Digital Signal Processing
Frequency Transformations of CT Lowpass Filters

D. Richard Brown III
General Filter Design Procedure

The bilinear transform **lowpass filter** design procedure is straightforward:

1. **discrete-time filter specifications**
 - Prewarp DT frequency specifications to CT
 - Design CT lowpass filter
 - Bilinear transform

If you want a different type of filter, e.g. bandpass, there are two options:

1. **discrete-time filter specifications**
 - Prewarp DT frequency specifications to CT
 - Convert CT prototype lowpass filter to desired filter type via spectral transformation
 - Convert DT prototype lowpass filter to desired filter type via spectral transformation

H(z)
Frequency Transformation in the Analog Domain

Suppose you have a “prototype” continuous time lowpass filter denoted as $H_P(s)$ with passband and stopband frequencies Ω_p and Ω_s, respectively. This filter can be transformed to another type of filter $H_T(s)$ by substituting $s \rightarrow F(s)$.

<table>
<thead>
<tr>
<th>type</th>
<th>TF substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>lowpass→lowpass</td>
<td>$s \rightarrow \frac{\Omega_p}{\hat{\Omega}_p} s$</td>
</tr>
<tr>
<td>lowpass→highpass</td>
<td>$s \rightarrow \frac{\Omega_p \hat{\Omega}_p}{s}$</td>
</tr>
<tr>
<td>lowpass→bandpass</td>
<td>$s \rightarrow \Omega_p \frac{s^2 + \Omega_0^2}{s(\hat{\Omega}{p2} - \hat{\Omega}{p1})}$</td>
</tr>
<tr>
<td>lowpass→bandstop</td>
<td>$s \rightarrow \Omega_s \frac{s(\hat{\Omega}{s2} - \hat{\Omega}{s1})}{s^2 + \hat{\Omega}_0^2}$</td>
</tr>
</tbody>
</table>

Note that $\hat{\Omega}_0 = \sqrt{\hat{\Omega}_{p1} \hat{\Omega}_{p2}} = \sqrt{\hat{\Omega}_{s1} \hat{\Omega}_{s2}}$ is the geometric center frequency of the passband/stopband for bandpass and bandstop filters.
Lowpass to Lowpass Transformation Example

The simplest case is a lowpass to lowpass transformation. This transformation just proportionally changes all of the relevant frequencies of the prototype LPF.

As an example, suppose our prototype LPF is a first-order Butterworth LPF with

\[H_P(s) = \frac{1}{1 + \frac{s}{\Omega_c}} = \frac{\Omega_c}{\Omega_c + s} \]

If we perform the substitution \(s \rightarrow \frac{\Omega_p}{\hat{\Omega}_p} s \), we get

\[H_T(s) = \frac{\Omega_c}{\Omega_c + \frac{\Omega_p}{\hat{\Omega}_p} s} = \frac{\hat{\Omega}_p \Omega_c}{\hat{\Omega}_p \Omega_c + s} = \hat{\Omega}_c + s \]

Observe that the cutoff frequency has been scaled so that \(\Omega_c \rightarrow \frac{\hat{\Omega}_p}{\hat{\Omega}_p} \Omega_c = \hat{\Omega}_c \).

This correspondingly scales the passband frequency \(\Omega_p \rightarrow \frac{\hat{\Omega}_p}{\hat{\Omega}_p} \Omega_p = \hat{\Omega}_p \) and stopband frequency \(\Omega_s \rightarrow \frac{\hat{\Omega}_p}{\hat{\Omega}_p} \Omega_s = \hat{\Omega}_s \).
Lowpass to Lowpass Transformation Example: \(\hat{\Omega}_p = 2 \)

![Graph showing magnitude response in dB vs frequency Ω for prototype and transformed LPFs.](image-url)
Lowpass to Highpass Transformation

For lowpass to highpass transformations, we use

\[s \rightarrow \frac{\Omega_p \hat{\Omega}_p}{s} \]

Substituting \(s = j\Omega \) on the lefthand side and \(s = j\hat{\Omega} \) on the righthand side, we can relate the frequencies of the prototype and transformed systems as

\[\Omega = -\frac{\Omega_p \hat{\Omega}_p}{\hat{\Omega}} \]

Given \(\Omega_p \) and \(\Omega_s \) of the prototype filter, we can pick our desired value of \(\hat{\Omega}_p \) for our transformed highpass filter and then compute the stopband frequency edge

\[\hat{\Omega}_s = -\frac{\Omega_p \hat{\Omega}_p}{\Omega_s} \]

We assume a symmetric magnitude response, so the minus signs can be ignored.
First order LPF\(\rightarrow\)HPF Example: \(\Omega_p = 5, \hat{\Omega}_p = 80\)
Lowpass to Bandpass Transformation

For lowpass to bandpass transformations, we use

\[s \rightarrow \Omega_p \frac{s^2 + \hat{\Omega}_0^2}{s (\hat{\Omega}_{p2} - \hat{\Omega}_{p1})} \]

where \(\hat{\Omega}_0 = \sqrt{\hat{\Omega}_{p1}\hat{\Omega}_{p2}} = \sqrt{\hat{\Omega}_{s1}\hat{\Omega}_{s2}} \) is the geometric center frequency of the passband/stopband. We can relate the frequencies of the prototype and transformed systems as

\[\Omega = -\Omega_p \frac{\hat{\Omega}_0^2 - \hat{\Omega}_2}{\hat{\Omega} (\hat{\Omega}_{p2} - \hat{\Omega}_{p1})} \]

Given \(\Omega_p \) and \(\Omega_s \) of the prototype filter, we can pick \(\hat{\Omega}_{p1} \) and \(\hat{\Omega}_{p2} \) for our transformed bandpass filter and then compute the stopband frequencies

\[\hat{\Omega}_{s1,2} = \frac{\Omega_s B}{\Omega_p} \pm \sqrt{\left(\frac{\Omega_s B}{\Omega_p}\right)^2 + 4\hat{\Omega}_0^2} \]

where \(B = \hat{\Omega}_{p2} - \hat{\Omega}_{p1} \).
First order LPF \rightarrow HPF Ex.: $\Omega_p = 5, \hat{\Omega}_{p1} = 40, \hat{\Omega}_{p2} = 60$
Reverse Mappings for Bandpass and Bandstop Filters

The reverse mapping of band edges for BPF and BSF to a prototype LPF, i.e., \(\{\hat{\Omega}_p, \Omega_s\} \rightarrow \{\Omega_p, \Omega_s\} \), requires some special care. We need the geometric center frequency of the passband to be identical to the geometric center frequency of the stop band edged, i.e., we need \(\hat{\Omega}_p \hat{\Omega}_s = \hat{\Omega}_s \hat{\Omega}_p \).

For a bandpass filter, if \(\hat{\Omega}_p \hat{\Omega}_s > \hat{\Omega}_s \hat{\Omega}_s \) we can get the desired equality by:

- Increasing \(\hat{\Omega}_s \) shortening the left transition band (ok).
- Decreasing \(\hat{\Omega}_p \) shortening the left transition band (ok).
- Increasing \(\hat{\Omega}_s \) lengthening the right transition band (not ok).
- Decreasing \(\hat{\Omega}_s \) lengthening the right transition band (not ok).

You can make similar statements for the case when \(\hat{\Omega}_p \hat{\Omega}_s < \hat{\Omega}_s \hat{\Omega}_s \) and for the same cases for the BSF. The key is that the new filter specs must be more stringent than the old filter specs.