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System Model

distant
transmitter fully-connected

receive cluster

forward link

Motivation:

◮ Diversity gain

◮ Receive beamformer emulation: N -fold SNR gain

◮ Implementation possible with off-the-shelf hardware, e.g. WiFi LAN

◮ No loss of rate if LAN is on separate channel from forward link

◮ Robustness (no single point of failure)
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Distributed Beamforming Throughput Example

Direct emulation of a receive beamformer:

Forward Link

Bit Rate

(info bits / sec)

Code Rate

(info bits / 

code bits)

Modulation

(code bits /

symbol)

Quantization

(LAN bits / 

observation)

N receivers

(# receivers)

LAN Throughbut

(LAN bits / sec)

1Mbps 1/2 1 16 10 320Mbps
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Distributed Beamforming Throughput Example

Direct emulation of a receive beamformer:

Forward Link

Bit Rate

(info bits / sec)

Code Rate
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Modulation
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Distributed reception with hard decision exchanges:

Forward Link

Bit Rate

(info bits / sec)

Code Rate

(info bits / 

code bits)

Modulation

(code bits /

symbol)

Hard-Decision

Quantization

(LAN bits / symbol)

N receivers

(# receivers)

LAN Throughbut

(LAN bits / sec)

1Mbps 1/2 1 1 10 20Mbps
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Assumptions

System model assumptions:

◮ Forward link channels are AWGN (no interference).

◮ Forward link messages are (n, k) block encoded at rate r = k
n

◮ Forward link is block i.i.d. fading.

◮ LAN supports broadcast transmission.

◮ LAN communication is reliable.
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Protocol and Throughput Requirements

forward
link

LAN

all nodes 
exchange

SNR estimates

participating
nodes exchange
hard decisions

one node
broadcasts

decoded block

Block m Block m+ 1

Normalized LAN throughput (bits per forward link information bit):

ηLAN =
No1 +Kn+ k + o2

k
≈ K

r
+ 1

where K ≤ N is the number of “participating” nodes selected so that

K ≤ min{N, r(CLAN − 1)}
satisfies (??).Worcester Polytechnic Institute D. Richard Brown III August 13, 2014 5 / 32
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Combining

channel

input X

AWGN channel
h

1
, W

1

AWGN channel
h

2
, W

2

AWGN channel
h

3
, W

3

continuous

channel 

outputs U
i

Q

Q

mixed

continuous/discrete 

channel outputs V
i

combining
soft-input

hard-output
decoder

combiner

output Y
3 decoder

output Z
3

PC

PC

PC

Notation:

◮ Forward link symbols X ∈ X (assumed to be equiprobable).

◮ Ui = |hi|X +Wi is the phase-corrected soft output at node i.

◮ Vi ∈ X is the hard decision at node i.

◮ Yi is the combiner output at node i.
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Benchmark: Ideal Receive Beamforming

Combiner output:

Ybf ≡ Yi =
∑

j∈P
|hj |Uj

=
∑

j∈P
|hj |2X +

∑

j∈P
|hj |Wj

= ‖hP‖2X + W̃

where P ⊆ {1, . . . , N} is the set of participating nodes, hP ∈ C
K is the

channel vector corresponding to the participating nodes, and
W̃ ∼ CN (0, N0‖hP‖2).
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Benchmark: Ideal Receive Beamforming

Combiner output:

Ybf ≡ Yi =
∑

j∈P
|hj |Uj

=
∑

j∈P
|hj |2X +

∑

j∈P
|hj |Wj

= ‖hP‖2X + W̃

where P ⊆ {1, . . . , N} is the set of participating nodes, hP ∈ C
K is the

channel vector corresponding to the participating nodes, and
W̃ ∼ CN (0, N0‖hP‖2).
Ybf is conditionally Gaussian with mean E[Ybf |X] = ‖hP‖2X and variance
var[Ybf |X] = N0‖hP‖2. The SNR of ideal receive beamforming is then

SNRbf =







E{|E[Yi|X]|2}
var[Yi]

= ‖hP‖2Es
N0

(complex alphabets)
E{(E[Re(Yi)|X])2}

var[Re(Yi)]
= ‖hP‖2Es

N0/2
(real alphabets)
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Idea 1: Pseudobeamforming (orig: Matt Rebholz BBN)

Combiner output:

Ypbf ≡ Yi =
∑

j∈P
|hj |Vj .

Remarks:

1. Just like beamforming, except we are summing weighted hard

decisions.

2. We are ignoring local soft information.

3. Clearly suboptimal, but conceptually straightforward.

Question: How well does pseudobeamforming perform with respect to
ideal receive beamforming?
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Regime of Interest

Number of
participating

nodes (K)

Per-node SNR

array can’t decode

individual nodes can’t decode

but array can decode

individual nodes 
(or small cluster) 

can decode

ROI
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Asymptotic Gaussianity of Pseudobeamforming

Theorem

Under certain regularity conditions on the channels, as |P| → ∞, we have

A =
Re(Ypbf)−

∑

j∈P |hj |E[Re(Vj) |X ]
√

∑

j∈P |hj |2var[Re(Vj) |X ]

d→ N (0, 1) (1)

B =
Im(Ypbf)−

∑

j∈P |hj |E[Im(Vj) |X ]
√

∑

j∈P |hj|2var[Im(Vj) |X ]

d→ N (0, 1) (2)

when conditioned on X and h where
d→ means convergence in distribution.

Recall the pseudobeamformer combiner output:

Ypbf =
∑

j∈P
|hj|Vj .

Since the {Vj} are cond. independent but not identically distributed, the proof
requires the use of the Lindeberg central limit theorem.
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QPSK Pseudobeamforming Examples
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16PSK Pseudobeamforming Examples

N = 10 N = 100
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4PAM Pseudobeamforming Examples

N = 10 N = 100
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Low per-node SNR Statistics of M -PAM

Theorem

For M -PAM forward link modulation with equiprobable symbols and alphabet

X = {x1, . . . , xM} = {(−M + 1)a, . . . , (M − 1)a} in the low per-node SNR

regime, we have

E[Re(Vj) |X = xℓ] ≈
(

2(M − 1)ρj√
2π

)

xℓ

var[Re(Vj) |X = xℓ] ≈ (M − 1)2a2

for all ℓ ∈ {1, . . . ,M} where ρ2j :=
|hj |2a2

N0/2
.

The proof uses a low-SNR Q-function approximation:

Q(x) =
1

2
−
∫ x

0

1√
2π

e−t2/2 dt ≈ 1

2
− x√

2π
.
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Asymptotic Performance of M -PAM Pseudobeamforming

Corollary

Given M -PAM forward link modulation with equiprobable symbols. In the

low per-node SNR regime as K → ∞ and assuming channel regularity, we

have

SNRM−PAM
pbf ≈ 2

π
SNRbf .

From the prior results, can show the conditional M -PAM distribution
follows

Ypbf ∼ N
(

2a(M − 1)√
N0π

xℓ‖hP‖2, (M − 1)2a2‖hP‖2
)

Some straightforward algebra then yields the desired result.
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Asymptotic Performance of M -PAM Pseudobeamforming

Corollary

Given M -PAM forward link modulation with equiprobable symbols. In the

low per-node SNR regime as K → ∞ and assuming channel regularity, we

have

SNRM−PAM
pbf ≈ 2

π
SNRbf .

From the prior results, can show the conditional M -PAM distribution
follows

Ypbf ∼ N
(

2a(M − 1)√
N0π

xℓ‖hP‖2, (M − 1)2a2‖hP‖2
)

Some straightforward algebra then yields the desired result.

This result includes BPSK and can be easily extended to M2-QAM and
QPSK. For these modulation formats, we can expect pseudobeamforming
to have a 10 log10(2/π) ≈ −1.96 dB loss wrt ideal receive beamforming.
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M -PAM Pseudobeamforming SNR vs. Beamforming SNR
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Low per-node SNR Statistics of M -PSK

Theorem

For M -PSK forward link modulation with M ≥ 4, M even, equiprobable symbols

drawn from the alphabet X = {x1, . . . , xM} with xm = aej2π(m−1)/M , and in

the low per-node SNR regime, we have

E[Vj |X = xℓ] ≈
(

Mρj sin(π/M)

2
√
π

)

xℓ

where ρ2j :=
|hj |2a2

N0

and

var[Vj |X = xℓ] ≈ a2

for all ℓ ∈ {1, . . . ,M}. Moreover, in the low per-node SNR regime,

var[Re(Vj) |X = xℓ] ≈ a2

2 , var[Im(Vj) |X = xℓ] ≈ a2

2 and

cov[Re(Vj), Im(Vj) |X = xℓ] ≈ 0 for all ℓ ∈ {1, . . . ,M}.

The proof uses a first-order Taylor series approximation to express the hard
decision probabilities at low per-node SNR.
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Asymptotic Performance of M -PSK Pseudobeamforming

Corollary

Given M -PSK forward link modulation with equiprobable symbols and alphabet

X = {x1, . . . , xM} =
{

a, aej2π/M , aej4π/M , . . . , aej(M−1)2π/M
}

. In the low

per-node SNR regime as K → ∞ and assuming channel regularity, we have

SNRM−PSK
pbf =

M2 sin2(π/M)

4π
SNRbf .

and

lim
M→∞

SNRM−PSK
pbf ≈ π

4
SNRbf

◮ The function M2 sin2(π/M)
4π is decreasing in M .

◮ For M = 4, we have M2 sin2(π/M)
4π = 2

π (-1.96 dB, consistent with M -PAM).

◮ In the limit as M → ∞ we can use a small angle approximation to compute
M2 sin2(π/M)

4π → π
4 (-1.05dB).
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M -PSK Pseudobeamforming SNR vs. Beamforming SNR
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Idea 2: Optimal Combining

Basic idea:

◮ Use all of the available information at each receiver (including the
unquantized local observation)

◮ Produce correct posterior probability for each transmitted symbol
based on the mixed continuous/discrete vector observation

◮ These posteriors can then be converted to LLRs for input to the
soft-input decoder

Block error rate performance will be better than pseudobeamforming.
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Optimal Combining: Computing Posteriors

The posterior probability of symbol X = xm ∈ X given the vector
observation V can be written as

Prob(X = xm|V = v) =
pV |X(v|X = xm)Prob(X = xm)

pV (v)

=

∏N
i=1 pVi|X(vi|X = xm)

∑M
ℓ=1

∏N
i=1 pVi|X(vi|X = xℓ)

where the second equality uses the equiprobable symbol assumption and
the fact that the elements of V are conditionally independent.

Each receive node must compute pVi|X(vi|X = xℓ) for all i = 1, . . . , N
and ℓ = 1, . . . ,M . This is possible since the channel magnitudes
{|h1|, . . . , |hN |} are known to all of the nodes in the receive cluster.
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Optimal Combining: The Details

Suppose you are receive node j. Since your local observation is unquantized, we
have vj = uj and

pVj |X(vj |X = xℓ) =







1
πN0

exp
(

− |vj−|hj |xℓ|2
N0

)

(complex alphabets)

1√
πN0

exp
(

− (vj−|hj|xℓ)
2

N0/2

)

(real alphabets)

for ℓ = 1, . . . ,M and any forward link modulation.

The remaining pVi|X(vi|X = xℓ) for i 6= j are the channel transition probabilities
of the discrete memoryless channel (DMC) induced by the hard decision at node i.
For example, with a BPSK forward link with alphabet X = {x1, x2}, we have

pVi|X(vi = xm|X = xℓ) =

{

1− p m = ℓ

p m 6= ℓ

with crossover probability

p = Q

(

|hi|
√

2Es
N0

)

.
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Numerical Results: Simulation Parameters

forward link
AWGN channels
(iid block fading)

information bits
block encoder

(rate r)

coded
bits modulator

h
1

w
1

h
N

w
N

LAN

SOURCE

demodulator soft outputs

RX1

hard decisions

combiner
hard decisions from other nodes

soft-input
decoder

demodulator soft outputs

hard decisions

combiner
hard decisions from other nodes

soft-input
decoder

RXN

◮ Block fading scenario.

◮ Channel assumed to be hj [m]
i.i.d.∼ CN (0, 1).

◮ (8100, 4050) rate 1/2 LDPC code for DVB-S2.

◮ Results averaged over 5000 channel/noise realizations.
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Block Error Rate Performance: BPSK/QPSK
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Block Error Rate Performance: 4-PAM/16-QAM
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Block Error Rate Performance: 4-PAM vs. QPSK
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Block Error Rate Performance: 16-QAM vs. 16-PSK
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BLER Performance: BPSK/QPSK Partial Participation
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BLER Performance: 4-PAM/16-QAM Partial Participation
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Conclusions

D.R. Brown III, U. Madhow, M. Ni, M. Rebholz, and P. Bidigare. Distributed
Reception with Hard Decision Exchanges. Accepted to appear in IEEE

Transactions on Wireless Communications.

distant
transmitter fully-connected

receive cluster

forward link

Distributed reception with hard decisions exchanged over a conventional LAN

◮ Practical, implementable with off-the-shelf network hardware

◮ No loss of rate when LAN is on separate radio from forward link

◮ Asymptotic analysis suggests losses with respect to ideal beamforming will
be between 1-2 dB

◮ Numerical SNR results confirm analysis over practical range of SNRs

◮ Block error rate results show the loss of optimal combining can be less than
1 dB for higher-order constellations.
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Bonus: Outage Regions for Distributed Reception

Two-receiver case:

|h1|2

|h2|2

|h1|2

|h2|2

outage region
for ideal receive
beamforming 

outage region
for hard decision

optimal combining
(all observations

quantized)

|h1|2

|h2|2

upper bound
on outage region
for hard decision

optimal combining
(all observations

quantized)

(a) (b) (c)

(a) For ideal receive beamforming with Gaussian channel inputs, we have
Y = ‖h‖2X +W and Ih(X ;Y ) = log(1 + ‖h‖2).

(b) For binary channel inputs and both receivers making hard decisions, we have
a 2-input, 4-output DMC and it is possible to numerically compute the
outage region Jh(X ;Y ) < R.

(c) To show the yellow region is indeed an upper bound, we need to show that
f(h) = Jh(X ;Y ) is Shur-convex over [|h1|2, |h2|2] on R

+ × R
+.
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Bonus: Showing Shur Convexity (Help!)

Let x = |h1|2, y = |h2|2 and Jh(X;Y ) = φ(x, y). We need to show

(x− y)

[

∂

∂x
φ(x, y) − ∂

∂y
φ(x, y)

]

≥ 0

for all [x, y] ∈ R
+ × R

+. We’ve done the math and simplified things as
much as possible. It boils down to showing

s(x, y) =
g(x, y)

g(y, x)
=

xex
2

[

ln
(

1+erf(y)
1−erf(y)

)

− erf(x) ln
(

1+erf(x)erf(y)
1−erf(x)erf(y)

)]

yey2
[

ln
(

1+erf(x)
1−erf(x)

)

− erf(y) ln
(

1+erf(x)erf(y)
1−erf(x)erf(y)

)] < 1

is true for 0 < y < x < ∞ with erf(a) = 2√
π

∫ a
0 e−t2 dt as the usual error

function.

It is easy enough to test this inequality with randomly generated values for
x and y, but I have been unable to analytically confirm it is true.
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