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Scenario

• Two-source, one-destination communication system

• Sources cooperate via the amplify-and-forward protocol

• Both sources must satisfy outage probability constraints

• Fading channels

S1

S2

D

Problem Statement

• How should transmit energy be allocated to minimize total energy?

• How does CSIT affect energy allocation and overall energy efficiency?
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Our Contribution

• Optimum energy allocation analysis for the amplify-and-forward

protocol:

– with partial CSIT

(1) when to cooperate?

(2) Optimum energy allocation strategy satisfying a fixed outage

probability constraint

– without CSIT

(1) outage probability analysis and bounds

(2) Optimum energy allocation strategy satisfying a fixed outage

probability constraint

• Investigate the effect of CSIT on optimum energy allocation and

energy efficiency
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System Model

• Scenario

S1

S2

D

• Protocol: amplify-and-forward

• Two-source, one-destination cooperative transmission system model:

S

R

D

first timeslot

second timeslot
Gs

H
Gr



'

&

$

%

Destination Processing

Question: How should the destination combine the obervations?

Assumption: Destination has access to full CSI

⇒Maximal Ratio Combining (MRC) to maximize SNR

• With partial CSIT

SNRpartialcsit = GsEs +
HEsGrEr

1 +HEs +GrEr

.

• Without CSIT

SNRnocsit = GsEs +
HEsGrEr

1 + E[H]Es +GrEr

.
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Part I: Energy Analysis for Partial CSIT

Assumption 1: Feedback channel provides perfect channel amplitude

estimates to both sources

Assumption 2: Sources dynamically allocate their transmit energies

based on the instantaneous channel state

Main Results

• When to cooperate?

• Optimum energy allocation strategy satisfying a fixed

outage probability constraint
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When to cooperate?

Notation: ρ := SNR target.

Notation: Energy required to satisfy SNRpcsit = ρ using direct transmission:

E = Es + 0 =
ρ

Gs

Proposition: There exists E < ρ
Gs

if and only if

Gr

Gs

> 1 +
Gs

Hρ

Source energy

T
o
ta
l 
e
n
e
rg
y

sG

ρ
HGs +

ρ

sG

ρ

Do not cooperate

Cooperate
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What does it mean?

When the sources have partial CSIT:

• Cooperative transmission can achieve a transmit energy
reduction iff the condition

Gr

Gs

> 1 +
Gs

Hρ

is satisfied.

• At most, one source should cooperate in each interval.

• In some cases, total energy is minimized if neither source
cooperates and both sources satisfy their SNR targets via
direct transmission.
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Optimum energy allocation with partial CSIT (I)

Temporary assumption: outage probability = 0

• Goal: Minimize E = Er + Es satisfying:

– SNRpcsit = ρ

– Es ∈

(

ρ
H+Gs

, ρ
Gs

]

; Er ∈ [0,∞)

• Optimum source energy allocation:

E∗
s =

ρ

H +Gs
+

(ρH)1/2(Gs + (1 + ρ)H)1/2

(H +Gs) (H(Gr −Gs) +GsGr)
1/2

• Optimum relay energy can be derived by the SNR

contraint and optimum source energy.
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Optimum energy allocation with partial CSIT (II)

Optimum relay energy vs. optimum source energy satisfying SNRpcsit = ρ.
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Optimum energy allocation with partial CSIT (III)

General case: outage probability > 0

Preliminaries: Probability density function of minimum total energy

E∗ = E∗

s + E∗

r satisfying constraint SNRpcsit = ρ almost surely.

fε*

t ε*

Threshold t selected such that FE∗(t) = 1 − p

⇒ Minimum total energy E∗ exceeds threshold t with probability p
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Optimum energy allocation strategy with Partial CSIT

Start

Solve for      

and 

Transmit with 

optimized energy
Do not transmit!

ρH

G

G

G s

s

r +>1

***
rs εεε +=

0, ** == r
s

s G
ερε

t≤*ε

*
rε*

sε

relay 

cooperates

Y N

relay doesn't 

cooperate
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Part II: Energy Analysis for no CSIT

Assumption 1: Sources do not have access to the

instantaneous channel amplitudes

Assumption 2: Sources allocate fixed transmit energies

based only on knowledge of the channel statistics

Main Results

• Outage probability analysis and bounds

• Optimal fixed energy allocation
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No CSIT: Outage Probability Analysis & Bounds

Exact outage probability:

p =

∫

R(ρ)

fGs,Gr,H(x) dx

Lower bound: Assume perfect source-relay channel

p ≥
µsEs

(

1 − exp
(

−ρ

µsEs

))

− µrEr

(

1 − exp
(

−ρ

µrEr

))

µsEs − µrEr

.

Upper bound: Overbound the integration region

p ≤

(

1 − exp

(

−ρ

µsEs

))

·

(

1 − exp

(

−ρ

µHEs

)

ψK1(ψ)

)

where K1(ψ) is the modified Bessel function of the second kind and

ψ := 2
√

ρ(1+µHEs)
EsErµrµH
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Evaluation of Outage Probability Bounds (I)

Variable source energy with proportional relay energy
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Evaluation of Outage Probability Bounds (II)

Fixed source energy with variable relay energy
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Numerical solution for optimum energy allocation
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Numerical Results: relay advantaged (I)

System model:

S

D

R

gs

gr

h
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Numerical Results: relay advantaged (II)

Optimum energy allocation:
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Numerical Results: relay advantaged (III)

Energy efficiency:
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Numerical Results: relay symmetric (I)

System model:

S
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Numerical Results: relay symmetric (II)

Optimum energy allocation:
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Numerical Results: relay symmetric (III)

Energy efficiency:
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Numerical Results: relay disadvantaged (I)

System model:

S

DR
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Numerical Results: relay disadvantaged (II)

Optimum energy allocation:
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Numerical Results: relay disadvantaged (III)

Energy efficiency:
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Conclusions

• When both sources have access to partial CSIT, cooperative

transmission is more efficient than direct transmission iff

Gr

Gs

> 1 +
Gs

Hρ

• Partial CSIT facilitates opportunistic transmission

⇒ significantly improves the energy efficiency of both cooperative

and direct transmission

• New outage probability bounds derived for the case without CSIT

⇒ used to determine optimum energy allocations

• Opportunistic direct transmission with partial CSIT is often more

energy efficient than cooperative transmission without CSIT


