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Introduction

◮ General (static or dynamic) Bayesian MMSE estimation problem:
Determine unknown state/parameter X[ℓ] from observations
Y [a], Y [a + 1] . . . , Y [b] for some b ≥ a.

◮ Prediction: ℓ > b.
◮ Estimation: ℓ = b.
◮ Smoothing: ℓ < b.

◮ General solution is just the conditional mean:

X̂mmse[ℓ] = E {X[ℓ] |Y [a], . . . , Y [b]}

◮ This problem is difficult to compute in general. Two approaches to
getting useful results:

◮ Restrict the model, e.g. linear and white Gaussian. This led to a
closed-form batch solution and the discrete-time Kalman-Bucy filter.

◮ Restrict the class of estimators, e.g. unbiased or linear estimators.

◮ Linear estimators are particularly interesting since they are
computationally convenient and require only partial statistics.
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Jointly Gaussian MMSE Estimation

Suppose that X[ℓ], Y [a], . . . , Y [b] are jointly Gaussian random vectors. We
know that

X̂mmse[ℓ] = E {X [ℓ] |Y [a], . . . , Y [b]}

= E
{
X [ℓ] |Y b

a

}

= E{X [ℓ]}+ cov{X [ℓ], Y b

a }
[
cov{Y b

a , Y b

a }
]−1 (

Y b

a − E{Y b

a }
)

= H⊤[a, b, ℓ]Y b

a + c[a, b, ℓ]

where H[a, b, ℓ] is a matrix with dimensions (b − a + 1)k × m and c[a, b, ℓ]
is a vector of dimension m × 1.

Note that the MMSE estimate in this case is simply a linear (affine)
combination of the “super-vector” of observations Y b

a plus some constant.

When X[ℓ], Y [a], . . . , Y [b] are jointly Gaussian random vectors, the MMSE
estimator is a linear estimator. In this particular case, the restriction to
linear estimators results in no loss of optimality.
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Basics of Linear Estimators

A linear estimator for the state/parameter X[ℓ] given the observations
Y [a], Y [a + 1] . . . , Y [b] for some b ≥ a is simply a collection of linear
weights applied to the observations with possibly a constant offset not
depending on the observations. When b − a is finite, we can write

X̂[ℓ] = H⊤[a, b, ℓ]Y b
a + c[a, b, ℓ] ∈ R

m

Remarks:

◮ This expression is for general vector-valued parameters/states.

◮ Note that the kth element of the estimate is affected only by the kth
row of H⊤[a, b, ℓ] and the kth element of c[a, b, ℓ]:

X̂k[ℓ] = h⊤
k [a, b, l]Y b

a + ck[a, b, ℓ] ∈ R

◮ Since we can pick the coefficients in each row of H⊤[a, b, ℓ] and
c[a, b, ℓ] without affecting the other estimates, we can focus here
without any loss of generality on the case when X̂ [ℓ] is a scalar.
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Linear MMSE Estimation

For notational convenience, we will write the scalar linear estimator for the
parameter/state Xk[ℓ] from now on as

X̂ [ℓ] = h⊤Y b
a + c (1)

where c is a scalar and h is a vector with (b − a + 1)k < ∞ elements.

Let H denote the set of all linear estimators for (1). The linear MMSE
(LMMSE) estimator is pretty easy to compute from (1):

X̂lmmse[ℓ] = arg min
{h,c}∈H

E

{(

X̂[ℓ] − X[ℓ]
)2
}

= arg min
{h,c}∈H

E

{(

h⊤Y b
a + c − X[ℓ]

)2
}

= arg min
{h,c}∈H

E
{

(h⊤Y b
a + c)2 − 2(h⊤Y b

a + c)X[ℓ] + X2[ℓ]
}

= arg min
{h,c}∈H

E
{

(h⊤Y b
a + c)2

}

− 2E
{

(h⊤Y b
a + c)X[ℓ]

}
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Linear MMSE Estimation (continued)

Picking up where we left off...

X̂lmmse[ℓ] = arg min
{h,c}∈H

E
{

(h⊤Y b
a + c)2

}

− 2E
{

(h⊤Y b
a + c)X[ℓ]

}

= arg min
{h,c}∈H

h⊤E
{

Y b
a (Y b

a )⊤
}

h + 2ch⊤E
{

Y b
a

}

+ c2

−2
[

h⊤E
{

Y b
a X[ℓ]

}

+ cE {X[ℓ]}
]

What should we do now? Let’s take the gradient with respect to [h, c]⊤

and set it equal to zero...

[
2E
{
Y b

a (Y b
a )⊤

}
h + 2cE

{
Y b

a

}
− 2E

{
Y b

a X[ℓ]
}

2E
{
(Y b

a )⊤
}

h + 2c − 2E {X[ℓ]}

]

=

[
0
0

]

The second equation implies that c = E{X[ℓ]} − E
{
(Y b

a )⊤
}

h. Plug this
into first equation and solve for h...
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Linear MMSE Estimation (continued)

First equation:

2E
{

Y b
a (Y b

a )⊤
}

h + 2cE
{

Y b
a

}

− 2E
{

Y b
a X[ℓ]

}

= 0

Plug in c = E{X[ℓ]} − E
{
(Y b

a )⊤
}

h...

E
{
Y b

a
(Y b

a
)⊤
}

h + E
{
Y b

a

}
E {X [ℓ]} − E

{
Y b

a

}
E
{
(Y b

a
)⊤
}

h − E
{
Y b

a
X [ℓ]

}
= 0

Collecting terms and recognizing that

cov(Y, Y ) = E{Y Y ⊤} − E{Y }E{Y ⊤}

cov(Y,X) = E{Y X} − E{Y }E{X} (when X is a scalar)

we can write

hlmmse =
[

cov(Y b
a , Y b

a )
]−1

cov(Y b
a ,X[ℓ])

Sanity check: What are the dimensions of hlmmse?
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Linear MMSE Estimation (continued)

Putting it all together, we have

X̂lmmse[ℓ] = h⊤

lmmseY
b

a
+ c

= h⊤

lmmseY
b

a + E{X [ℓ]} − h⊤

lmmseE
{
Y b

a

}

= E{X [ℓ]}+ h⊤

lmmse

(
Y b

a − E
{
Y b

a

})

= E{X [ℓ]}+ cov(X [ℓ], Y b

a )
[
cov(Y b

a , Y b

a )
]−1 (

Y b

a − E
{
Y b

a

})

This should look familiar.

◮ It should be clear that X̂lmmse[ℓ] = X̂mmse[ℓ] when X [ℓ], Y [a], . . . , Y [b] are
jointly Gaussian.

◮ Computation of X̂lmmse[ℓ] only requies knowledge of the observation/state
means and covariances (second order statistics). This is much more
appealing than requiring full knowledge of the joint distributions.

◮ Since the role of c is only to compensate for any non-zero mean of X̂lmmse[ℓ]
and any non-zero mean of Y b

a , we can assume without loss of generality that
E{X [ℓ]} ≡ 0 and E{Y b

a } ≡ 0 (and hence c = 0) from now on.
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Extension to Vector LMMSE State Estimator

Our result for the scalar LMMSE state estimator (X[ℓ] ∈ R) :

hlmmse =
[

cov(Y b
a , Y b

a )
]−1

cov(Y b
a ,X[ℓ])

︸ ︷︷ ︸

vector

The vector LMMSE state estimator (X[ℓ] ∈ R
m) can be written as

Hlmmse :=
[
h0

lmmse, . . . h
m−1
lmmse

]

and we can write

Hlmmse =
[

cov(Y b
a , Y b

a )
]−1 [

cov(Y b
a ,X0[ℓ]), . . . , cov(Y b

a ,Xm−1[ℓ])
]

=
[

cov(Y b
a , Y b

a )
]−1

cov(Y b
a ,X[ℓ])

︸ ︷︷ ︸

matrix

where X[ℓ] = [X0[ℓ], . . . ,Xm−1[ℓ]]
⊤.
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Remarks

◮ Note that the only assumptions/restrictions that we have made so far
in the development of the LMMSE estimator are

1. We only consider linear (affine) estimators.
2. We only consider the MSE cost assignment.
3. The number of observations b − a + 1 is finite.
4. The matrix cov(Y b

a
, Y b

a
) is invertible.

◮ Other than some mild regularity conditions (finite expectations for the
observations and the state), we have made no assumptions about the
statistical nature of the observations or the unknown state/parameter.

◮ Hence, this result is quite general.

◮ Practicality of direct implementation is limited somewhat by the
requirement to compute a matrix inverse. The Kalman filter (and its
extensions) alleviates this problem in some cases.

◮ What can we say about the case when cov(Y b
a , Y b

a ) is not invertible?
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Covariance Matrix and MSE of Linear Estimation

In the general vector parameter case, let

CXX := cov(X[ℓ],X[ℓ])

CXY := cov(X[ℓ], Y b
a ) = C⊤

Y X

CY Y := cov(Y b
a , Y b

a )

We can write the covariance matrix of the LMMSE estimator as

Clmmse := E
{

(X[ℓ] − X̂ [ℓ])(X[ℓ] − X̂[ℓ])⊤
}

= E
{[

X[ℓ] − E{X[ℓ]} − CXY C−1
Y Y

(

Y b
a − E

{

Y b
a

})] [
same

]⊤
}

= CXX − 2CXY C−1
Y Y CY X + CXY C−1

Y Y CY Y C−1
Y Y CY X

= CXX − CXY C−1
Y Y CY X

The variance of each individual parameter estimate is on the diagonal of
this covariance matrix. What can we say about the overall MSE?
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Two-Coefficient Scalar LMMSE Estimation

Consider a two-coefficient time-invariant linear estimator h = [h0, h1]
⊤ for

the scalar state X[ℓ] based on the scalar observations Y [ℓ − 1] and Y [ℓ].
Also assume that X[ℓ] and Y [ℓ] are wide-sense stationary (and
cross-stationary) and that E{X[ℓ]} = E{Y [ℓ]} = 0 such that c = 0.

The MSE of the linear estimator h can be written as

MSE := E
{

(X̂ [ℓ] − X[ℓ])2
}

= h⊤E
{

Y b
a (Y b

a )⊤
}

h − 2h⊤E
{

Y b
a X[ℓ]

}

+ E
{
X2[ℓ]

}

= h⊤CY Y h − 2h⊤CY X + σ2
X

An LMMSE estimator must satisfy CY Y hlmmse = CY X . When CY Y is
invertible, the unique LMMSE estimator is simply

hlmmse = C−1
Y Y CY X .

Since we only have two coefficients in our linear estimator, we can plot the
MSE as a function of these coefficients to get some intuition...
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Unique LMMSE Solution (CY Y is invertible)

h0

h1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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Non-Unique LMMSE Solution (CY Y is not invertible)

h0

h1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Hint: Use Matlab’s pinv function to find the minimum norm solution.
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Infinite Number of Observations

The case we have yet to consider is when b− a is not finite. For notational
simplicity, we will focus here on scalar states X[ℓ] ∈ R and scalar
observations Y [ℓ] ∈ R. The main ideas developed here can be extended to
the vector cases without too much difficulty.

In the cases when a = −∞, or b = ∞, or both a = −∞ and b = ∞, we
can no longer use our matrix-vector notation. Instead, a linear estimator
for X[ℓ] must be written as the sum

X̂[ℓ] =

b∑

k=a

h[ℓ, k]Y [k] + c[ℓ] ∈ R

In particular, we are going to have be careful about the exchange of
expectations and summations since the summations are no longer finite.
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Exchange of Summation and Expectation

Theorem (Poor V.C.1)

Given E{Y 2[k]} < ∞ for all k, h[ℓ, k] ∈ R for all ℓ, k, and

X̂[ℓ] =

b∑

k=a

h[ℓ, k]Y [k] + c[ℓ]

for b ≥ a, then E{(X̂[ℓ])2} < ∞. Moreover, if Z is any random variable

satisfying E{Z2} < ∞ then

E{ZX̂[ℓ]} =
b∑

k=a

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z}.

This theorem is obviously true when a and b are finite. The second result is a

little bit tricky (but important) to show for the cases when a = −∞, or b = ∞,

or both a = −∞ and b = ∞.
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Convergence In Mean Square for Infinite Sums

Although not explicit in the theorem, the proof for case when we have an
infinite number of observations is going to require that the infinite sums of
random variables in the estimates converge in mean square to their limit.
Specifically, when a = −∞, and b is finite, the estimate is given as

X̂ [ℓ] =
b∑

k=−∞

h[ℓ, k]Y [k] + c[ℓ] ∈ R.

We require the infinite sum to converge in mean square to its limit, i.e.

lim
m→−∞

E







(
b∑

k=m

h[ℓ, k]Y [k] + c[ℓ] − X̂ [ℓ]

)2





= 0.

We also require the same sort of mean square convergence for the case
when a is finite and b = ∞ as well as the case when a = −∞ and b = ∞.
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Exchange of Summation and Expectation

We focus here on the case when a = −∞ and b is finite since the other cases can be
shown similarly.

Proof of the first consequence.

To show the first consequence, we can write for a value of −∞ < m ≤ b

X̂[ℓ] =
b
X

k=m

h[ℓ, k]Y [k] + c[ℓ] +

 

X̂[ℓ] −
b
X

k=m

h[ℓ, k]Y [k] − c[ℓ]

!

and since (x + y)2 ≤ 4x2 + 4y2, we can write

E
n

(X̂[ℓ])2
o

≤ 4E

8

<

:

 

b
X

k=m

h[ℓ, k]Y [k] + c[ℓ]

!2
9

=

;

+ 4E

8

<

:

 

X̂[ℓ] −
b
X

k=m

h[ℓ, k]Y [k] − c[ℓ]

!2
9

=

;

The first term is a finite sum with finite coefficients and hence must be finite under our
assumption that E{Y 2[ℓ]} < ∞. Under our mean-squared convergence requirement, the
second term goes to zero as m → −∞. Hence, there must be a finite value of m that

makes this term finite. Hence E
n

(X̂[ℓ])2
o

< ∞.
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Proof of the second consequence.

To show the second consequence, we can write for a value of −∞ < m ≤ b

E{ZX̂ [ℓ]}−

b
X

k=m

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z} = E

(

Z

 

X̂[ℓ]−

b
X

k=m

h[ℓ, k]Y [k] − c[ℓ]

!)

where the exchange of expectation and summation is valid since the summation is finite.
The Schwarz inequality implies that the squared value of the RHS is upper bounded by

˛

˛

˛

˛

˛

E

(

Z

 

X̂[ℓ]−

b
X

k=m

h[ℓ, k]Y [k]−c[ℓ]

!)˛

˛

˛

˛

˛

2

≤ E
˘

Z2
¯

E

8

<

:

 

X̂ [ℓ]−

b
X

k=m

h[ℓ, k]Y [k]−c[ℓ]

!2
9

=

;

A condition of the theorem is that E{Z2} < ∞. Under our mean-squared convergence
requirement, the second term on the RHS goes to zero as m → −∞. Hence the whole
RHS goes to zero and we can conclude that limm→−∞ LHS = 0, or that

E{ZX̂ [ℓ]} =

b
X

k=−∞

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z}.
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Remarks

◮ The critical consequence of the theorem is that it allows us to
exchange the order of expectation and summation, even when the
summations are infinite:

E{ZX̂[ℓ]} =

b∑

k=−∞

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z}

E{ZX̂[ℓ]} =

∞∑

k=a

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z}

E{ZX̂[ℓ]} =

∞∑

k=−∞

h[ℓ, k]E{ZY [k]} + c[ℓ]E{Z}

◮ The regularity conditions for this to hold are pretty mild:
◮ E{Z2} < ∞ and E{Y [k]2} < ∞ for all k.
◮ The estimator X̂[ℓ] must converge in a mean square sense to its limit.

Worcester Polytechnic Institute D. Richard Brown III 16-Apr-2009 20 / 51



ECE531 Lecture 12: Linear Estimation and Causal W-K Filtering

The Principle of Orthogonality

Theorem

A linear estimator of the scalar state X[ℓ] is an LMMSE estimator if and

only if

E
{(

X̂[ℓ] − X[ℓ]
)

Z
}

= 0

for all Z that are affine functions of the observations Y [a], . . . , Y [b].

Remarks:

◮ This is a special case of the “projection theorem” in analysis.

◮ The theorem says that X̂ [ℓ] is an LMMSE estimator (a special affine
function of the observations Y [a], . . . , Y [b]) if and only if the
estimation error X̂[ℓ] − X[ℓ] is orthogonal (in a statistical sense) to
every affine function of those observations.

◮ Note that the condition is both necessary and sufficient.
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The Principle of Orthogonality: Geometric Intuition

space of a�ne combinations of observations

X[ℓ] − X̂[ℓ]

X̂[ℓ]

X[ℓ]
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The Principle of Orthogonality

Proof part 1.

We will show that if X̂[ℓ] satisfies the orthogonality condition, it must be an LMMSE
estimator. Suppose we have another linear estimator X̃[ℓ]. We can write its MSE as

E



“

X̃ [ℓ] − X[ℓ]
”2
ff

= E



“

X̃[ℓ] − X̂ [ℓ] + X̂[ℓ] − X[ℓ]
”2
ff

= E



“

X̃[ℓ] − X̂ [ℓ]
”2
ff

+ 2E
n“

X̃[ℓ] − X̂[ℓ]
”“

X̂ [ℓ] − X[ℓ]
”o

+E



“

X̂[ℓ] − X[ℓ]
”2
ff

Let Z = X̃[ℓ] − X̂[ℓ] and note that Z is an affine function of the observations. Since

X̂[ℓ] satisfies the orthogonality condition, the 2nd term on the RHS is equal to zero and

E



“

X̃[ℓ] − X[ℓ]
”2
ff

= E



“

X̃[ℓ] − X̂[ℓ]
”2
ff

+ E



“

X̂[ℓ] − X[ℓ]
”2
ff

≥ E



“

X̂[ℓ] − X[ℓ]
”2
ff

Since X̃ [ℓ] was arbitrary, this shows that X̂[ℓ] is an LMMSE estimator.
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Proof part 2.

We will now show that if X̃[ℓ] doesn’t satisfy the orthogonality condition, it can’t be an
LMMSE estimator. Given a linear estimator X̃[ℓ], suppose there is an affine function of

the observations Z such that E
n

(X̃[ℓ] − X[ℓ])Z
o

6= 0. Let

X̂[ℓ] = X̃ [ℓ] +
E{(X[ℓ] − X̃[ℓ])Z}

E{Z2}
Z

It can be shown via the Shwarz inequality that if E
n

(X̃ [ℓ] − X[ℓ])Z
o

6= 0 then

E{Z2} > 0. It should also be clear that X̂[ℓ] is a linear estimator. The MSE of X̂[ℓ] is

E



“

X[ℓ] − X̂ [ℓ]
”2
ff

= E

(

„

X[ℓ] − X̃[ℓ] −
E{(X[ℓ] − X̃ [ℓ])Z}

E{Z2}
Z

«2
)

= E



“

X[ℓ] − X̃[ℓ]
”2
ff

−
E2{(X[ℓ] − X̃[ℓ])Z}

E{Z2}

< E



“

X[ℓ] − X̃[ℓ]
”2
ff

Since the MSE of X̃[ℓ] is strictly greater than the MSE of X̂[ℓ], it can’t be LMMSE.
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The Principle of Orthogonality Part II

Theorem

A linear estimator of the scalar state X[ℓ] is an LMMSE estimator if and

only if

E{X̂[ℓ]} = E{X[ℓ]}

and

E
{(

X̂ [ℓ] − X[ℓ]
)

Y [ℓ]
}

= 0

for all a ≤ ℓ ≤ b.
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The Principle of Orthogonality Part II

Proof part 1.

We will show that if X̂[ℓ] is an LMMSE estimator, then it must satisfy both conditions
of PoO part II. From PoO part I, we know

E{(X̂ [ℓ] − X[ℓ])Z} = 0 for any Z that is affine in the observations

⇒ E{(X̂ [ℓ] − X[ℓ])1} = 0 since Z=1 is affine

⇒ E{X̂ [ℓ]} = E{X[ℓ]}

E
n“

X̂[ℓ] − X[ℓ]
”

Y [ℓ]
o

= 0 for all a ≤ ℓ ≤ b is also a direct consequence of the results

from PoO part I since Y [ℓ] is an affine function of the observations Y [a], . . . , Y [b].
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The Principle of Orthogonality Part II

Proof part 2.

Now we will show that if E{X̂ [ℓ]} = E{X[ℓ]} and E
n“

X̂ [ℓ] − X[ℓ]
”

Y [ℓ]
o

= 0 for all

a ≤ ℓ ≤ b, then X̂[ℓ] must be an LMMSE estimator. Let Z =
P

b

k=a
g[ℓ, k]Y [k] + d[ℓ]

be an affine function of the observations. Then we have

E
n“

X̂[ℓ] − X[ℓ]
”

Z
o

= E

(

“

X̂[ℓ] − X[ℓ]
”

 

b
X

k=a

g[ℓ, k]Y [k] + d[ℓ]

!)

=
b
X

k=a

g[ℓ, k]E
n“

X̂[ℓ] − X[ℓ]
”

Y [k]
o

+ E
n

X̂[ℓ] − X[ℓ]
o

d[ℓ]

= 0 + 0

Since Z is arbitrary, the results of PoO part I imply that X̂[ℓ] must be an LMMSE
estimator.

Remark:

◮ Note that this result required an exchange of the sum and the expectation.
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The Wiener-Hopf Equations

The PoO part II allows us to obtain a series of equations to specify
LMMSE estimator coefficients when we have either a finite or an infinite
number of observations. We can immediately find the LMMSE affine
offset coefficient c[ℓ] by using the fact that E{X̂ [ℓ]} = E{X[ℓ]}:

E

{
b∑

k=a

h[ℓ, k]Y [k] + c[ℓ]

}

= E{X[ℓ]}

⇒ c[ℓ] = E{X[ℓ]} −

b∑

k=a

h[ℓ, k]E{Y [k]}

where this result requires the exchange of the order of expectation and
summation to be valid.
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The Wiener-Hopf Equations

Using the fact that an LMMSE estimator must satisfy

E
{(

X̂[ℓ] − X [ℓ]
)

Y [ℓ]
}

= 0 for all ℓ = a, . . . , b, we can write

E

{(

X [ℓ] −

b∑

k=a

h[ℓ, k]Y [k] − c[ℓ]

)

Y [ℓ]

}

= 0 for all ℓ = a, . . . , b

Substitute for c[ℓ] and do a bit of simplification...

E

{[

X [ℓ] − E{X [ℓ]} −
b∑

k=a

h[ℓ, k] (Y [k] − E{Y [k]})

]

Y [ℓ]

}

= 0

which can be further simplified to

cov(X [ℓ], Y [ℓ]) =

b∑

k=a

h[ℓ, k]cov(Y [k], Y [ℓ])

for all ℓ = a, . . . , b. Note that we exchanged the sum and the expectation order

to get the final result.
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The Wiener-Hopf Equations: Remarks

In the case of finite a and b, it isn’t difficult to show that the Wiener-Hopf
equations can be written in the same form that we derived earlier:

hlmmse =
[
cov(Y b

a , Y b

a )
]−1

cov(Y b

a , X [ℓ])

The cases when a = −∞, or b = ∞, or both a = −∞ and b = ∞ are a bit
messier, however, since we have an infinite number of Wiener-Hopf equations and
can’t form finite dimensional matrices and vectors. We can only hope to solve
these sort of problems with some further simplifying assumptions...

Simplifying assumption number 1: the (scalar) observation sequence is
wide-sense stationary, i.e.,

cov(Y [ℓ], Y [k]) = CY Y [ℓ − k] = CY Y [k − ℓ]

Simplifying assumption number 2: the (scalar) observation sequence and
(scalar) state sequence are jointly wide-sense stationary, i.e.,

cov(X [ℓ], Y [k]) = CXY [ℓ − k] = CY X [k − ℓ]
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Non-Causal Wiener-Kolmogorov Filtering

Under our stationarity assumptions, we first consider the case when both
a = −∞ and b = ∞, i.e.

X̂ [ℓ] =
∞∑

k=−∞

h[ℓ, k]Y [k]

Note that we are omitting the affine offset coefficient c[ℓ] here since the
means can all assumed to be equal to zero without loss of generality. The
Wiener-Hopf equations for this problem can then be written as

CXY [ℓ − j] =
∞∑

k=−∞

h[ℓ, k]CY Y [k − j] for −∞ < j < ∞

CXY [τ ] =

∞∑

ν=−∞

h[ℓ, ℓ − ν]CY Y [τ − ν] for −∞ < τ < ∞

where we used the substitutions τ = ℓ − j and ν = ℓ − k.
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Non-Causal Wiener-Kolmogorov Filtering

Inspection of the Wiener-Hopf equations for the estimator X̂[ℓ]

CXY [τ ] =
∞∑

ν=−∞

h[ℓ, ℓ − ν]CY Y [τ − ν] for −∞ < τ < ∞

reveals that the time index ℓ only appears in the coefficient sequence. This
is a direct consequence of our stationarity assumption and implies that the
filter h[ℓ, k] doesn’t depend on ℓ (h is shift-invariant). Since ℓ is irrelevant,
we can let h[ν] := h[ℓ, ℓ − ν] and rewrite the Wiener-Hopf equations as

CXY [τ ] =

∞∑

ν=−∞

h[ν]CY Y [τ − ν] for −∞ < τ < ∞

What is this? It is the discrete-time convolution of two infinite length
sequences. We can get more insight by moving to the frequency domain...
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Non-Causal Wiener-Kolmogorov Filtering

Assuming that the discrete-time Fourier transforms exist, we can define

H(ω) =

∞∑

k=−∞

h[k]e−iωk (transfer function of h)

φXY (ω) =

∞∑

k=−∞

CXY [k]e−iωk (cross spectral density)

φY Y (ω) =
∞∑

k=−∞

CY Y [k]e−iωk (power spectral density)

and the Wiener-Hopf equations become

φXY (ω) = H(ω)φY Y (ω) for all − π ≤ ω ≤ π
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Non-Causal Wiener-Kolmogorov Filtering

As long as φY Y (ω) > 0 for all −π ≤ ω ≤ π, we can solve for the required
frequency response of the non-causal Wiener-Kolmogorov filter as

H(ω) =
φXY (ω)

φY Y (ω)

and the shift-invariant filter coefficients can be computed via the inverse
discrete Fourier transform as

h[ν] =
1

2π

∫ π

−π

φXY (ω)

φY Y (ω)
eiων dω

for all integer ν.
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Non-Causal Wiener-Kolmogorov Filtering Performance

The MSE of the non-causal Wiener-Kolmogorov filter can be derived as

MMSE =
1

2π

∫ π

−π

[

1 −
|φXY (ω)|2

φXX(ω)φY Y (ω)

]

φXX(ω) dω

(see Poor pp. 236-237 for the details).

Interpretation:

◮ What can we say about the term γ = |φXY (ω)|2

φXX(ω)φY Y (ω)?
◮ When the sequences X and Y are completely uncorrelated, γ = 0 and

MMSE =
1

2π

∫ π

−π

φXX(ω) dω.

What is this quantity? The observations don’t help us here and the
best we can do is estimate with the unconditional mean, i.e. X̂[ℓ] = 0.
The resulting MMSE is then just the power of the random states.

◮ What happens when X and Y are perfectly correlated?
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Non-Causal Wiener-Kolmogorov Filtering: Main Results

Given observations {Y [k]}∞−∞ (stationary and cross-stationary with the
states), and assuming all the discrete-time Fourier transforms exist, the
non-causal Wiener-Kolmogorov LMMSE estimator for the state X[ℓ] can
be expressed as

H(ω) =
φXY (ω)

φY Y (ω)

for all −π ≤ ω ≤ π, or, equivalently,

h[ν] =
1

2π

∫ π

−π

φXY (ω)

φY Y (ω)
eiων dω

for all integer ν. The MSE of the non-causal Wiener-Kolmogorov filter is

MMSE =
1

2π

∫ π

−π

[

1 −
|φXY (ω)|2

φXX(ω)φY Y (ω)

]

φXX(ω) dω
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Causal Wiener-Kolmogorov Filtering: Problem Setup

◮ In many applications, e.g. real-time, we need a causal estimator.
◮ We now consider the problem of LMMSE estimation of X[ℓ] given

observations {Y [k]}ℓ
−∞, i.e.

X̂ [ℓ] =
ℓ∑

k=−∞

h[ℓ, k]Y [k]

◮ Notation: Let the space of affine functions of {Y [k]}∞−∞ be denoted
as Hnc and let the space of affine functions of {Y [k]}ℓ

−∞ be denoted
as Hc.

◮ Notation: Let X̂nc[ℓ] be a non-causal Wiener-Kolmogorov filter and
let X̂c[ℓ] be a causal Wiener-Kolmogorov filter. Note that

X̂nc[ℓ] ∈ Hnc

X̂c[ℓ] ∈ Hc ⊂ Hnc

◮ Idea: Can we just project our non-causal W-K filter into Hc?
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Causal Wiener-Kolmogorov Filtering

Let Z ∈ Hc. The principle of orthogonality implies that, if X̂c[ℓ] is a
causal W-K LMMSE filter, then

E
{

(X[ℓ] − X̂c[ℓ])Z
}

= 0

E
{

(X[ℓ] − X̂nc[ℓ] + X̂nc[ℓ] − X̂c[ℓ])Z
}

= 0

E
{

(X[ℓ] − X̂nc[ℓ])Z
}

+ E
{

(X̂nc[ℓ] − X̂c[ℓ])Z
}

= 0

What can we say about the first term here?

Hence E
{

(X̂nc[ℓ] − X̂c[ℓ])Z
}

= 0. What does the principle of

orthogonality imply about this result? Among all of the causal estimators
in Hc, X̂c[ℓ] is the LMMSE estimator of the non-causal X̂nc[ℓ].

Implication: The causal estimator X̂c[ℓ] can be obtained by first projecting
X[ℓ] onto Hnc to obtain X̂nc[ℓ] and then projecting X̂nc[ℓ] onto Hc.
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Causal Wiener-Kolmogorov Filtering: Geometric Intuition

plane of non-causal a�ne combinations of observations

line of causal

a�ne combinations

of observations

X[ℓ] − X̂nc[ℓ]

X̂nc[ℓ]

X[ℓ]

X̂c[ℓ]

X̂nc[ℓ] − X̂c[ℓ]
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Causal Wiener-Kolmogorov Filtering

Suppose we have our non-causal LMMSE Wiener-Kolmogorov filter
coefficients already computed as

X̂nc[ℓ] =
∞∑

k=−∞

hnc[ℓ, k]Y [k].

How should we perform the projection to obtain a causal LMMSE
Wiener-Kolmogorov filter? Let’s try this:

X̂c[ℓ] =
ℓ∑

k=−∞

hnc[ℓ, k]Y [k].

We are just truncating the non-causal filter to get a causal filter. How can
we check to see if this is indeed the causal LMMSE Wiener-Kolmogorov
filter? Principle of orthogonality...
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Causal Wiener-Kolmogorov Filtering

By the principle of orthogonality (part II), we know that X̂c[ℓ] is LMMSE if

E
{

(X̂nc[ℓ] − X̂c[ℓ])Y [m]
}

= 0 for all m = . . . , ℓ − 1, ℓ (2)

Our causal filter is just a truncation of the non-causal W-K filter, hence

X̂nc[ℓ] − X̂c[ℓ] =
∞∑

k=ℓ+1

hnc[ℓ, k]Y [k]

One condition under which (2) holds is when the {Y [k]}∞−∞ is an
uncorrelated sequence. In this case, for any m ≤ ℓ, we can write

E
{

(X̂nc[ℓ] − X̂c[ℓ])Y [m]
}

= E

{(
∞∑

k=ℓ+1

hnc[ℓ, k]Y [k]

)

Y [m]

}

=
∞∑

k=ℓ+1

hnc[ℓ, k]E {Y [k]Y [m]} = 0
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Causal Wiener-Kolmogorov Filtering

Requiring {Y [k]}∞−∞ to be uncorrelated is a pretty big restriction on the
types of problems we can solve. What can we do if {Y [k]}∞−∞ is
correlated?

If we can convert {Y [k]}∞−∞ into an equivalent uncorrelated stationary
sequence {Z[k]}∞−∞ by a causal linear operation, then we can determine
the causal W-K LMMSE filter by

◮ First computing the non-causal W-K LMMSE filter coefficients based
on the uncorrelated sequence {Z[k]}∞−∞ and

◮ then truncating the coefficients so that the resulting filter is causal.

Hence we need to see if we can causally and linearly whiten {Y [k]}∞−∞.
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Theorem (Spectral Factorization Theorem)

Suppose {Y [k]}∞
−∞

is wide-sense stationary and has a power spectrum φY Y (ω)
satisfying the “Paley-Wiener condition”, given by

Z

π

−π

ln φY Y (ω) dω > −∞.

Then φY Y (ω) can be factored as φY Y (ω) = φ+

Y Y
(ω)φ−

Y Y
(ω) for −π ≤ ω ≤ π where

φ+

Y Y
(ω) and φ−

Y Y
(ω) are two functions satisfying |φ+

Y Y
(ω)|2 = |φ−

Y Y
(ω)|2 = φY Y (ω),

Z

π

−π

φ+

Y Y
(ω)einω dω = 0 for all n < 0, (3)

and
Z

π

−π

φ−

Y Y
(ω)einω dω = 0 for all n > 0. (4)

Moreover (3) also holds when φ+

Y Y
(ω) is replaced with 1/φ+

Y Y
(ω) and (4) also holds

when φ−

Y Y
(ω) is replaced with 1/φ−

Y Y
(ω).
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Remarks on the Spectral Factorization Theorem

◮ The Paley-Wiener condition implies that φY Y (ω) > 0 for all
π ≤ ω ≤ π, hence φ+

Y Y (ω) > 0 and φ−
Y Y (ω) > 0 for all π ≤ ω ≤ π

and 1/φ+
Y Y (ω) and 1/φ−

Y Y (ω) are finite for all π ≤ ω ≤ π.

◮ The inverse discrete-time Fourier transforms show that φ+
Y Y (ω) has a

causal discrete-time impulse response and φ−
Y Y (ω) has an

anti-causal discrete-time impulse response.

◮ The final part of the theorem implies also that 1/φ+
Y Y (ω) has a

causal discrete-time impulse response and 1/φ−
Y Y (ω) has an

anti-causal discrete-time impulse response.

◮ Since φY Y (ω) is a power spectral density, φY Y (ω) = φY Y (−ω) and it
follows that the spectral factors also have the property that

φ−
Y Y (ω) =

[
φ+

Y Y (ω)
]∗

.
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One Way to Whiten {Y [k]}∞−∞

◮ Recall from our discussion of the discrete-time Kalman-Bucy filter
that the innovation sequence

Ỹ [ℓ | ℓ − 1] := Y [ℓ] − H[ℓ]X̂ [ℓ | ℓ − 1] = Y [ℓ] − Ŷ [ℓ | ℓ − 1]

was an uncorrelated sequence, even if the sequence {Y [ℓ]}∞−∞ is
correlated.

◮ Note that the Ỹ [ℓ | ℓ − 1] is not wide-sense stationary (variance is
time-varying).

◮ In any case, this suggests that one practical way to build a whitening
filter is to do one-step prediction of the observations.

◮ The only minor detail is that we need to compute a scaled innovation
so that resulting sequence is stationary.
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One Way to Whiten {Y [k]}∞−∞

◮ Denote the one-step causal LMMSE predictor of Y [ℓ] given the previous
observations {Y [k]}ℓ−1

−∞
as

Ŷ [ℓ | ℓ − 1] =

ℓ−1
X

k=−∞

g[ℓ − k]Y [k]

and denote the MSE of this predictor as

σ2[ℓ] = E



“

Y [ℓ] − Ŷ [ℓ | ℓ − 1]
”2
ff

−∞ < ℓ < ∞

◮ If we define a new sequence

Z[ℓ] =
Y [ℓ] − Ŷ [ℓ | ℓ − 1]

σ[ℓ]
−∞ < ℓ < ∞

then it isn’t difficult to show that the elements of this sequence have zero mean,
unit variance, and are temporally uncorrelated (using the principle of orthogonality,
since the predictor is LMMSE).

◮ You can use the spectral factorization theorem to derive the causal filter
coefficients g[ν] required to implement the one-step predictor (the details are in
your textbook pp. 242-246).
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Whitening

We use the fact that the spectrum at the output of an LTI filter with
frequency response G(ω) is equal to the product of the spectrum at the
input of the filter and |G(ω)|2.

At the input of the filter, we have the correlated observations Y [ℓ] with
spectrum φY Y (ω). At the output of the filter, we want the equivalent
sequence Z[ℓ] with constant spectrum. What should we use as our filter?

Since our whitening filter must be causal, we should use a filter with
frequency response 1

φ+

Y Y
(ω)

. The spectral factorization theorem ensures

that impulse response of the filter with this frequency response is causal if
the Paley-Wiener condition is satisfied.

What is the spectrum of Z[ℓ] in this case?
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Causal Wiener-Kolmogorov Filtering

truncated

non-causal

Wiener-

Kolmogorov

whitener

1
φ+(ω)

Y [ℓ]
Z[ℓ]

X̂c[ℓ]

Note that the non-causal Wiener-Kolmogorov filter here is based on the
whitened observations Z[ℓ]. That is,

Hnc(ω) =
φXZ(ω)

φZZ(ω)
for all − π ≤ ω ≤ π

We know that φZZ(ω) ≡ 1 and it can also be shown without too much
difficulty that φXZ(ω) = G∗(ω)φXY (ω) where G(ω) = 1/φ+(ω). Hence,
the non-causal Wiener-Kolmogorov filter can be expressed as

Hnc(ω) =
φXY (ω)

[φ+(ω)]∗
=

φXY (ω)

φ−(ω)
for all − π ≤ ω ≤ π

with impulse response hnc[ν] for −∞ < ν < ∞.
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Causal Wiener-Kolmogorov Filtering

Denoting the frequency response of the causally-truncated
Wiener-Kolmogorov filter (based on white observations Z[ℓ]) as

Htrunc(ω) :=

∞∑

ν=0

hnc[ν]e−iων

we now have

whitener

1
φ+(ω)

Htrunc(ω)Y [ℓ]
Z[ℓ]

X̂c[ℓ]

Note that both filters are causal here, hence their series connection is also
causal. The frequency response of the causal Wiener-Kolmogorov filter
(based on temporally correlated observations Y [ℓ]) can then be written as

Hc(ω) =
Htrunc(ω)

φ+(ω)
for all − π ≤ ω ≤ π.
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Final Remarks

◮ Linear estimation is motivated by
◮ Computational convenience.
◮ Analytical tractability.
◮ No loss of optimality under MSE criterion and observations jointly

Gaussian with unknown state/parameter.

◮ We looked at (not in this order)
◮ Linear MMSE with a finite number of observations (matrix-vector

formulation)
◮ Kalman Filter (both static and dynamic states)
◮ Linear MMSE with an infinite number of observations

⋆ Principle of orthogonality
⋆ Wiener-Hopf equations
⋆ Stationarity assumptions
⋆ Non-causal Wiener-Kolmogorov filtering
⋆ Causal Wiener-Kolmogorov filtering
⋆ Spectral factorization

◮ Whitening (aka pre-whitening) is a useful tool in many applications.
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Comprehensive Final Exam: What You Need to Know

◮ Everything from the first half of the course (see end of Lec. 6).

◮ Different types of parameter estimation problems (Bayesian and
non-random, static and dynamic)

◮ Mathematical model of parameter estimation problems.

◮ Bayesian parameter estimation (MMSE, MMAE, MAP, ...)

◮ Non-random parameter estimation
◮ Unbiased estimators and MVU estimators.
◮ RBLS theorem.
◮ Information inequality and the Cramer-Rao lower bound.
◮ Maximum likelihood estimators.

◮ Dynamic parameter/state estimation and Kalman filtering.

◮ Linear MMSE estimation with a finite number of observations.

Linear MMSE estimation with an infinite number of observations will not
be on the final exam.
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