfer function pair $H_{4}(z)$ and $G_{4}(z)$ is shown below:

8.54 (a) $H_{3}(z)=1+z^{-1}+z^{-2}+z^{-3}, \quad G_{3}(z)=1+2 z^{-1}+3 z^{-2}$.

Since $b_{3}^{(3)}=0, \delta_{3} \rightarrow \infty$ and it is thus a Case 1 situation. We re-label the transfer function pair as $H_{3}^{\prime}(z)=1+2 z^{-1}+3 z^{-2}, \quad G_{3}^{\prime}(z)=1+z^{-1}+z^{-2}+z^{-3}$.
We now follow the realization method.
$\delta_{3}=\frac{0}{1}=0, \gamma_{3}=\frac{1}{1}=1, K_{3}=\frac{1}{1-0}=1$.
$H_{2}(z)=K_{3}\left(H_{3}(z)-\delta_{3} G_{3}(z)\right)=K_{3} H_{3}(z)=1+2 z^{-1}+3 z^{-2}$,
$G_{2}(z)=K_{3}\left(G_{3}(z)-\gamma_{3} H_{3}(z)\right)=-1-2 z^{-1}+z^{-2}$.
$\delta_{2}=\frac{3}{1}=3, \gamma_{2}=\frac{-1}{1}=-1, K_{2}=\frac{1}{1+3}=\frac{1}{4}$.

$$
\begin{aligned}
& H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=1+2 z^{-1}, G_{1}(z)=K_{2}\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=z^{-1} . \\
& \delta_{1}=\frac{2}{1}=2, \gamma_{1}=\frac{0}{1}=0, K_{1}=\frac{1}{1}=1 . \\
& \delta_{0}=H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=1, \quad \gamma_{0}=G_{0}(z)=K_{1}\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=1 .
\end{aligned}
$$

A realization of the transfer function pair $H_{3}(z)$ and $G_{3}(z)$ is shown below:

(b) $H_{3}(z)=2 z^{-1}+3 z^{-2}+4 z^{-3}, \quad G_{3}(z)=1+z^{-1}+z^{-2}+z^{-3}$.

Since $a_{3}^{(3)}=0, \gamma_{3} \rightarrow \infty$ and it is thus a Case 2 situation. We re-label the transfer
function pair as $H_{3}^{\prime}(z)=1+z^{-1}+z^{-2}+z^{-3}, G_{3}^{\prime}(z)=2 z^{-1}+3 z^{-2}+4 z^{-3}$.
We now follow the realization method.
$\delta_{3}=\frac{1}{4}, \gamma_{3}=\frac{0}{1}=0, K_{3}=\frac{1}{1-0}=1$.
$H_{2}(z)=K_{3}\left(H_{3}(z)-\delta_{3} G_{3}(z)\right)=K_{3} H_{3}(z)=1+\frac{1}{2} z^{-1}+\frac{1}{4} z^{-2}$,
$G_{2}(z)=K_{3}\left(G_{3}(z)-\gamma_{3} H_{3}(z)\right)=2+3 z^{-1}+4 z^{-2}$.
$\delta_{2}=\frac{1 / 4}{4}=\frac{1}{16}, \gamma_{2}=\frac{2}{1}=2, K_{2}=\frac{1}{1-\frac{1}{8}}=\frac{8}{7}$.
$H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=1+\frac{5}{14} z^{-1}$,
$G_{1}(z)=K_{2}\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=\frac{16}{7}+4 z^{-1}$.
$\delta_{1}=\frac{5 / 14}{4}=\frac{5}{56}, \gamma_{1}=\frac{16 / 7}{1}=\frac{16}{7}, K_{1}=\frac{1}{1-\frac{5}{56} \cdot \frac{16}{7}}=\frac{49}{39}$.
$\delta_{0}=H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=1, \quad \gamma_{0}=G_{0}(z)=K_{1}\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=4$.
A realization of the transfer function pair $H_{3}(z)$ and $G_{3}(z)$ is shown below:

8.54 (c) $H_{3}(z)=z^{-1}+z^{-2}+z^{-3}, G_{3}(z)=1+2 z^{-1}+3 z^{-2}$. Here $a_{0}^{(3)}=0$ and $b_{3}^{(3)}=0$.

Hence, it is Case 3. We rewrite the above transfer functions as
$H_{3}(z)=z^{-1} H_{2}(z), G_{3}(z)=G_{2}(z)$, where
$H_{2}(z)=1+z^{-1}+z^{-2}, \quad G_{2}(z)=1+2 z^{-1}+3 z^{-2}$, and proceed with the realization.
$\delta_{2}=\frac{1}{3}, \gamma_{2}=\frac{1}{1}=1, K_{2}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}$.
$H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=1+\frac{1}{2} z^{-1}$ and
$G_{1}(z)=K_{2} z\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=\frac{3}{2}+3 z^{-1}$.
$\delta_{1}=\frac{1}{6}, \gamma_{1}=\frac{3}{2}, K_{1}=\frac{1}{1-\frac{1}{6} \cdot \frac{3}{2}}=\frac{4}{3}$.
$H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=\delta_{0}=1, G_{0}(z)=K_{1} z\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=\gamma_{0}=3$.
The realization of the above transfer function pair is shown below:

(d) $H_{3}(z)=1+z^{-1}+z^{-2}+z^{-3}, G_{3}(z)=4+2 z^{-1}+3 z^{-2}+4 z^{-3}$. Here $a_{3}^{(3)} b_{0}^{(3)}=b_{3}^{(3)} a_{0}^{(3)}$. Hence, it is Case 4. We rewrite the above transfer functions as $H_{3}^{\prime}(z)=H_{3}(z)+1=2+z^{-1}+z^{-2}+z^{-3}, G_{3}(z)=4+2 z^{-1}+3 z^{-2}+4 z^{-3}$, and proceed with the realization.
$\delta_{3}=\frac{1}{4}, \gamma_{3}=\frac{4}{2}=2, K_{3}=\frac{1}{1-\frac{1}{2}}=2$.
$H_{2}(z)=K_{3}\left(H_{3}^{\prime}(z)-\delta_{3} G_{3}(z)\right)=2+z^{-1}+\frac{1}{2} z^{-2}$,
$G_{2}(z)=K_{3}\left(G_{3}(z)-\gamma_{3} H_{3}^{\prime}(z)\right)=2 z^{-1}+4 z^{-2}$.
$\delta_{2}=\frac{1 / 2}{2}=\frac{1}{4}, \gamma_{2}=0, K_{2}=1$.
$H_{1}(z)=K_{2}\left(H_{2}(z)-\delta_{2} G_{2}(z)\right)=2+\frac{3}{4} z^{-1}$,
$G_{1}(z)=K_{2}\left(G_{2}(z)-\gamma_{2} H_{2}(z)\right)=2+4 z^{-1}$.
$\delta_{1}=\frac{3}{16}, \gamma_{1}=1, K_{1}=\frac{1}{1-\frac{3}{16}}=\frac{16}{13}$.

$$
H_{0}(z)=K_{1}\left(H_{1}(z)-\delta_{1} G_{1}(z)\right)=\delta_{0}=2, G_{0}(z)=K_{1} z\left(G_{1}(z)-\gamma_{1} H_{1}(z)\right)=\gamma_{0}=4
$$

The realization of the above transfer function pair is shown below:

