Distributed Reception with Hard Decision Exchanges

D. Richard Brown III

Worcester Polytechnic Institute

August 13, 2014

System Model

Motivation:

- Diversity gain
- ▶ Receive beamformer emulation: *N*-fold SNR gain
- ► Implementation possible with off-the-shelf hardware, e.g. WiFi LAN
- ► No loss of rate if LAN is on separate channel from forward link
- Robustness (no single point of failure)

Distributed Beamforming Throughput Example

Direct emulation of a receive beamformer:

Distributed Beamforming Throughput Example

Direct emulation of a receive beamformer:

Distributed reception with hard decision exchanges:

Assumptions

System model assumptions:

- ► Forward link channels are AWGN (no interference).
- Forward link messages are (n,k) block encoded at rate $r = \frac{k}{n}$
- Forward link is block i.i.d. fading.
- LAN supports broadcast transmission.
- ► LAN communication is reliable.

Protocol and Throughput Requirements

Normalized LAN throughput (bits per forward link information bit):

$$\eta_{\text{LAN}} = \frac{No_1 + Kn + k + o_2}{k} \approx \frac{K}{r} + 1$$

where $K \leq N$ is the number of "participating" nodes selected so that

$$K \le \min\{N, r(C_{\mathsf{LAN}} - 1)\}$$

Combining

Notation:

- Forward link symbols $X \in \mathcal{X}$ (assumed to be equiprobable).
- ► $U_i = |h_i|X + W_i$ is the phase-corrected soft output at node *i*.
- $V_i \in \mathcal{X}$ is the hard decision at node i.
- Y_i is the combiner output at node i.

Benchmark: Ideal Receive Beamforming

Combiner output:

$$\begin{split} Y_{\rm bf} &\equiv Y_i = \sum_{j \in \mathcal{P}} |h_j| U_j \\ &= \sum_{j \in \mathcal{P}} |h_j|^2 X + \sum_{j \in \mathcal{P}} |h_j| W_j \\ &= \|\boldsymbol{h}_{\mathcal{P}}\|^2 X + \tilde{W} \end{split}$$

where $\mathcal{P} \subseteq \{1, \ldots, N\}$ is the set of participating nodes, $\mathbf{h}_{\mathcal{P}} \in \mathbb{C}^{K}$ is the channel vector corresponding to the participating nodes, and $\tilde{W} \sim \mathcal{CN}(0, N_{0} \| \mathbf{h}_{\mathcal{P}} \|^{2}).$

Benchmark: Ideal Receive Beamforming

Combiner output:

$$\begin{split} Y_{\rm bf} &\equiv Y_i = \sum_{j \in \mathcal{P}} |h_j| U_j \\ &= \sum_{j \in \mathcal{P}} |h_j|^2 X + \sum_{j \in \mathcal{P}} |h_j| W_j \\ &= \|\boldsymbol{h}_{\mathcal{P}}\|^2 X + \tilde{W} \end{split}$$

where $\mathcal{P} \subseteq \{1, \ldots, N\}$ is the set of participating nodes, $h_{\mathcal{P}} \in \mathbb{C}^{K}$ is the channel vector corresponding to the participating nodes, and $\tilde{W} \sim \mathcal{CN}(0, N_{0} \| h_{\mathcal{P}} \|^{2}).$

 $Y_{\rm bf}$ is conditionally Gaussian with mean $E[Y_{\rm bf}|X] = \|\boldsymbol{h}_{\mathcal{P}}\|^2 X$ and variance $\operatorname{var}[Y_{\rm bf}|X] = N_0 \|\boldsymbol{h}_{\mathcal{P}}\|^2$. The SNR of ideal receive beamforming is then

$$\mathrm{SNR}_{\mathrm{bf}} = \begin{cases} \frac{\mathrm{E}\left\{|\mathrm{E}[Y_i|X]|^2\right\}}{\mathrm{var}[Y_i]} = \frac{\|\boldsymbol{h}_{\mathcal{P}}\|^2 \mathcal{E}_s}{N_0} & \text{(complex alphabets)}\\ \frac{\mathrm{E}\left\{(\mathrm{E}[\mathrm{Re}(Y_i)|X]])^2\right\}}{\mathrm{var}[\mathrm{Re}(Y_i)]} = \frac{\|\boldsymbol{h}_{\mathcal{P}}\|^2 \mathcal{E}_s}{N_0/2} & \text{(real alphabets)} \end{cases}$$

Idea 1: Pseudobeamforming (orig: Matt Rebholz BBN)

Combiner output:

$$Y_{\text{pbf}} \equiv Y_i = \sum_{j \in \mathcal{P}} |h_j| V_j.$$

Remarks:

- 1. Just like beamforming, except we are summing weighted hard decisions.
- 2. We are ignoring local soft information.
- 3. Clearly suboptimal, but conceptually straightforward.

Question: How well does pseudobeamforming perform with respect to ideal receive beamforming?

Regime of Interest

Asymptotic Gaussianity of Pseudobeamforming

Theorem

Under certain regularity conditions on the channels, as $|\mathcal{P}| \to \infty,$ we have

$$A = \frac{\operatorname{Re}(Y_{\operatorname{pbf}}) - \sum_{j \in \mathcal{P}} |h_j| \operatorname{E}[\operatorname{Re}(V_j) | X]}{\sqrt{\sum_{j \in \mathcal{P}} |h_j|^2 \operatorname{var}[\operatorname{Re}(V_j) | X]}} \xrightarrow{d} \mathcal{N}(0, 1)$$

$$B = \frac{\operatorname{Im}(Y_{\operatorname{pbf}}) - \sum_{j \in \mathcal{P}} |h_j| \operatorname{E}[\operatorname{Im}(V_j) | X]}{\sqrt{\sum_{j \in \mathcal{P}} |h_j|^2 \operatorname{var}[\operatorname{Im}(V_j) | X]}} \xrightarrow{d} \mathcal{N}(0, 1)$$
(2)

when conditioned on X and h where $\stackrel{d}{\rightarrow}$ means convergence in distribution.

Recall the pseudobeamformer combiner output:

$$Y_{\rm pbf} = \sum_{j \in \mathcal{P}} |h_j| V_j.$$

Since the $\{V_j\}$ are cond. independent but not identically distributed, the proof requires the use of the Lindeberg central limit theorem.

Worcester Polytechnic Institute

D. Richard Brown III

QPSK Pseudobeamforming Examples

16PSK Pseudobeamforming Examples

4PAM Pseudobeamforming Examples

Low per-node SNR Statistics of M-PAM

Theorem

For *M*-PAM forward link modulation with equiprobable symbols and alphabet $\mathcal{X} = \{x_1, \ldots, x_M\} = \{(-M+1)a, \ldots, (M-1)a\}$ in the low per-node SNR regime, we have

$$E[\operatorname{Re}(V_j) \mid X = x_{\ell}] \approx \left(\frac{2(M-1)\rho_j}{\sqrt{2\pi}}\right) x_{\ell}$$
$$\operatorname{var}[\operatorname{Re}(V_j) \mid X = x_{\ell}] \approx (M-1)^2 a^2$$

for all $\ell \in \{1, \ldots, M\}$ where $\rho_j^2 := \frac{|h_j|^2 a^2}{N_0/2}$.

The proof uses a low-SNR Q-function approximation:

$$Q(x) = \frac{1}{2} - \int_0^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \approx \frac{1}{2} - \frac{x}{\sqrt{2\pi}}.$$

Asymptotic Performance of *M*-PAM Pseudobeamforming

Corollary

Given *M*-PAM forward link modulation with equiprobable symbols. In the low per-node SNR regime as $K \to \infty$ and assuming channel regularity, we have

$$\text{SNR}_{\text{pbf}}^{M-\text{PAM}} \approx \frac{2}{\pi} \text{SNR}_{\text{bf}}.$$

From the prior results, can show the conditional $M\mbox{-}\mathsf{PAM}$ distribution follows

$$Y_{\text{pbf}} \sim \mathcal{N}\left(\frac{2a(M-1)}{\sqrt{N_0\pi}} x_\ell \|\boldsymbol{h}_{\mathcal{P}}\|^2, (M-1)^2 a^2 \|\boldsymbol{h}_{\mathcal{P}}\|^2\right)$$

Some straightforward algebra then yields the desired result.

Asymptotic Performance of *M*-PAM Pseudobeamforming

Corollary

Given *M*-PAM forward link modulation with equiprobable symbols. In the low per-node SNR regime as $K \to \infty$ and assuming channel regularity, we have

$$\text{SNR}_{\text{pbf}}^{M-\text{PAM}} \approx \frac{2}{\pi} \text{SNR}_{\text{bf}}.$$

From the prior results, can show the conditional $M\mbox{-}\mathsf{PAM}$ distribution follows

$$Y_{\text{pbf}} \sim \mathcal{N}\left(\frac{2a(M-1)}{\sqrt{N_0\pi}} x_\ell \|\boldsymbol{h}_{\mathcal{P}}\|^2, (M-1)^2 a^2 \|\boldsymbol{h}_{\mathcal{P}}\|^2\right)$$

Some straightforward algebra then yields the desired result.

This result includes BPSK and can be easily extended to M^2 -QAM and QPSK. For these modulation formats, we can expect pseudobeamforming to have a $10\log_{10}(2/\pi)\approx-1.96$ dB loss wrt ideal receive beamforming.

Worcester Polytechnic Institute

D. Richard Brown III

August 13, 2014 15

15 / 32

M-PAM Pseudobeamforming SNR vs. Beamforming SNR

Low per-node SNR Statistics of *M*-PSK

Theorem

For *M*-PSK forward link modulation with $M \ge 4$, M even, equiprobable symbols drawn from the alphabet $\mathcal{X} = \{x_1, \ldots, x_M\}$ with $x_m = ae^{j2\pi(m-1)/M}$, and in the low per-node SNR regime, we have

$$\mathbb{E}[V_j \mid X = x_\ell] \approx \left(\frac{M\rho_j \sin(\pi/M)}{2\sqrt{\pi}}\right) x_\ell$$

where $\rho_j^2 := \frac{|h_j|^2 a^2}{N_0}$ and $\mathrm{var}[V_j \,|\, X = x_\ell] \approx a^2$

for all $\ell \in \{1, \ldots, M\}$. Moreover, in the low per-node SNR regime, $\operatorname{var}[\operatorname{Re}(V_j) | X = x_\ell] \approx \frac{a^2}{2}$, $\operatorname{var}[\operatorname{Im}(V_j) | X = x_\ell] \approx \frac{a^2}{2}$ and $\operatorname{cov}[\operatorname{Re}(V_j), \operatorname{Im}(V_j) | X = x_\ell] \approx 0$ for all $\ell \in \{1, \ldots, M\}$.

The proof uses a first-order Taylor series approximation to express the hard decision probabilities at low per-node SNR.

Worcester Polytechnic Institute

Asymptotic Performance of M-PSK Pseudobeamforming

Corollary

Given *M*-PSK forward link modulation with equiprobable symbols and alphabet $\mathcal{X} = \{x_1, \ldots, x_M\} = \{a, ae^{j2\pi/M}, ae^{j4\pi/M}, \ldots, ae^{j(M-1)2\pi/M}\}$. In the low per-node SNR regime as $K \to \infty$ and assuming channel regularity, we have

$$\mathrm{SNR}_{\mathrm{pbf}}^{M-\mathrm{PSK}} = \frac{M^2 \sin^2(\pi/M)}{4\pi} \mathrm{SNR}_{\mathrm{bf}}.$$

and

$$\lim_{M \to \infty} \mathrm{SNR}_{\mathrm{pbf}}^{M-\mathrm{PSK}} \approx \frac{\pi}{4} \mathrm{SNR}_{\mathrm{bf}}$$

• The function $\frac{M^2 \sin^2(\pi/M)}{4\pi}$ is decreasing in M.

For M = 4, we have $\frac{M^2 \sin^2(\pi/M)}{4\pi} = \frac{2}{\pi}$ (-1.96 dB, consistent with *M*-PAM).

▶ In the limit as $M \to \infty$ we can use a small angle approximation to compute $\frac{M^2 \sin^2(\pi/M)}{4\pi} \to \frac{\pi}{4}$ (-1.05dB).

M-PSK Pseudobeamforming SNR vs. Beamforming SNR

Idea 2: Optimal Combining

Basic idea:

- Use all of the available information at each receiver (including the unquantized local observation)
- Produce correct posterior probability for each transmitted symbol based on the mixed continuous/discrete vector observation
- These posteriors can then be converted to LLRs for input to the soft-input decoder

Block error rate performance will be better than pseudobeamforming.

Optimal Combining: Computing Posteriors

The posterior probability of symbol $X = x_m \in \mathcal{X}$ given the vector observation V can be written as

$$\operatorname{Prob}(X = x_m | \boldsymbol{V} = \boldsymbol{v}) = \frac{p_{\boldsymbol{V}|X}(\boldsymbol{v}|X = x_m)\operatorname{Prob}(X = x_m)}{p_{\boldsymbol{V}}(\boldsymbol{v})}$$
$$= \frac{\prod_{i=1}^N p_{V_i|X}(v_i|X = x_m)}{\sum_{\ell=1}^M \prod_{i=1}^N p_{V_i|X}(v_i|X = x_\ell)}$$

where the second equality uses the equiprobable symbol assumption and the fact that the elements of V are conditionally independent.

Each receive node must compute $p_{V_i|X}(v_i|X = x_\ell)$ for all $i = 1, \ldots, N$ and $\ell = 1, \ldots, M$. This is possible since the channel magnitudes $\{|h_1|, \ldots, |h_N|\}$ are known to all of the nodes in the receive cluster.

Optimal Combining: The Details

Suppose you are receive node j. Since your local observation is unquantized, we have $v_j = u_j \mbox{ and }$

$$p_{V_j|X}(v_j|X=x_\ell) = \begin{cases} \frac{1}{\pi N_0} \exp\left(-\frac{|v_j-|h_j|x_\ell|^2}{N_0}\right) & \text{(complex alphabets)} \\ \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(v_j-|h_j|x_\ell)^2}{N_0/2}\right) & \text{(real alphabets)} \end{cases}$$

for $\ell=1,\ldots,M$ and any forward link modulation.

The remaining $p_{V_i|X}(v_i|X = x_\ell)$ for $i \neq j$ are the channel transition probabilities of the discrete memoryless channel (DMC) induced by the hard decision at node i. For example, with a BPSK forward link with alphabet $\mathcal{X} = \{x_1, x_2\}$, we have

$$p_{V_i|X}(v_i = x_m | X = x_\ell) = \begin{cases} 1-p & m = \ell \\ p & m \neq \ell \end{cases}$$

with crossover probability

$$p = Q\left(|h_i| \sqrt{\frac{2\mathcal{E}_s}{N_0}}\right).$$

Numerical Results: Simulation Parameters

- Block fading scenario.
- Channel assumed to be $h_j[m] \stackrel{\text{i.i.d.}}{\sim} C\mathcal{N}(0,1)$.
- ▶ (8100, 4050) rate 1/2 LDPC code for DVB-S2.
- ► Results averaged over 5000 channel/noise realizations.

Block Error Rate Performance: BPSK/QPSK

Block Error Rate Performance: 4-PAM/16-QAM

Block Error Rate Performance: 4-PAM vs. QPSK

Block Error Rate Performance: 16-QAM vs. 16-PSK

BLER Performance: BPSK/QPSK Partial Participation

Worcester Polytechnic Institute

BLER Performance: 4-PAM/16-QAM Partial Participation

Worcester Polytechnic Institute

Conclusions

D.R. Brown III, U. Madhow, M. Ni, M. Rebholz, and P. Bidigare. Distributed Reception with Hard Decision Exchanges. Accepted to appear in *IEEE Transactions on Wireless Communications*.

Distributed reception with hard decisions exchanged over a conventional LAN

- Practical, implementable with off-the-shelf network hardware
- ► No loss of rate when LAN is on separate radio from forward link
- Asymptotic analysis suggests losses with respect to ideal beamforming will be between 1-2 dB
- Numerical SNR results confirm analysis over practical range of SNRs
- Block error rate results show the loss of optimal combining can be less than 1 dB for higher-order constellations.

Bonus: Outage Regions for Distributed Reception

Two-receiver case:

- (a) For ideal receive beamforming with Gaussian channel inputs, we have $Y = \|\mathbf{h}\|^2 X + W$ and $I_{\mathbf{h}}(X;Y) = \log(1 + \|\mathbf{h}\|^2)$.
- (b) For binary channel inputs and both receivers making hard decisions, we have a 2-input, 4-output DMC and it is possible to numerically compute the outage region $J_h(X;Y) < R$.
- (c) To show the yellow region is indeed an upper bound, we need to show that $f(\mathbf{h}) = J_{\mathbf{h}}(X;Y)$ is Shur-convex over $[|h_1|^2, |h_2|^2]$ on $\mathbb{R}^+ \times \mathbb{R}^+$.

Worcester Polytechnic Institute

D. Richard Brown III

Bonus: Showing Shur Convexity (Help!)

Let $x=|h_1|^2,\,y=|h_2|^2$ and $J_{\pmb{h}}(X;Y)=\phi(x,y).$ We need to show

$$(x-y)\left[\frac{\partial}{\partial x}\phi(x,y)-\frac{\partial}{\partial y}\phi(x,y)
ight]\geq 0$$

for all $[x, y] \in \mathbb{R}^+ \times \mathbb{R}^+$. We've done the math and simplified things as much as possible. It boils down to showing

$$s(x,y) = \frac{g(x,y)}{g(y,x)} = \frac{xe^{x^2} \left[\ln\left(\frac{1+\operatorname{erf}(y)}{1-\operatorname{erf}(y)}\right) - \operatorname{erf}(x)\ln\left(\frac{1+\operatorname{erf}(x)\operatorname{erf}(y)}{1-\operatorname{erf}(x)\operatorname{erf}(y)}\right) \right]}{ye^{y^2} \left[\ln\left(\frac{1+\operatorname{erf}(x)}{1-\operatorname{erf}(x)}\right) - \operatorname{erf}(y)\ln\left(\frac{1+\operatorname{erf}(x)\operatorname{erf}(y)}{1-\operatorname{erf}(x)\operatorname{erf}(y)}\right) \right]} < 1$$

is true for $0 < y < x < \infty$ with $\mathrm{erf}(a) = \frac{2}{\sqrt{\pi}} \int_0^a e^{-t^2} \, dt$ as the usual error function.

It is easy enough to test this inequality with randomly generated values for x and y, but I have been unable to analytically confirm it is true.

Worcester Polytechnic Institute

D. Richard Brown III

August 13, 2014 32 / 32