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Abstract— Over-the-air precision two-way time transfer and
ranging (PTTR) uses the signals exchanged between two RF
transceivers to estimate the range between them and the offset
between their clocks. Our paper makes three significant contri-
butions to the estimation and position, navigation, and timing
literature. First, we introduce a propagation channel model
characterized by its amplitude (attenuation), phase shift, and
propagation delay. This three-parameter formulation is quite
practical for modeling signal exchange over line-of-sight chan-
nels with arbitrary additive wide-sense stationary noise that
also captures electronic effects. Second, we derive the Cramer-
Rao Lower Bound (CRLB) for this three parameter channel
model. We show that there is a canonical definition of phase
shift for which the CRLB is a diagonal matrix. The derived
CRLB depends on simple properties of the signal and noise
power spectral density (PSD) related to whitened bandwidth and
whitened center frequency as well as the signal to noise ratio.
Third, we derive a maximum likelihood estimator (MLE) for the
amplitude, phase shift, and delay given the reference waveform,
received waveform samples, and noise PSD. A novel aspect of the
derived MLE is that it is implemented entirely in the frequency
domain, which makes the MLE more computationally efficient
than a typical time-domain implementation. Using an example
reference waveform, we show that the derived MLE achieves
an empirical covariance close to the CRLB for sufficiently high
signal to noise ratios. The estimation results of our paper are
directly relevant to over-the-air PTTR applications operating
in direct-path, line-of-sight propagation environments. The
generality of the waveform and noise formulations allow our
estimator and bounds to be applied to arbitrary PTTR ranging
waveforms in colored interference environments. We present a
system architecture utilizing this estimator that enables PTTR
on existing wireless networks with no changes to the communi-
cations protocol or radio hardware or software.
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1. INTRODUCTION

Applications

Precision two-way time transfer and ranging (PTTR) using
RF communication signals has many applications in naviga-
tion and environmental sensing. Inter-radio ranges obtained
from a wireless network can be used to establish the three-
dimensional locations of the radios in a network-centric coor-
dinate system that is uniquely determined up to translations
and rotations (Fig. 1). The precision available with our

Figure 1. PTTR enables GPS-free navigation.

PTTR using RF communications can also be utilized to make
very fine measurements of propagation delay changes due
to changes in atmospheric refractivity. Since phase delay
measurements are sensitive to time delay changes on the scale
of the carrier period, these measurements can be used to infer
small scale changes in temperature, atmospheric pressure and
water vapor pressure that affect the refractive index of the
atmosphere. This feature makes PTTR-derived propagation
delays potentially valuable for weather and climate applica-
tions.

Prior Work

A key component of any two-way time transfer and ranging
system, e.g., [1–6], is accurate time delay estimation. Fun-
damental limitations of time delay estimation for narrow-
band and wide-band signals were studied in [7] and [8],
respectively. The analysis in [7, 8] focused primarily on
deriving bounds for the accuracy of time delay estimation for
spectrally flat bandpass signals with constant signal-to-noise
ratio (SNR) over the band of interest. Weiss and Weinstein
derived several elegant results including SNR thresholds that
divide passive time delay estimation performance into dis-
tinct operating regimes including an “ambiguity-dominated”
regime with performance governed by the Barankin bound
at moderate SNRs and an “ambiguity-free” regime with per-
formance governed by the Cramer-Rao lower bound at high
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SNRs. This work was generalized to “split bandpass” signals
and a maximum likelihood estimator was developed for these
types of signals in [9].

The radar literature, e.g., [10, 11], has also considered the
classical problem of time delay estimation. This body of
literature typically considers delay estimation of signals with
general frequency-domain representation B(ω) rather than
signals with specific power spectra as in [7–9]. A well-known
result from the radar literature states that the variance of time
delay estimates is lower bounded by

var(τ̂) ≥ 1

2β2ρ
(1)

where ρ is the post-integration SNR at the receiver and

β2 =

∫∞

−∞
(ω − 〈ω〉)2 B(ω)|2 df
∫∞

−∞
|B(ω)|2 df (2)

is the mean square bandwidth of B(ω) where

〈ω〉 =
∫ ∞

−∞

ωB(ω) dω (3)

denotes the mean frequency of the signal B(ω) [12]. The
radar literature typically assumes 〈ω〉 = 0, although we do
not make that assumption here. The bound in (1) can be
shown to be consistent with the Barankin bound in [7, 8] for
post-integration SNRs in the ambiguity-dominated regime.

This paper considers a further generalization of the types of
signals used for delay estimation by considering a scenario
in which, like the radar literature, the signal of interest is
general, but unlike the prior literature, the received signal
has two additional nuisance parameters: an unknown phase
offset due to electronic effects in the transceivers and an un-
known received amplitude due to propagation and electronic
effects at the transceivers. This three-parameter channel
model is practical for modeling signal exchange over line-of-
sight channels with arbitrary additive wide-sense stationary
noise that also captures electronic effects in the transceivers.
In addition to deriving fundamental lower bounds for the
variance of the delay, phase, and amplitude estimates, we
also develop a computationally efficient maximum likelihood
estimator (MLE) for the delay, phase, and amplitude given the
reference waveform, received waveform samples, and noise
power spectral density.

The parsimonious channel model, fundamental bounds, and
computationally-efficient algorithm for estimating the chan-
nel amplitude, delay and phase shift for arbitrary signals
represent a significant advance over the prior literature as it
incorporates practical transceiver considerations not consid-
ered in the previous work.

2. TIMING AND RANGING FROM WIRELESS

NETWORKS

Wireless communications networks use over-the-air ex-
change of signals between radios to pass information. From
the perspective of the communication application, the clock
offset and propagation delay represent nuisance effects that
must be compensated for, however careful measurement of
these parameters allows the signals that are normally trans-
mitted across the network to be used as an organic source

of time synchronization and ranging in precision navigation
and timing applications where other sources of localization
and time synchronization, such as GNSS, are unavailable.
Synoptic Engineering is developing a method for estimating

Figure 2. Timing and ranging architecture.

organic time synchronization and inter-radio ranges by in-
serting RF ”sniffers” in-line between existing time-duplexed
wireless networking radios and their antennas (Fig. 2 top).
These sniffers record both the outbound signals generated by
their attached radios and the inbound signals received over
the antenna from neighboring radios (Fig. 2 bottom). An
pristine outbound signal (blue) generated from Radio A will
be collected by Sniffer A and later seen as a noisy attenuated,
phase-shifted and delayed inbound signal by Sniffer B. Since
sniffers A and B each maintain their own local timebases, the
apparent offset, called a pseudorange in the GPS vernacular,

will be the sum of the propagation time τAB and clock offset

∆TAB . When Radio B transmits, its communication signal
will be seen as a pristine outbound signal (red) at Sniffer B
and later as a noisy, phase-shifted and delayed inbound signal
by Sniffer A, however in this direction, the pseudorange

will be the difference τAB − ∆TAB . The reciprocal nature
of propagation and the anti-reciprocal nature of change-of-
timebase allow these quantities to be independently estimated
when the recorded signals from both sniffers are shared over
a network. A Kalman Filter allows the dynamic quantities of
clock offset and range to be tracked using pseudoranges as
measurement updates.

The elegance of this approach is that no modifications are
needed to the waveforms or radios and it applies to any time-
duplexed two-way wireless communication system operating
in line-of-sight propagation conditions, however it requires
that we develop a delay estimator to measured the apparent
offsets between outbound and inbound copies of the wave-
form that works with arbitrary communications waveforms in
additive colored noise. The remainder of the paper develops
such an estimator and lower-bounds its performance.

3. SYSTEM MODEL

In this paper, we assume a linear time invariant channel h(t)
with frequency response H(ω). We further assume H(ω) is
well approximated by a constant envelope and affine phase
over the band of interest as shown in Fig. 3. In the modulated
signal spectrum band of support, the signal experiences a

group delay of τ = −dH(ω)
dω

seconds and an additional phase

shift of φ radians as shown in Fig. 3.
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Figure 3. Affine channel model.

We assume the modulated signal is a baseband signal b̃(t)
modulated by a carrier at frequency fc Hertz. Letting
ωc = 2πfc for notational convenience, the continuous time
received signal after propagation through the channel h(t)
and demodulation at the receiving node can be written as

r̃(t) = aejφb̃(t− τ) exp(−jωcτ) + ñ(t) (4)

where the amplitude a > 0 and phase φ ∈ [−π, π) are
assumed to be both unknown and n(t) is complex additive

Gaussian noise. Both b̃(t) and ωc are assumed to be known.

This three-parameter formulation is quite practical for mod-
eling signal exchange with real transceivers because, while
a delay always causes a phase shift, not every phase shift
corresponds to a delay. For example, transceiver electronics
may cause fixed phase shifts without corresponding delays.
Previous results have considered only one- or two-parameter
channel models (delay, amplitude + phase, amplitude + delay)
and have not addressed the general wide-sense stationary
Gaussian noise that our model considers.

Assuming a sampling period of T and first sample time of t0,
the sampled received signal can be written as

r̃k = r̃(t0 + kT )

= aejφb̃(t0 + kT − τ) exp(−jωcτ) + n(t0 + kT )

= ab̃k(τ) exp(−j(ωcτ − φ)) + ñk

for samples k = 0, . . . , N − 1. We can vectorize the
observation as

r̃ = a exp(−j(ωcτ − φ))






b̃0(τ)
...

b̃N−1(τ)






︸ ︷︷ ︸

b̃(τ)

+ñ

where b̃(τ) : R 7→ R
N is a vector of time-shifted samples of

the continuous-time baseband signal b̃(t).

We assume the noise is distributed as ñ ∼ CN (0,C) where
CN denotes the proper complex Gaussian distribution and
the positive definite covariance C is known. Since C is

positive definite, C−1 is also positive definite. Hence, we

can denote C−1 = D⊤D, where D can be computed with
via a Cholesky factorization [13]. Letting

r = Dr̃

= a exp(−j(ωcτ − φ))b(τ) + n

where b(τ) = Db̃(τ) and n = Dñ. Note that n ∼
CN (0, I), i.e., the coordinate transformation r = Dr̃
whitened and normalized the noise such that var(nk) = 1.

4. LOWER BOUNDS ON PARAMETER

ESTIMATION ACCURACY

This section derives closed form expressions for the Cramer-
Rao lower bound for the estimation of the unknown param-
eters τ , a, and φ. Unlike the prior literature, e.g., Weiss and
Weinstein 1983 which assumed specific narrowband signal
models, we make no assumptions about the waveform ex-
changed between the two RF transceivers.

We denote the unknown parameter vector as θ = [τ, a, φ]⊤.
Note that the whitened observation r ∼ CN (µ(θ), I) where

µ(θ) = a exp(−j(ωcτ − φ))b(τ).

From [14, p. 524], we can write the jointly Gaussian whitened
observation’s density as

p(r;θ) =
1

πN
exp

(
−(r − µ(θ))H(r − µ(θ))

)
.

Also, from [14], the elements of the Fisher information
matrix can be calculated by computing

Iℓ,m = 2Re

(
∂µH(θ)

∂θℓ
· ∂µ(θ)

∂θm

)

.

The partial derivative with respect to τ can be computed as

∂µ(θ)

∂τ
= −ja exp(−j(ωcτ − φ)) (Wb(τ) + ωcb(τ))

where W := 1
j

∂
∂t

= − 1
j

∂
∂τ

is the “frequency operator”

defined in [12, p. 11]. The partial derivative with respect to a
can be computed as

∂µ(θ)

∂a
= exp(−j(ωcτ − φ))b(τ)

and the partial derivative with respect to φ can be computed
as

∂µ(θ)

∂φ
= ja exp(−j(ωcτ − φ))b(τ)

Fisher Information Matrix and Cramer Rao Lower Bound

The (1, 1) element of the Fisher information matrix can be
computed as

I1,1 = 2a2 (Wb(τ) + ωcb(τ))
H
(Wb(τ) + ωcb(τ))
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There are four terms

T1 = 2a2 (Wb(τ))
H
(Wb(τ))

T2 = 2a2ωc (Wb(τ))
H
b(τ)

T3 = 2a2ωcb
H(τ)Wb(τ)

T4 = 2a2ω2
cb

H(τ)b(τ).

Assuming the observation is long enough so that the entire
whitened baseband pulse b(t− τ) is captured in the observa-
tion, we can write

(Wb(τ))
H
(Wb(τ)) =

(
1

j

∂

∂t
b(τ)

)H (
1

j

∂

∂t
b(τ)

)

≈ 1

T

∫ ∣
∣
∣
∣

∂

∂t
b(t)

∣
∣
∣
∣

2

dt

= 〈ω2〉 1
T

∫

|b(t)|2 dt

≈ 〈ω2〉bH(τ)b(τ)

where 〈ω2〉 is the mean square frequency of the whitened
baseband pulse b(t). The second equality follows [12], the
approximations occur in the substitution of the integrals for
the inner products where we have used the fact that

∂

∂τ
b(t− τ) = − ∂

∂t
b(t− τ).

We define

Eb = bH(τ)b(τ) (5)

which is the energy in the vector of reference samples. This
quantity is independent of τ because time translation does not
affect energy.

Also from [12], we can write

T3 = 2a2ωcb
H(τ)Wb(τ)

= 2a2ωc〈ω〉Eb

where 〈ω〉 is the mean frequency of the whitened baseband
pulse. It is straightforward to show that T2 = T3. Finally,

T4 = 2a2ω2
c‖b(τ)‖2

= 2a2ω2
cEb.

Putting it all together, we have

I1,1 = 2a2Eb
(
〈ω2〉+ 2ωc〈ω〉+ ω2

c

)

= 2a2Eb
〈

(ω + ωc)
2
〉

where
〈

(ω + ωc)
2
〉

is the mean square frequency of the

whitened modulated signal.

Next, we turn our attention to the (2, 2) element of the Fisher
information matrix. We can compute

I2,2 = 2bH(τ)b(τ)

= 2Eb.

For the (3, 3) element of the Fisher information matrix, we
can compute

I3,3 = 2a2bH(τ)b(τ)

= 2a2Eb.

It is easy to see that the Fisher information matrix elements
(1, 2), (2, 1), (2, 3), and (3, 1) are all zero since the product
of the partial derivatives in (5) is purely imaginary.

The remaining Fisher information matrix elements are the
(1, 3) and (3, 1) elements. Under the current parameteriza-
tion, these are non-zero and can be calculated as

I3,1 = 2Re

(
∂µH(θ)

∂φ

∂µ(θ)

∂τ

)

= −2a2bH(τ)(Wb(τ) + ωcb(τ))

= −2a2Eb (〈ω〉+ ωc)

= −2a2Eb
〈

ω + ωc

〉

.

We now summarize these results. Denote by

ρ = a2Eb (6)

the integrated signal to noise ratio (SNR) and let ω̃ = ω+ ωc

represent the frequencies of the (whitened) bandpass signal.
We can then write the Fisher information matrix as

I =

[
2ρ〈ω̃2〉 0 −2ρ〈ω̃〉

0 2Eb 0
−2ρ〈ω̃〉 0 2ρ

]

. (7)

The Cramer-Rao lower bound is the inverse of the Fisher
information matrix. This can be computed as

I−1 =







1

2ρ(〈ω̃2〉−〈ω̃〉2)
0 〈ω̃〉

2ρ(〈ω̃2〉−〈ω̃〉2)
0 1

2Eb

0
〈ω̃〉

2ρ(〈ω̃2〉−〈ω̃〉2)
0 〈ω̃2〉

2ρ(〈ω̃2〉−〈ω̃〉2)






.

Note that

〈ω̃2〉 − 〈ω̃〉2 = 〈(ωc + ω)2〉 − 〈ωc + ω〉2

= ω2
c + 2ωc〈ω〉+ 〈ω2〉 −

(

ω2
c + 2ωc〈ω〉+ 〈ω〉2

)

= 〈ω2〉 − 〈ω〉2

= β2

where β2 is the mean square bandwidth defined in (2). Hence
the CRLB can also be written as

cov
[

θ̂
]

≥ I−1 =






1
2ρβ2 0 〈ω̃〉

2β2)

0 1
2Eb

0
〈ω̃〉
2ρβ2 0 〈ω̃2〉

2ρβ2




 . (8)

Note that the (1,1) element is consistent with the bound in
(1) from the radar literature. Hence, the addition of unknown
phase and amplitude parameters in the channel model does
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not change the fundamental bounds for delay estimation.

Also note that the (3,3) element is proportional to
〈ω̃2〉

〈ω2〉−〈ω〉2
,

which is typically a large quantity since the numerator is
proportional to ω2

c and the denominator is the mean squared
bandwidth of the signal which is not a function of ωc. The
(1,3) and (3,1) off-diagonal elements may also be large. This
motivates the reparameterization as discussed below.

Reparameterization

In this section, we derive the Fisher information matrix and
Cramer-Rao lower bound for a reparameterized representa-
tion of the original problem. Let

ν = φ− (ωc + 〈ω〉)τ (9)

and let the new parameter vector be θ = [τ, a, ν]⊤. With this
parameterization, the mean vector of the whitened observa-
tion r can be written as

µ(θ) = a exp(−j(ωcτ − ν − (ωc + 〈ω〉)τ))b(τ) (10)

= a exp(j(〈ω〉τ + ν))b(τ) (11)

The partial derivatives with respect to each unknown param-
eter can be computed as

∂µ(θ)

∂τ
= −ja exp(j(〈ω〉τ + ν)) (Wb(τ)− 〈ω〉b(τ))

∂µ(θ)

∂a
= exp(j(〈ω〉τ + ν))b(τ)

∂µ(θ)

∂ν
= ja exp(j(〈ω〉τ + ν))b(τ).

where W again denotes the “frequency operator” consistent
with [12].

The calculation of the elements of the Fisher information
matrix is similar to the original parameterization. The only
elements that change are the (1, 1) element and the (1, 3) and
(3, 1) elements. For the (1, 1) element, we can compute

I1,1 = 2a2 (Wb(τ)−〈ω〉b(τ))H (Wb(τ)−〈ω〉b(τ))

This is of a similar form as the original parameterization
except ωc has been replaced by 〈ω〉 and there is a new
negative sign to account for in the calculations. The four
terms are

T1 = 2a2 (Wb(τ))
H
(Wb(τ))

T2 = −2a2〈ω〉 (Wb(τ))
H
b(τ)

T3 = −2a2〈ω〉bH(τ)Wb(τ)

T4 = 2a2〈ω〉2bH(τ)b(τ).

Following the same steps as with the original parameteriza-
tion, we have

T1 = 2a2Eb〈ω2〉
T2 = −2a2Eb〈ω〉2

T3 = −2a2Eb〈ω〉2

T4 = 2a2Eb〈ω〉2

where the T1 element is unchanged but the T2, T3, and
T4 elements are all changed with respect to the original
parameterization. It follows that

I1,1 = 2a2Eb
(

〈ω2〉 − 〈ω〉2
)

.

For the (1, 3) and (3, 1) elements, we can compute

I3,1 = 2Re

(
∂µH(θ)

∂ν

∂µ(θ)

∂τ

)

= 2a2bH(τ)(Wb(τ)− 〈ω〉b(τ))
= −2a2Eb (〈ω〉 − 〈ω〉)
= 0.

The utility of this reparameterization is now evident in that it
causes the Fisher information matrix to be diagonal.

Under the reparameterization, the Fisher information matrix
can be written as

I =

[
2ρβ2 0 0
0 2Eb 0
0 0 2ρ

]

where we have used the fact that the mean square bandwidth

β2 = 〈ω2〉 − 〈ω〉2. Since the Fisher information matrix is di-
agonal, the Cramer-Rao lower bound can easily be computed
as

cov
[

θ̂
]

≥ I−1 =

[
1/(2ρβ2) 0 0

0 1/(2Eb) 0
0 0 1/(2ρ)

]

. (12)

Note that the (1, 1) element of the Cramer-Rao lower bound
under the reparameterization is identical to the (1, 1) element
of the Cramer-Rao lower bound under the original param-
eterization and (1). The (2, 2) element is also unchanged.
The key difference here is that the Cramer-Rao lower bound
is now conveniently diagonal and that the (3, 3) element is
now much smaller than the (3, 3) element of the original
parameterization.

This CRLB provides insight into waveform design to achieve
desired PTTR performance targets.

5. MAXIMUM LIKELIHOOD PARAMETER

ESTIMATION

MLE Derivation

In the previous section, it was notionally convenient to work
with the pre-whitened signals r(t) and b(t) and assume
the pre-whitened reference signal b(t) had unit energy. In
developing an estimation algorithm, we work rather with

the original signals r̃(t), b̃(t) and do not assume the ref-
erence signal to be unit energy. We assume the complex
additive Gaussian noise to be wide-sense stationary with a
known power spectral density. Use the reparameterization
of the channel by (τ, a, ν), where the continuous-time and
continuous-frequency unwhitened continuous time observa-
tions are given as

r̃(t) = aejν b̃(t− τ) exp (j〈ω〉τ) + ñ(t) (13)

R̃(ω) = aejν exp (−j(ω − 〈ω〉)τ)B̃(ω) + Ñ(ω) (14)
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where ω represents the baseband angular frequency, N(ω) is
the Fourier transform of the WSS noise process with known
power spectral density

σ2(ω) := E
[
|N(ω)|2

]
, (15)

〈ω〉 is the mean frequency of the whitened baseband signal

〈ω〉 =
∫

ω

ω
|B̃(ω)|2
σ2(ω)

dω

/
∫

ω

|B̃(ω)|2
σ2(ω)

dω , (16)

Let r̃k, b̃k denote the discrete-time samples from (??). The
coefficients of the discrete Fourier transform are

B̃ℓ =

Mb∑

k=1

b̃k exp (−2πjkℓ/M) (17)

R̃ℓ =

Mr∑

k=1

r̃k exp (−2πjkℓ/M) (18)

where M ≥ Mb + Mr − 1. The lth frequency sample now
corresponds to the baseband angular frequency

ωℓ =
2πℓ

MT
for 0 ≤ ℓ < M/2

=
2π(M − ℓ)

MT
for M/2 ≤ ℓ < M.

If T satisfies the Shannon-Nyquist sampling rate to avoid

aliasing given the bandwidth of b̃(t) and noise bandwidth of

ñ(t), then B̃ℓ = B̃(ωℓ) and R̃ℓ = R̃(ωℓ) and (14) becomes

R̃ℓ ≈ aejν exp (−j(ωℓ − 〈ω〉)τ) B̃ℓ + Ñℓ

where the Ñℓ’s are approximately independent, zero-mean

complex Gaussian random variables with E[|Ñℓ|2] ≈ σ2
ℓ =

σ2(ωℓ). Applying Parseval’s theorem, the relevant waveform
properties can be computed from the frequency-domain ref-
erence signal samples and PSD as

Eb =
M−1∑

ℓ=0

|B̃ℓ|2
σ2
ℓ

(19)

〈ω〉 = 1

Eb

M−1∑

ℓ=0

ωℓ

|B̃ℓ|2
σ2
ℓ

(20)

〈ω2〉 = 1

Eb

M−1∑

ℓ=0

ω2
ℓ

|B̃ℓ|2
σ2
ℓ

(21)

β2 = 〈ω2〉 − 〈ω〉2. (22)

Defining sℓ(τ, a, ν) = aejν exp (−j(ωℓ − 〈ω〉)τ), the likeli-
hood function can then be written as

L(τ, a, ν) =

M−1∏

ℓ=0

1

πσ2
ℓ

exp

(

−|R̃ℓ − sℓ(τ, a, ν)B̃ℓ|2
σ2
ℓ

)

.

The maximum likelihood estimate of the parameter vector
(τ̂ , â, ν̂) is the argument that maximizes this likelihood. The

log likelihood ratio of the signal-present and signal-absent
distributions is

γ(τ, a, ν) = ln (L(τ, a, ν)/L(∗, 0, ∗)) (23)

= 2aRe









e−jνej〈ω〉τ
M−1∑

ℓ=0

R̃ℓB̃
∗
ℓ

σ2
ℓ

ejωℓτ

︸ ︷︷ ︸

g(τ)









− a2Eb

(24)

and is a simpler function with the same maximizing param-
eters. The values of a and ν maximizing γ are closed-form
functions of τ

â(τ) = |g(τ)|/Eb, (25)

ν̂(τ) = angle(e−j〈ω〉τg(τ)). (26)

which when substituted into (23) and simplified give

q(τ) = γ(τ, â(τ), ν̂(τ)) (27)

=
|g(τ)|2
Eb

(28)

thus

τ̂ = argmax (q(τ)) (29)

â = |g(τ̂)|/Eb, (30)

ν̂ = angle(e−j〈ω〉τ̂g(τ̂)). (31)

MLE Computation

The ν̂ and â estimates are closed-form functions of τ̂ , how-
ever the τ̂ estimator requires an optimization step. The func-
tion q(τ) is highly multi-modal, changing over timescales
inversely proportional to the bandwidth, so our optimization
uses search over a set of coarsely-spaced τk’s, followed by a
Newton-Raphson maximization of q(τ) in the vicinity of the
coarse peak. The first and second derivatives of q(τ) needed
in the N-R iteration are

q̇ =
2

Eb
Re(gġ∗)

q̈ =
2

Eb
Re(gg̈∗) +

2

Eb
|ġ|2

ġ = j

M−1∑

ℓ=0

R̃ℓB̃
∗
ℓ

σ2
ℓ

ωℓe
jωℓτ

g̈ = −
M−1∑

ℓ=0

R̃ℓB̃
∗
ℓ

σ2
ℓ

ω2
ℓ e

jωℓτ

In practice, we have found that the convergence region of the
N-R iteration is smaller than the initial coarse-spacing of the
τk’s, so we implemented a hybrid bisection / N-R approach
where the step size taken is always the smaller of the two
optimization approaches.

CRLB Computation

It is of practical value to not only be able to compute the MLE
but also bounds on the accuracy of these directly from the
data. The CRLB derived in (12) is not directly computable
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from the data because involves the unknown integrated SNR
ρ. The quantity g(σ) for any delay σ is a random variable
distributed as

g(σ) ∼ CN
(

aejνej〈ω〉τ
M−1∑

ℓ=0

|B̃ℓ|2
σ2
ℓ

ejωℓ(σ−τ), Eb
)

,

It follows that q(τ̂) = |g(τ̂)|2/Eb = â2Eb = ρ̂ has a non-
central chi-square distribution with two degrees of freedom
and non-centrality parameter less than or equal to ρ with
equality when τ̂ = τ As such, it has mean ρ+2 and standard
deviation 2

√
ρ+ 1, so with high probability (greater than

97%) we have

ρ+ 2− 4
√

ρ+ 1 < ρ̂ < ρ+ 2 + 4
√

ρ+ 1

or equivalently

ρ̂+ 6− 4
√

ρ̂+ 3 < ρ < ρ̂+ 6 + 4
√

ρ̂+ 3.

Defining

ρ̂− = ρ̂+ 6− 4
√

ρ̂+ 3 (32)

ρ̂+ = ρ̂+ 6 + 4
√

ρ̂+ 3 (33)

then from (12) we obtain the data-computable estimator
bounds

E
[
|τ̂ − τ |2

]
>

1

2ρ̂+β2
(34)

E
[
|â− a|2

]
≥ 1

2Eb
(35)

E
[
|ν̂ − ν|2

]
>

1

2ρ̂+
(36)

The RMS accuracy of the delay and is thus inversely pro-
portional to the square root of the integrated SNR and to the
whitened signal bandwidth. The RMS accuracy of the phase
scales inversely with the integrated SNR. The accuracy of
the amplitude is a fixed value, inversely proportional to the
energy in the whitened reference signal.

Generalized Likelihood Ratio Test

It is also often of practical value to have a statistical test for
deciding between the presence or absence of the reference
signal in the noisy received signal. The likelihood ratio
test maximizes the probability of signal-present categoriza-
tion (detection) for a given probability of signal-absent mis-
categorization (false alarm) [14], however the likelihood ratio
test requires that the true channel parameters (τ, a, ν) be
known. An ad-hoc but widely-used test for distributions
with unknown parameters is the generalized likelihood ratio
test (GLRT) which substitutes into the likelihood ratio the
maximum likelihood values of the unknown parameters. The
generalized log likelihood ratio q(τ̂) from (27) is a random
variable. It is straightforward to show that it has a non-central
chi-square distribution with two degrees of freedom and non-
centrality parameter equal to the whitened SNR ρ = a2Eb,
where a is the true amplitude. The cumulative distribution

function is given by Pr(q < ζ) = 1 − Q1(
√
ρ,
√
ζ)

where QM (a, b) is the Marcum Q function, thus for a given
threshold ζ, the probability of correct detection and false
alarm are, respectively

PCD = 1−Q1(
√
ρ,
√

ζ) (37)

PFA = Q1(0,
√

ζ). (38)

As above, the correct detection probability is not data-
computable from the data since ρ is unknown, but we can
utilize the probabilistic bounds on ρ given in (32) to get

1−Q1(
√

ρ̂+,
√

ζ) < PCD < 1−Q1(
√

ρ̂−,
√

ζ) (39)

6. NUMERICAL RESULTS

To demonstrate the efficacy of the frequency-domain
maximum-likelihood estimator derived in Section 5 with re-
spect to the fundamental bounds developed in Section 4, this
section provides numerical results assuming additive white
complex Gaussian noise. We assume the baseband signal
is given by a Hann-weighted linear frequency modulated
complex baseband chirp with duration of 5 µs with bandwidth
parameter 50 MHz. A time-domain plot of the reference
baseband pulse b(t) is shown in Fig. 4
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Figure 4. Real and imaginary components of the
Hann-weighted linear frequency modulated complex

baseband chirp reference pulse b(t) used in this section.

The carrier frequency is further assumed to be 900 MHz.
A Monte Carlo simulation was run by generating 20000
independent delay, phase, and noise realizations. Amplitudes
were selected deterministically to achieved a specified SNR
value. The delay and phase estimation performance results
are shown in Figures 5 and 6, respectively.

These results show that, given sufficient integrated SNR, the
maximim likelihood estimator is efficient in that the achieved
performance closely matches the fundamental limits of the
CRLB.

7. CHALLENGES AND FUTURE WORK

The practical and computationally efficient approach for
computing the maximum likelihood estimates of delay, phase
and amplitude from a pair of reference and received signals
is directly applicable to the system architecture presented
in Sec. 2 for obtaining clock synchronization and pairwise
ranges between radios in a wireless network network. There
are several PTTR challenges that have not been addressed in
this paper and will be the subject of future work:

• Model Limitations: The three-parameter line-of-sight
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Figure 5. Example of the achieved delay estimation
performance of the maximum likelihood estimator versus the

Cramer-Rao lower bound.
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Figure 6. Example of the achieved phase estimation
performance of the maximum likelihood estimator versus the

Cramer-Rao lower bound.

channel model is simple and captures electronic effects that
decouple delay, amplitude and phase. However, multipath
in the propagation environment or frequency-dependent elec-
tronic group delays may be present and are not captured by
this model.
• Calibration: The technique allows the total reciprocal

component τAB and anti-reciprocal component ∆TAB to
be measured, however a calibration procedure is necessary
to remove the non-propagational reciprocal delays in RF ca-
bles, electronic components and digital processing to obtain
the time-of-flight component. Similar calibration of anti-
reciprocal biases are needed to determine the clock offset.
These one-time calibration techniques may include loop-back
signal collection on individual radios and direct-connection
of pairs of radios.
• Kinematics and Clock Models: As mentioned, the propa-
gation delay and time offset are stochastic random processes
that can be tracked using a Kalman filter, however appropriate

state spaces, evolution equations and process noise character-
istics of the motion (affecting propagation delay) and clock
divergence (affecting the time offset) must be defined and
parametrically characterized.
• Data Volume: Our technique requires that portions of
outbound and inbound waveforms be captured by the snif-
fers and that the outbound samples be shared over the data
network. For wide bandwidth communications with frequent
timeslots, this could stress the data capacity of the transport
layer used. In this case, techniques that make use of the
waveform structure to compress the outbound signals may be
effective.
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