
ClusterFLOP
An Experiment in Building a Cluster From Low cOst Parts

E.E. 505 - Computer Architecture – Professor Swarz

E.E. 506 - Introduction to LANs and WANs – Professor Gannon

David Feinzeig

david@wpi.edu

Jeremy Slater

jasl8r@wpi.edu

May 3, 2004

Acknowledgements

We would like to extend special thanks to the following parties:

• Professor Donald R. Brown for allowing us to use space in the spinlab.

• Stephen W. Laverty and Benjamin Woodacre, WPI, class of 2003, for their invaluable sug-
gestions and assistance.

i

Contents

1 Introduction 1

2 System Architecture 1

3 Hardware System Design 3

3.1 Node Specifications . 3

3.2 Powering of ClusterFLOP . 3

3.3 Diskless Network Booting of Client Nodes . 4

4 Software System Design 5

4.1 Etherboot Network Boot Image . 5

4.2 OpenMosix Required Client Node Configuration . 5

4.3 OpenMosix Userspace Tools . 6

5 Design for Testability 7

5.1 Monitoring Network Activity . 7

5.1.1 Transparent Network Bridge . 7

5.1.2 Data Transfer Rate Analysis: MFS and NFS 8

5.1.3 OpenMosix Node Monitoring Feature . 9

5.2 Testing Sample Application: POV-Ray . 9

5.3 Testing Sample Application: LAME MP3 Encoder 12

6 Conclusions 12

ii

List of Figures

1 OpenMosix mosmon Node Monitoring Utility . 7

2 Maximum Transfer Rate of NFS . 8

3 Maximum Transfer Rate of MFS . 8

4 OpenMosix Heartbeat Traffic . 9

5 Normalized Execution Time of POV-Ray vs. Node Count 10

6 Network Traffic for a Full POV-Ray Render . 11

7 Network Traffic During MP3 Encoding . 12

iii

1 Introduction

The classical approach to improving computing performance has been to “make it faster”. Com-
peting manufacturers have played a game of oneupsmanship, reducing process sizes and increasing
processor operating frequencies. This ideology allows consumers to purchase the latest and great-
est processing power at a premium. Large-scale parallel computing systems have typically been
constructed from such high-end components. However, recently there has been a branch away from
using the best (and most expensive) components available towards using lower cost, mid-grade
parts. This new concept of parallel computing has become more about using readily available
resources to perform the same operations at a reduced cost.

The introduction of Local Area Network (LAN) switches has resulted in the ability to create
scalable massively parallel computing systems with high network bandwidth from off-the-shelf com-
ponents, instead of having to rely on custom systems and custom networks. The use of standard
parts also allows for a much less expensive implementation of a parallel computer. Since a cluster
consists of separate computers connected through a networking infrastructure, replacing or repair-
ing a node does not mean that the entire cluster has to be taken offline. Repair may be as easy
as unplugging the defective node, without affecting the operation of the rest of the cluster, and
connecting a new node.

One disadvantage to running a cluster has been the absolute cost of owning one. Managing a
cluster of N nodes can be close to the cost of managing N separate computers. However, a better
measurement is cost for performance. A cluster can have the same performance as a large-scale
proprietary parallel computer, but can cost less due to the use of highly available parts. Large-scale
proprietary parallel computing systems are produced in small volumes using specialty components,
resulting in higher development fees being incurred per system. A cluster is composed of commodity
parts, produced in large volumes for general markets and not specifically supercomputers, resulting
in much smaller development costs being passed onto the purchaser.

This project was an experiment in constructing a cluster from low cost parts. A 2 GFLOPS
system of 10 nodes, with 1.6 GBytes of total RAM and 10 GBytes of total hard drive storage was
built on a 100 Mbps Ethernet network at a cost to the authors of approximately $1,000. A head
node with a single hard disk is used to boot the remaining 9 diskless client nodes over the network.
OpenMosix is used on a Debian Linux operating system to provide an easy to use and manage
single system image clustering environment. The final ClusterFLOP is meant to be a proof of
concept with results that are scalable to compete with larger-scale parallel computing systems.

2 System Architecture

ClusterFLOP is composed of 10 nodes (1 master and 9 clients). The master node has 512
MBytes of RAM and 10 GBytes of hard drive storage. Each client node has 128 MBytes of RAM
and no hard drive storage. Each node is connected via an onboard 100 Mbps Network Interface
Card (NIC) to a non-blocking 100 Mbps switch. The master node has an additional PCI NIC that
serves as the Wide Area Network (WAN) connection. The head node is used to boot the 9 client
nodes over the network through the use of RAM disks and network file system protocols.

1

Debian Linux is used in conjunction with the OpenMosix kernel extension to provide a single
system image (SSI) clustering environment. The master node has a complete installation of De-
bian Linux with a kernel that has been patched with OpenMosix. Each client node is identically
configured to run an optimized OpenMosix-enhanced Linux kernel in RAM and has read-write per-
missions to a hard drive location on the head node. All interaction with the cluster (e.g. - running
applications, cluster status checks, etc.) is accomplished through the head node. There is no need
to log onto the client nodes due to OpenMosix’s ability to transparently migrate processes in order
to distribute the process load to all nodes.

The chain of events that occurs from the time that the power switch is turned on to when the
cluster is operational is as follows:

1. The power is turned on and the master node begins to boot Debian Linux as the client nodes
start the network boot process, pausing as they search for a Dynamic Host Configuration
Protocol (DHCP) server.

2. Once the head node’s operating system has loaded, it starts a DHCP server and assigns each
client node an Internet Protocol (IP) address. At this point, each client node can now access
a Trivial File Transfer Protocol (TFTP) server located on the head node, which uses the
Etherboot service to send the kernel image to the requesting client.

3. Now each client node begins to boot using the optimized OpenMosix-enhanced Linux kernel.
During the boot process, each node mounts a common root (/) directory (as read-only) on
the head node via the Network File System (NFS).

4. Next, each client requests a mount location for /etc, /var, /tmp, and /mfs (OpenMosix File
System), which must be mounted with read-write permissions. The head node responds
to these requests by generating a unique directory structure containing copies of the four
previously mentioned mount points for each client, based upon their IP.

5. Now that each node has a complete file system mounted they complete the boot process
normally. Once the client has finished booting, the OpenMosix extension is enabled, allowing
the node to be added to the OpenMosix map, which identifies the available pool of nodes.

OpenMosix has a robust auto-discovery daemon, such that every time a client node boots in the
above fashion it joins the OpenMosix cluster. This allows the master node to re-balance the overall
cluster process load by migrating processes to the new node. The daemon also recognizes if a node
should suddenly become disconnected from the cluster and adjusts the overall cluster process load
appropriately.

The hardware and software systems that permit the above-described cluster operation are ex-
plained in more detail in the following sections. Testing techniques and results are discussed as
well, followed by conclusions obtained from the completion of this project.

2

3 Hardware System Design

ClusterFLOP relies upon several different sets of hardware specifications. This section discusses
the specifications for the master and client nodes, how the 10 nodes were powered, the network
configuration used, and the methodology used to accomplish the diskless network booting of the
client nodes.

3.1 Node Specifications

Each node is running a Syntax S635MP motherboard with an integrated VIA C3 800 MHz
Samuel2 processor. Unfortunately, after having purchased the motherboards, when reviewing the
datasheet for the processor it was discovered that, “[t]he FP unit is clocked at 1/2 the processor
clock speed; that is, in an 800-MHz VIA C3, the FP-unit runs at 400 MHz.” [1] To make matters
worse, “[o]ne floating-point instruction can issue form [sic] the FP queue to the FP unit every
two clocks.” [1] This means that the Floating Point Unit (FPU) is effectively running at 1/4 the
speed of the processor, or 200 MHz. Based upon the original impression that the FPU ran at
the full speed of the processor (800 MFLOPS for each of the 10 processors), the intention was to
achieve a maximum performance of approximately 8 GFLOPS across the entire cluster. However,
the uncovering of the true FPU speed as being only 200 MFLOPS for each of the 10 processors
means that the maximum attainable performance is actually 2 GFLOPS for the entire cluster. This
factor of 4 discrepancy was disappointing, and although it affected the absolute performance of the
cluster, it was still possible to demonstrate the proof of concept for the construction and relative
performance of the system.

Every node is connected to the Linksys 4116, 16-port, 10/100 Mbps, non-blocking switch via
an onboard 10BASE-T/100BASE-TX NIC, which is composed of a SiS900 chipset with a Realtek
RTL8201 LAN PHY transceiver. In addition, the master node has a PCI Linksys NC100 NIC,
which acts as the WAN connection for the cluster.

The only hard drive storage for the cluster is a 10 GByte disk on the head node. This node
also has 512 MBytes of RAM and each client node has 128 MBytes of RAM.

(Due to unexplained intermittent problems with the hardware of node 10, this client node has
been taken offline to provide more accurate testing of ClusterFLOP.)

3.2 Powering of ClusterFLOP

For monetary, AC to DC power conversion efficiency, and aesthetic reasons, it was decided that
the 2 groups of 5 nodes would share power supplies. The amount of power consumed by a single
board was an important measurement that played a role in deciding what minimum rating would
be necessary on purchased power supplies. This was measured by tying the multiple 3.3 Volt, 5
Volt, and 12 Volt power supply connectors together, respectively, and measuring the amount of
current drawn by a single node at each voltage with an ammeter. The resulting power draw is
approximately 30 Watts per node. Therefore, each power supply needs to be able to supply about

3

150 Watts to its group of 5 nodes. The actual power supplies that were used are 330 Watts apiece,
which is more than adequate to power the nodes.

An important concern was how to split up each of the two 330 Watt power supplies into 5
ATX power connectors that would plug into each node’s motherboard. This issue was resolved by
designing a simple printed circuit board with ATX power connectors soldered onto it that acted as
a 1-input to 5-output ATX power supply bus. Two of these boards were fabricated by Advanced
Circuits and then 10 male and 2 female ATX power connectors were attached to the buses. This
proved to be a satisfactory solution to the problem of powering the 10 nodes.

3.3 Diskless Network Booting of Client Nodes

It was decided that the head node would be used to boot the 9 diskless client nodes over the
network. In order for this to function properly, the onboard NIC driver integrated into the BIOS
had to support DHCP/TFTP via IP. However, once powered on and configured in the BIOS to boot
from the network, it was discovered that the BIOS driver was in fact compatible for use with Novell
NetWare via IPX only. Since the motherboard manufacturer provides no alternate NIC driver, this
meant that we had to replace the driver module located in the BIOS with the appropriate one. This
process required that we properly identify the exact NIC device implemented on the motherboard,
generate an appropriate ROM file to substitute for the incorrect driver, substitute this new driver
for the correct BIOS module, flash the BIOSes, and keep our fingers crossed.

The information available on Syntax’s website suggested that the NICs used were SiS900 devices.
This was confirmed by examining the vendor and device identifiers located in the BIOS module
for the device. The next step of generating the required NIC driver was accomplished through the
use of EtherBoot. “Etherboot is a software package for creating ROM images that can download
code over an Ethernet network to be executed on an x86 computer.” [2] This Linux-based network
bootloading software was obtained from ROM-o-matic.net [3] and, after many failed attempts,
required some source code adjustments due to an erroneous lookup table in the C source file
responsible for identifying devices that belong to the SiS900 class of NICs. Once the problem was
tracked down and fixed, and the source was compiled, the EtherBoot software was able to generate
the correct ROM image that was required to netboot using PFTP/TFTP via IP. Next, it was
necessary to extract a copy of the original BIOS from a motherboard and replace the original NIC
driver module with the new one.

A BIOS specific manipulation tool was necessary to complete the rest of this task. Internet
postings suggested that since the motherboards use an American Megatrends BIOS (AMI) [4], the
AMIBios Configuration Utility (AMIBCP) was the appropriate choice. Since this utility allows for
editing of the BIOS, including unlocking of secured motherboard manufacturer determined settings
and menus as well as access to the onboard driver modules, AMI has attempted to keep it under
‘lock and key’ by limiting distribution to corporate purchasers of their BIOS. Needless to say,
it was extremely difficult to find, although not impossible. After much searching on the Internet,
AMIBCP[.exe] version 7.51.03 was located and installed. [5] This allowed us to substitute the newly
generated NIC driver module for the original. Once inserted into the BIOS, one of the motherboards
was flashed with the modified BIOS using the AMIFLASH Flash EPROM Programming Utility
version 8.27.38 provided by AMI. [4] The motherboard was then powered up as we watched with

4

fingers crossed. The BIOS was able to correctly locate and load the driver for the SiS900 NIC and
presented us with the message “Searching for DHCP Server. . . ”. This meant that the motherboard
was now ready to locate a DHCP server, request a kernel image, and boot from that image. At
last, the 10+ hours of work required to overcome this unexpected obstacle proved to be successful.

4 Software System Design

With the required hardware infrastructure in place, it was necessary to run the appropriate
software. The master node’s operating system is a standard Debian Linux installation. The Open-
Mosix kernel extension is patched into the kernel. Each client node runs an identical kernel with a
custom initrd. Specialized scripts are used to properly boot and configure the nodes of the cluster.
OpenMosix provides certain “Userspace tools” to simplify the use and monitoring of the cluster.
These software aspects of the cluster are further explained in this section.

4.1 Etherboot Network Boot Image

The client transfers an Etherboot network boot image (etherboot.nbi) from the boot server on
the master node via TFTP. This file contains a kernel image and optionally an initial ram disk
(initrd) if the kernel was built to use one. In our case, the initrd is necessitated by a combination
of an OpenMosix requirement, namely that the same kernel image run on all nodes, and our need
to have the head node boot from its hard drive and all other nodes to netboot. The initrd also
allows for easy reconfiguration of the booting process which was valuable for developing our process.
These two files are packaged into a compound file of the appropriate format via the mknbi-Linux
utility.

While the standard initrd image is appropriate for the head node, as it performs a standard
boot, a custom initrd must be assembled for the other nodes. The kernel modules, utility binaries,
and scripts included in the initrd can be customized using the mkinitrd utility. The netbooting
initrd we assembled includes a lightweight DHCP client and custom startup scripts. The normal
boot sequence involves mounting a root partition located on the master node’s hard disk and then
pivoting that mount to root (/) in place of initrd (which is mounted as root up to that point). In
the netboot initrd startup script we first obtain our IP address using the DHCP client and configure
the Ethernet adapter (even though the new NIC boot ROM – refer to Section 3.3 – obtained an IP
and had the Ethernet adapter functioning earlier in the boot process that information is no longer
available once we start the kernel). Next we mount an NFS partition from the host node and pivot
that mount to root in place of the initrd and continue booting.

4.2 OpenMosix Required Client Node Configuration

The key to having a cluster of diskless machines all operating safely is mounting the correct
partitions with the correct file permissions. Each node needs write access to four different directo-
ries: /etc, /var, /tmp, and /mfs. The rest of the disk can be mounted as read-only. This means
that there are only four directories that need to be unique between nodes, the rest of root (/) can

5

be shared by any number of devices, because they will only read the data from these locations.
This greatly reduces the required disk space in a multinode system, because each node only needs,
in our case, 36 MBytes of unique storage. If the entire drive had to be unique, then the storage
requirements would be on the order of 300 to 500 MBytes.

During boot, each node mounts the root file system as read only. At this point, if they have
never connected to the server before, then there is no unique storage for the node, and it must be
created by the server. We found an existing script and software combination online which proved to
work fairly well, provided by Markus Amersdorfer [6]. With this system, the server or head node,
runs software to listen for the clients. During the client startup they run a script that requests a
mount point for the four unique directories. When the server gets this request it copies /etc and
/var from their original locations to a directory specified by the clients IP. Both /tmp and /mfs
are created empty, since they are empty on startup. When the server finishes generating these
directories, the client resumes booting by creating a ramdisk locally to map to the newly created
unique directories. When the clients finish booting, they have complete access to the writable
directories and join the OpenMosix cluster.

4.3 OpenMosix Userspace Tools

The OpenMosix collection includes a suite of userspace tools. These utilities are designed to
inform the user of the cluster status, as well as provide powerful control over the system. To begin
with, there are such tools as mosmon, openmosixview, and openmosixmigmon. We primarily used
the mosmon utility for its simple yet informative interface. This utility shows the cluster nodes
along the bottom of the screen and the relative load is displayed as a bar graph above each node.
Figure 1 shows this application while running a parallel execution of POV-Ray. This utility is
helpful in showing which nodes in the system are active, and how well the processes are migrating.
For instance, if we only start seven processes on a nine node system, then we will notice those
seven processes migrate, leaving two machines idle. Both openmosixview and openmosixmigmon
are graphical tools for use under X11. The openmosixview utility is a graphical version of mosmon
which also includes information about each node’s memory, the total system migration efficiency,
and allows the user to alter the system’s perceived CPU power. The openmosixmigmon software
provides information about which processes are migrated and where they are migrated.

Additionally, OpenMosix contains some important control utilities such as mosctl and mosrun.
The mosctl utility allows a user to specify characteristics about the OpenMosix cluster, or even tell
OpenMosix to perform tasks with currently running applications. In particular, using the mosctl
utility, the perceived speed of an individual node can be decremented. By reducing the speed value,
the computer will appear as being slower, and OpenMosix will prefer to migrate processes away
from this machine. This is useful in a system, such as ours, where there is a single head node with a
GUI that needs to be responsive for a user. The mosrun utility offers users methods for controlling
the migration of processes. At execution time a user can tell a process specifically not to migrate
to other nodes, or which nodes it can migrate to, or even to only execute on one specific client
node. There are many other complex command line options for this utility as well as many other
OpenMosix programs, but they are beyond the scope of this project.

6

Figure 1: OpenMosix mosmon Node Monitoring Utility

5 Design for Testability

An important aspect in a high performance parallel computing environment is the speed of the
network infrastructure and the level of network saturation. Ensuring that the network is not over
utilized is especially critical in a diskless parallel computing environment such as ours, where the
file system access and process management occur over the same interfaces. The level of utilization
will vary greatly depending on the level of I/O or the size of data files used by migrating processes.
If the network becomes too saturated with traffic, then the speed of the entire cluster will drop as
I/O bound processes stall.

5.1 Monitoring Network Activity

5.1.1 Transparent Network Bridge

A tool to examine the network load between the head node and the switch is a transparent
bridge configured on a PC running Debian Linux. The bridging functionality is built into kernel
versions 2.4 and higher. Since a bridge forwards at the second layer, it is fast, but still allows an
application to capture frames for later analysis. To ensure that the bridge was not introducing too
much latency, we conducted tests using the ping utility to measure trip time between two machines.
As our base comparison, we connected two computers directly with a crossover cable. We then
connected them over the switch, so that we could measure the average introduced latency of the
switch. Finally, we connected the host to the bridge which in turn connects to the switch and on
to the client. For each network path the ping command was repeated 500 times and averaged, with
the results shown in Table 1. It is safe to assume that our network will be relatively unaffected by
the 0.056ms added delay from the bridge.

We used Ethereal [7] to capture all the network traffic between the head node and the switch for
the duration of each test. This resulted in capturing every packet that passed through the bridge
into a file. We were not concerned with the data in the packets, but rather just the packet statistics.
By running tcp-dump on this file, we obtained a text file containing the basic information such as

7

Path Delay ∆ Delay

Host → Client 0.137ms 0ms

Host → Switch → Client 0.154ms 0.017ms

Host → Bridge → Switch → Client 0.210ms 0.056ms

Table 1: PC to PC Delays

time of day, source, destination, packet type and packet length for every packet. Using Matlab, we
parsed and stored the network traffic characteristics indexed by time so that we could graph the
transfer rate over time in units of bytes per second.

5.1.2 Data Transfer Rate Analysis: MFS and NFS

The first tests conducted measure the maximum achievable transfer rates of files copied over
the network using both MFS and NFS. We performed this test only between two nodes (the head
node and a client) in order to judge the upper bound of each protocol. By discovering these upper
bounds, we can tell if the network is saturated during our parallel execution experiments. The
testing consisted of simply copying a 100MB file from the server to a node. As the file was copied,
we captured the traffic and graphed the data transfer rate in Matlab. Figure 2 shows the results
from the NFS test while Figure 3 provides MFS results. From these figures, it is obvious that the
NFS protocol allows for a much higher sustained data transfer rate of nearly 100Mbps, as opposed
to the MFS which yields approximately 60Mbps. This difference is easily explained; NFS transfers
data over the network using UDP, a connectionless protocol, while MFS transfers data with TCP, a
connection oriented protocol. There are additional overheads in TCP not present in UDP, such as
opening and closing connections and error control. In fact, the OpenMosix How To [8], specifically
says that MFS implements caching, time stamping and link consistency, all of which are not present
in NFS.

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

C
h
a
n
n
e
l
U

ti
li
z
a
ti

o
n

(M
b
p
s)

Figure 2: Maximum Transfer Rate of NFS

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

C
h
a
n
n
e
l
U

ti
li
z
a
ti

o
n

(M
b
p
s)

Figure 3: Maximum Transfer Rate of MFS

8

5.1.3 OpenMosix Node Monitoring Feature

An additional feature of the OpenMosix protocol is the heartbeat detection mechanism. During
idle spans, the UDP traffic peaks every few seconds as it monitors the status of other nodes currently
in the network. Figure 4 shows this heartbeat pattern over a two minute idle period. This pattern
is shown clearly by hiding, in Matlab, the NFS traffic present at the same time.

20 40 60 80 100 120
0

0.08

0.16

0.24

0.32

0.4

Time (s)

C
h
a
n
n
e
l
U

ti
li
z
a
ti

o
n

(M
b
p
s)

Figure 4: OpenMosix Heartbeat Traffic

5.2 Testing Sample Application: POV-Ray

OpenMosix is best utilized in an environment with highly parallelizable CPU intensive appli-
cations. A field of applications requiring a large amount of CPU power is 3d rendering, whether
it is rendering single images or entire movies. These complex renderings can easily take days on
a single system. However, this time can be reduced when rendering in parallel on a cluster. We
are using POV-Ray (Persistence of Vision Raytracer) [9] on our cluster to render a simple test
image. POV-Ray lets the user define a start row and end row when rendering, so the image can
be split into at least as many processes as there are nodes in the system. Thus, the entire cluster
can participate in the rendering. We designed a script, ppovray, which takes the number of image
pieces as its first parameter, followed by the normal POV-Ray command line options. This script
determines what size to make the chunks based on the total height specified for the overall image.
It then executes POV-Ray passing along the dynamically created start and end line arguments.
When every instance finishes, the script stitches all the partial images together into the final output
scene. In testing, we have found that it is best to specify at least twice as many pieces as there
are nodes in the cluster. This way, for images that are not evenly difficult to render, machines
that finish processing easy sections will migrate another rendering process from a machine that is
processing a harder section. In the ideal case, all nodes in the cluster will finish rendering at the
same time.

We used the ppovray script in conjunction with the time command to perform multiple tests with
varying numbers of connected nodes. We rendered a simple repetitive tile image, thus minimizing
the range of processing difficulty amongst the partial renders. The final image has a resolution of

9

1024 by 768 pixels with 8X antialiasing. We started testing with all nine nodes connected and one
by one, removed nodes from the system, in each case performing the test three times and averaging
the results. This way, we ended up with a mean render time for each of one through nine connected
nodes. In addition, as a comparison, we rendered the same image three times on an AMD Athlon
XP 2800+ (2.08GHz) based computer running the same Debian Linux kernel. The results of this
test are shown in Figure 5.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.4

0.6

0.8

1
Experimental Results
1st Order Polynomial Fit
Athlon Reference

Node Count

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti

o
n

T
im

e

Figure 5: Normalized Execution Time of POV-Ray vs. Node Count

The resulting execution times shown in Figure 5 as blue dots are normalized to the length of
time that a single node takes to render the image (e.g. - rendering an image using four nodes takes
roughly 30% of the time that it takes a single node to render the same image). The relationship
between execution time and the number of nodes is exponentially decreasing and so the data is
plotted logarithmically so that it appears roughly linear. As a reference, the relative completion
time for the Athlon is shown as a red bar. Using the polyfit function in Matlab, we generated a first
order polynomial equation that is shown in black. The standard form for the first order polynomial
is

y = P (1) · x + P (2) (1)

where : P (1) = −0.831726

P (2) = −0.0204933

and when the log of x and y are taken, it becomes

log10(y) = P (1) · log10(x) + P (2)

y = 10(P (1)·log10(x)+P (2)). (2)

Solving Equation 2 for x provides a simple expression to calculate the number of nodes required to
reduce an image render time to the fraction of time y that it takes to render the image on a single
node,

x = 10
(
log10(y)−P (2)

P (1)
)
. (3)

10

Equation 3 is dependant on the fact that all nodes in the cluster are equal in performance, and
that no other external influences, such as network congestion, are present. This equation would
also likely vary from application to application, based on the processes I/O requirements.

Adding nodes to a cluster will not always help to improve the parallel system performance.
Eventually, enough systems will be sharing the network, such that the bandwidth will become a
limiting factor in the effectiveness of an OpenMosix cluster. We tested our system by analyzing the
network traffic during system load while running ppovray on 2, 5, and 9 nodes in the cluster. With
all 9 nodes executing POV-Ray in parallel, the maximum network utilization is only 1.2 Mbps.
This value is certainly well within our maximum bandwidth. The traffic analysis only becomes
interesting when you examine the network for the entire duration of the process (i.e. from process
creation to migration to termination). Figure 6 shows the network traffic over 60 seconds while
nine nodes render our test image. The processes begins at 0 seconds and begins to migrate at 3
seconds. The network quickly reaches the maximum capacity of MFS as processes are packed up
and shipped out to other nodes. The network traffic then becomes relatively idle until the processes
finish and are sent back to the originating node.

10 20 30 40 50 60
0

12

24

36

48

60

Time (s)

C
h
a
n
n
e
l
U

ti
li
z
a
ti

o
n

(M
b
p
s)

Figure 6: Network Traffic for a Full POV-Ray Render

So, from Figure 6 it is obvious that we are fully utilizing the network bandwidth, at least
when dealing with MFS. However, this only occurs at the beginning, when many processes are
being sent to other nodes all at once. As the processes run there is very little network load.
Increasing the number of nodes, and likewise the number of simultaneous processes would most
likely increase the duration of this heavy network load startup zone. If the running processes then
finish executing within seconds, then there is a large waste of bandwidth and time. OpenMosix
and parallel processing in general is intended for applications that run for a substantial amount
of time when compared with the time it takes for processes to migrate. OpenMosix will be more
efficient when applications take minutes or even hours to process, because at this point, the setup
time is negligible.

11

5.3 Testing Sample Application: LAME MP3 Encoder

As stated before, another limiting factor on the number of nodes is the level of I/O required by a
migrated application. Our final test, to cover this scenario, consisted of ripping wave files to MP3s
using the LAME MP3 encoder [10]. In this test we used all nine nodes to rip nine identical wave
files to MP3s in parallel. In addition to the heavy load during process migration, there is nearly a 20
Mbps constant bandwidth usage for the duration of the encoding procedure as shown in Figure 7.
At the rate shown, a cluster roughly five times the size of ours would completely saturate the
network and transform this CPU bound application into an I/O bound process. Network intensive
applications such as this become the limiting factor in determining how many nodes the cluster is
able to efficiently support. However, it is possible to extend this barrier by upgrading the network
infrastructure to options including Gigabit Ethernet and Myrinet.

20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

Time (s)

C
h
a
n
n
e
l
U

ti
li
z
a
ti

o
n

(M
b
p
s)

Figure 7: Network Traffic During MP3 Encoding

6 Conclusions

Overall this project was a very informative lesson in cluster computing. We successfully linked
ten machines to form a large scale parallel computing environment. The real advantages in using
a package such as OpenMosix is that processes migrate transparently and that it is as simple as
applying a Linux kernel patch. Other clustering environments require special software to be written
to take advantage of networked parallelism. However, with OpenMosix existing applications can
be made to migrate across multiple machines by simply forking within the program (creating a
duplicate process from the one currently running) or running them multiple times. The end user
can automate this process by writing simple scripts that take advantage of easily parallelizable
applications that are run multiple times and especially those that run several instances at once.

From the tests performed, it is apparent that running multiple OpenMosix nodes greatly en-
hances computing capabilities. The degree to which the computing is improved depends upon the
target application. Certain disk access intensive applications cause a diskless cluster to reach an
expansion barrier that would not be reached with a non-disk access intensive application.

12

We are intending to continue work on this project, building a ClusterFLOP II from components
that are more representative of what corporations [not limited to a graduate student budget] might
use to implement such a computing cluster. We would see a huge performance increase simply from
using processors with FPUs that run at the full speed of the chip, as opposed to the 1/4 speed
FPUs that were implemented on our VIA C3s.

13

References

[1] VIA Technologies, Inc. “VIA C3TM in EBGA; Datasheet” July 25, 2003, viewed April 2004
<http://www.via.com.tw/en/Products/C3/C3 EGBA datasheet.zip>

[2] Gutschke, Markus, et al. “Welcome to EtherBoot.org” viewed April 2004
<http://etherboot.com/>

[3] ROM-o-matic.net. “ROM-o-matic.net” viewed April 2004 <http://rom-o-matic.net/>

[4] American Megatrends Inc. “AMI: American Megatrends Inc.: Home Page” viewed April 2004
<http://www.ami.com/>

[5] CrazyApe. “AMIBCP Repository” viewed April 2004
<http://www.stormpages.com/crazyape/amibcp.html/>

[6] Amersdorfer, Markus. “HOWTO set up a Network with Diskless Workstations using Debian
GNU/Linux” viewed April 2004 <http://homex.subnet.at/ max/diskless/index.php>

[7] Combs, Gerald, et al. “Ethereal: A Network Protocol Analyzer” viewed April 2004
<http://www.ethereal.com/>

[8] Buytaert, Kris, et al. “The openMosix HOWTO” viewed April 2004
<http://howto.ipng.be/openMosix-HOWTO/>

[9] POV-Team. “POV-Ray - The Persistence of Vision Raytracer” viewed April 2004
<http://www.povray.org/>

[10] Cheng, Mike, et al. “LAME Ain’t an MP3 Encoder” viewed April 2004
<http://lame.sourceforge.net/>

[11] Michlmayr, Martin, et al. “Debian GNU/Linux – The Universal Operating System” viewed
April 2004 <http://www.debian.org/>

[12] Bar, Moshe, et al. “openMosix, an Open Source Linux Cluster Project” viewed April 2004
<http://openmosix.sourceforge.net/>

[13] Syntax Groups Corporation. “Syntax USA” viewed April 2004
<http://www.syntaxusa.com/>

Powered by LATEX

14

