# A Method for Carrier Frequency and Phase Synchronization of Two Autonomous Cooperative Transmitters



D. Richard Brown III, Gregary B. Prince, and John A. McNeill Worcester Polytechnic Institute



#### Scenario:

- · 2 sources transmitting information to 1 destination
- · Both sources possess the same information.

#### Goal:

· Maximize SNR at destination for fixed transmit powers



## Alamouti Space-Time Coding:

| · • 1 | 1 1  | 1 |
|-------|------|---|
| timad | lot. |   |

timeslot 2

#### **Distributed Beamforming:**

timeslot 1

timeslot 2

| S1 transmits $x_1$ $-x_2^*$                                                                                                                                                                                                                               | S1 transmits $x_1 e^{-j\theta_{10}}$ $x_2 e^{-j\theta_{10}}$                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| S2 transmits $x_2$ $x_1^*$                                                                                                                                                                                                                                | S2 transmits $x_1 e^{-j\theta_{20}}$ $x_2 e^{-j\theta_{20}}$                                  |
| D receives $y[1] = g_{10}x_1 + g_{20}x_2 + w[1]$ $y[2] = -g_{10}x_2^* + g_{20}x_1^* + w[2]$                                                                                                                                                               | D receives $y[1] = ( g_{10}  +  g_{20} ) x_1 + w[1]  y[2] = ( g_{10}  +  g_{20} ) x_2 + w[2]$ |
| Decision statistics:<br>$z_{1} = g_{10}^{*}y[1] + g_{20}y^{*}[2] = ( g_{10} ^{2} +  g_{20} ^{2})x_{1} + g_{10}^{*}w[1] + g_{20}w^{*}[2]$ $z_{2} = g_{20}^{*}y[1] - g_{10}y^{*}[2] = ( g_{10} ^{2} +  g_{20} ^{2})x_{2} + g_{20}^{*}w[1] - g_{10}w^{*}[2]$ | Decision statistics are the observations.                                                     |
| $SNR_a = \frac{( g_{10} ^2 +  g_{20} ^2) \sigma_x^2}{\sigma_w^2}$                                                                                                                                                                                         | $SNR_b = rac{( g_{10}  +  g_{20} )^2 \sigma_x^2}{\sigma_w^2} \ge SNR_a$                      |
|                                                                                                                                                                                                                                                           |                                                                                               |

#### **Problem:**

- » Distributed beamformer requires strict carrier frequency and phase synchronization.
- » Bandpass transmissions must arrive in phase at the destination.
- » Sources do not have common clocks.
- » Unsynchronized carriers can cause destructive combining at destination.



### How does it work?

- D transmits a sinusoidal beacon at frequency  $\omega_0$ .
- S1 and S2 tune to  $\omega_0$  with their **primary** FS-PLLs.
- $\bullet~S1$  and S2 each generate a low-power secondary beacon

Note that both sources and destination each have only one antenna.

that is phase locked to the  $\omega_0$  beacon but at frequency  $\omega_1 = \frac{N_1}{M_1} \omega_0$ .

• S1 and S2 transmit their secondary beacons at  $\omega_1$ .

• S1 and S2 tune to  $\omega_1$  with their secondary FS-PLLs.

• S1 and S2 each generate a carrier signal that is phase locked to the  $\omega_1$  beacon but at frequency  $\omega_c = \frac{N_2}{M_2}\omega_1$ .

• S1 and S2 transmit their (modulated) carriers at  $\omega_c$ .

 $\bullet\,$  The bandpass transmissions from S1 and S2 arrive in phase at D.

## Intuition (single-path channels):

- $\Rightarrow\,$  Channels each modeled as a propagation delay.
- ⇒ Identical delay in the forward and reverse channel pair  $g_{ij}(t)$  and  $g_{ji}(t)$ .
- $\Rightarrow \text{ The total propagation delay for the circuit}$  $D \to S_1 \to S_2 \to D \text{ is identical to the propaga$  $tion delay for the circuit } D \to S_2 \to S_1 \to D.$
- $\Rightarrow$  Phase shift through FS-PLLs can also be balanced to achieve in-phase arrival at D.