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DSP: Inferring Poles and Zeros from the Magnitude Response

Different Systems with the Same Magnitude Response

H1(z) = 6 + z−1 − z−2 H2(z) = 1− z−1 − 6z−2

H3(z) = 2− 5z−1 − 3z−2 H4(z) = 3 + 5z−1 − 2z−2

All four of these causal stable systems have the same magnitude response
but they have different phase responses.
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Assumptions and Problem Setup

1. The system is described by a rational transfer function with real
coefficients

H(z) =
b0 + b1z

−1 + · · ·+ bMz−M

a0 + a1z−1 + · · ·+ aNz−N
.

2. The system is causal and stable (hence, all poles are inside the unit
circle).

We are given only the magnitude response |H(ejω)|2 and would like to
determine the poles and zeros of H(z).
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Spectral Factorization

Let
P (ejω) = |H(ejω)|2

Note that since P (ejω) is a power spectrum, it is the DTFT of an
autocorrelation function. Hence, it has an inverse DTFT p[n] of the form

p[n] = h[n] ∗ h[−n] = h[n] ∗ h∗[−n]

where the second equality results from the fact that h[n] is assumed to be
real. Hence, we can write

P (z) = H(z)H∗(1/z∗)

with

H(z) =

(

b0
a0

)

(1− c1z
−1) · · · (1− cMz−1)

(1− d1z−1) · · · (1− dNz−1)

and

H∗(1/z∗) =

(

b0
a0

)

(1− c∗
1
z) · · · (1− c∗Mz)

(1− d∗
1
z) · · · (1− d∗Nz)
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Determining the Poles of H(z) from P (z)

Recall we know P (z) but not H(z) or H∗(1/z∗).

We can write

P (z) =

(

b0
a0

)2 (1− c1z
−1) · · · (1− cMz−1)

(1− d1z−1) · · · (1− dNz−1)

(1− c∗
1
z) · · · (1− c∗Mz)

(1− d∗
1
z) · · · (1− d∗Nz)

Hence we see that the zeros of P (z) are at {c1, 1/c
∗
1
, . . . , cM , 1/c∗M} and

the poles of P (z) are at {d1, 1/d
∗
1
, . . . , dN , 1/d∗N} (plus possibly some

poles or zeros at zero or infinity).

Since, for any complex or real number α, |α| = 1

|1/α∗| and ∠α = ∠1/α∗,
we see that the poles and zeros are mirrored across the unit circle.

Under our assumption that H(z) is stable and causal, we know |dn| 6= 1
for all n = 1, . . . , N , and the poles of H(z) are the N poles of P (z) inside
the unit circle. Hence, the poles of H(z) are uniquely determined.
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Nonuniqueness of the Zeros of H(z) from P (z)

Suppose, for example,

P (z) =
(1− 1

2
z−1)(1− 1

2
z)

(1− 2

3
z−1)(1− 2

3
z)

=
(1− 1

2
z−1)(1 − 2z−1)

(1− 2

3
z−1)(1− 3

2
z−1)

with c1 =
1

2
and d1 = 2/3. While the pole is uniquely determined by

stability and causality, we can choose either zero without affecting the
magnitude response. In fact

H1(z) =
1− 1

2
z−1

1− 2

3
z−1

and

H2(z) =
1− 2z−1

1− 2

3
z−1

with ROC |z| > 2

3
are both stable causal systems with the same magnitude

response. These systems do not have the same phase response, however.
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z-Plane Example
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