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Abstract— In this paper, we analytically derive an ex-
act expression for the SINR of the two-stage parallel in-
terference cancellation (PIC) multiuser detector in a syn-
chronous, nonorthogonal, binary, CDMA communication
system. In order to obtain an intuitive understanding, we
consider an approximation to the SINR expression that
is well justified in scenarios where the error probability
of the matched filter detector is reasonably low. Given a
specific SINR requirement for each user in the system, we
derive an expression for the minimum transmit power nec-
essary to meet this requirement when the two-stage PIC
detector is used. We also derive an expression for a mea-
sure of the theoretical system capacity of PIC, defined as
the maximum number of users possible in a system with
finite available transmit power. Analytical results compar-
ing PIC to the successive interference cancellation (SIC)
detector and matched filter (MF) detector show that PIC
requires less total transmit power and has greater theo-
retical system capacity than the SIC or MF detectors in
the cases considered.

I. INTRODUCTION

One promising technique for mitigating multiple access
interference in CDMA communication systems is parallel
interference cancellation (PIC). PIC was first introduced
for CDMA communication systems in [1] and [2] as the
multistage detector and was shown to have close con-
nections to joint maximum likelihood detection. Since
Varanasi and Aazhang’s pioneering work, there has been
an increased interest in understanding the performance
of the PIC detector (see, for instance, [3], [4], [5], [6], [7])-

In this paper, we study the signal to interference plus
noise ratio (SINR) performance of PIC and its implica-
tions to transmit power and theoretical system capac-
ity. We present an exact expression for the SINR of the
PIC detector and, in order to obtain a more intuitive
understanding, we suggest an approximation that holds
in typical operating scenarios where the error probabil-
ity of the matched filter detector is reasonably low. Us-
ing this result, we consider the case where each user in
the CDMA communication system has a particular SINR
requirement and derive an expression for the minimum
transmit powers necessary to satisfy these requirements.
Note that, in a nonorthogonal multiuser system such as
CDMA, increasing one user’s transmit power to meet
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their SINR requirement can also have the effect of in-
creasing the interference seen by the other users in the
system, hence lowering their SINR. The approximations
used in this paper allow the transmit powers to be com-
puted via a set of of simultaneous linear equations.

As a first step towards understanding the SINR per-
formance of PIC, we derive closed form expressions for
the total required transmit power and theoretical system
capacity of the PIC detector in the equi-correlated case
where all users have identical signature waveform cross-
correlations. These expressions are analytically compared
to the results for SIC and MF detection provided in [8] un-
der identical assumptions. We provide analytical proofs
that show that, in the cases considered, PIC requires less
total transmit power and has greater theoretical system
capacity than the SIC or MF detectors. Numerical results
verifying the analysis are also presented.

We assume a synchronous CDMA multiuser commu-
nication scenario with binary signaling, nonorthogonal
transmissions, and an additive white Gaussian noise
channel. The communication system model is identical
to the basic synchronous CDMA model described in [9].
The number of users in the system is denoted by K and
all receivers considered in this paper operate on the K-
dimensional MF bank output given by the expression

y=RAb+on (1)
where R € REXK ig a symmetric matrix of normalized
user signature crosscorrelations such that Ry = 1 for
m=1,...,K and |Rye| < 1for all k # ¢, A € REXK ig
a diagonal matrix of positive real amplitudes, b € BK*!
is the vector of i.i.d. equiprobable binary user symbols
where B = {1}, o is the standard deviation of the addi-
tive channel noise, and n € REX1 represents a matched
filtered, unit variance AWGN process where E[n] = 0
and E[nn'] = R. The channel noise and user symbols
are assumed to be independent.

II. SINR ofF Two-StaGE PIC

Under the common assumption that the PIC detector
has perfect knowledge of the amplitudes and signature
crosscorrelations, the PIC detector forms the soft output



for the k" user by the expression

yoe = a®b® +> " ppea® [0 — sgn(y®)] +on®.
S—_—
e#h
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The notation SINR{” denotes the SINR of the k™ user’s
output of multiuser detector X defined as

E (k) b(k)2
SINR;:’) é [yX | ]

var[yy” | b®]
where y” denotes the k** user’s soft output from mul-

tiuser detector X prior to hard decision. We can then
compute the SINR of the PIC detector as

2
(a(k)b(k) e pkza“)\l’z)
£k

SINRE). =
PCT Y Y prepema®alt™ Qg + 20 Y preal® By + 02
(Ekmk Zh
where
U, = E[¢“[s™],
Qm = E[e2e™ |b®] — E[e® | b™]E[e"™ | 5*)], and
By, = E[e®n®|p™).

Exact expressions for ¥, €, and ¢ are given in the Ap-
pendix of this paper. It is evident that the exact ex-
pression for the SINR of the PIC detector is quite com-
plex and does not lead to an intuitive understanding
of its properties. Instead, we will impose the following
“normal-operating” assumptions also imposed in [8] and
indirectly in [9, pp. 378]:

1. Assume that € is approximately independent of 5
for all £ # k, or in other words that an error in the deci-
sion of the matched filter output for user £ is independent
of the bit transmitted by user k.

2. Assume that €® is approximately independent of ™
for all £ # m, or in other words that matched filter de-
cision errors for user £ are independent of matched filter
decision errors for user m.

3. Assume that € is approximately independent of n®
for all £ # k, or in other words that matched filter decision
errors for user £ are independent of the Gaussian channel
noise in the k** user’s soft matched filter output.

These assumptions are well justified unless the error prob-
abilities at the output of the matched filter detector are
high and they imply that

\Ifl ~ 0 W;ék
QUm ~ 0 YUFEK)F (nFFk)
@[k ~ 0 W;ék

The remaining term requiring calculation is Qs which

can be derived as
Qe = B[()? 6] - E[e” bV

E[(e)?] - 0 = 4P

where P = P(b“ # sgn(y”)) is the probability of error
of the £t user’s matched filter output and where the im-
posed assumptions were used in the approximation. Un-
der these approximations, the SINR of the PIC detector
may then be written as

a®
SINRG: = . 2
PIC Z[;ﬁk rkla(l)‘lpe(l) + 1 ( )

where a® = (a™/0)? is the normalized power (or
SNR) of the k*" user and rge = p, is the squared cross-
correlation of the k" and £** users’ signature waveforms.

III. POWER EFFICIENCY

In this section, we use the result of (2) to calculate the
normalized power required by each user in the system
in order to meet a particular SINR requirement. If we

define the normalized power vector & = [a®,...,a®]T
then (2) implies that
a=[4S(T — I)Pla + Se )

=[I-4ST -I)P]"'Se

where S is a diagonal matrix with the ££t" element equal
to the output SINR requirement for user £, P is a diag-
onal matrix with the ££t" element equal to P®, T is a
matrix of squared signature crosscorrelations given as

11 e ™MK

K1 TKK

where rg¢ = 1 for all £, and e is a K-vector with all ele-
ments equal to one. If the inverse exists in (3) then there
is a unique solution for the normalized user powers given
S, T', and P. Also note that when the interference can-
cellation is perfect (i.e., when P = 0) then a = Se or, in
other words, each user’s normalized power (SNR) is equal
to their output SINR requirement. This is intuitively sat-
isfying since perfect cancellation implies that there is no
MALI in the outputs of the two-stage PIC detector and
that noise is the only channel impairment.

Proposition 1: Under the following assumptions:
1. The squared user crosscorrelations are all identical,
ie., rgg =71 for all k #£ 4,
2. The user output SINR requirements are all identical,
ie,, §S=sI, and
3. The decision error probabilities are all identical, i.e.,
P =pl,
then the total transmit power required for two-stage PIC
detection may be written as

T Ks

e = 1—drsp(K —1) )



Proof: Under the assumptions of the proposition,
we can rewrite (3) as

o = s[I—4spA]'e (5)
——
A

where A is defined such that its diagonal elements are all
equal to zero and its off-diagonal elements are all equal
to r. The inverse in this last expression can be computed
explicitly since A has explicit solutions to its eigenval-
ues and eigenvectors. Denoting x = —4rsp, it can be
shown that the diagonal elements of A™" are all iden-

tical and equal to _; 0 Kf%jrf();_lm_l and that the off-

diagonal elements of A~ are all identical and equal to
It then follows directly that

R Fe@=K)=T"

s(x(2-K)-1+4+ (K - 1)z)
?2(K-1)+22-K)-1"

a® —

Recognizing that the numerator and denominator have
the common factor z — 1, we can simplify this last ex-
pression to write

s
a® =
(K-1z+1
hence the total normalized power required for the PIC
detector is given in (4) after the substitution x = —4rsp.
|

The following remarks expose some of the intuitive prop-
erties of (4):

o The cases of perfect cancellation (p = 0) or orthogonal
transmission (r = 0) are identical and lead to a total
normalized power requirement of Ks.

¢ For fixed K, nonzero crosscorrelation or nonzero error
probabilities lead to a penalty term in the denominator of
(4) that leads to an increase in the total power required.

IV. SysTEM CAPACITY

A theoretical measure of system capacity, denoted as
Kipaz, can be defined as the operating point at which
the required power is infinite, or equivalently, when the
denominator of (4) equals zero. In this case, we can state
that, for the PIC detector,

Koz = +1 (6)

4drsp
which implies that the system capacity is approximately
inversely proportional to the squared signature crosscor-
relations r, the required output SINR s, and the error
probability p of the MF first stage.

V. CoMPARISON TO MF AND SIC MULTIUSER
DETECTORS

Using the two-stage PIC SINR results derived in the
prior section and the SINR results on SIC and MF mul-

tiuser detectors from [8], we can form Table I to com-
pare the total power required (e ) and system capac-
ity (Kmqz) of the PIC, SIC, and MF detectors for a
given SINR requirement under the assumptions of Propo-
sition 1. We note that the expressions for total power and

Detector e a Koz
K 1
MF l—rs(IS(—l) rs +1
0¥ —1 —log(4p)
SIC r(1—4pf¥) log 6
K 1
PIC m drsp +1

TABLE I

MULTIUSER DETECTOR COMPARISON UNDER THE ASSUMPTIONS OF

14rs

A
PROPOSITION 1. 8 = Tidrsp -

system capacity for the SIC detector are simplified but
equivalent to the expressions presented in [8].

Comparison of the PIC and MF detectors is straight-
forward. A system using PIC detection requires less to-
tal transmit power e« and has a higher K,,,, than a
system with MF detection when p < 0.25 for any admis-
sible values of K, r, and s. Conversely, for p > 0.25, a
system using MF detection requires lower total transmit
power and has a higher K,,,, than PIC for any K, r,
and s. Since an error probability p > 0.25 describes an
unusual operating region where communication has very
low reliability, we can say roughly that the PIC detec-
tor is uniformly superior to the MF detector in terms of
SINR, total required power, and system capacity in the
equi-correlated case.

We compare PIC and SIC detectors in the following
propositions.

Proposition 2: Under the same assumptions as Propo-
sition 1 and K > 2, PIC requires less total transmit power
when 0 < p < 0.25 and rs > 0.

Proof: To show that PIC requires less total power
than SIC we will show that

Ks < K —1
1—4rsp(K —1)  r(1 —4pfK)
for 6 = 1-1;1:?;;' For notational convenience we define
g = 4p
A = 7rs

and we also assume that all parameters are such that both
denominators are positive in order for this comparison to
make any sense. In this case we can cross multiply the
expressions to get the following equivalent expression

KX1-¢85%) < (85X -1)(1-g\K - 1))



for 8 = ﬁ%\ and collection of like terms yields

KX1-q)+1+gx < 651 +4qN). (7

It can be shown that (7) holds for K = 2 under the as-
sumptions of the proposition. To show that (7) also holds
for arbitrary K we will use an inductive proof. Assume
that (7) holds for some value of K —1. Then we will show
that it also holds for K. The hypothesis of the induction
implies that

(K-DAX1-q)+1+g\ < 6851(1+4q))

for a particular value of K — 1. Multiplying both sides
by 8, the hypothesis implies that

(K —DA1—q)+1+g\ < 651 +qN).

This last expression, combined with (7), implies that it
is sufficient to show that

KAN1l-g¢)+1+¢h < (K-1AL-q)+1+¢gA

in order to prove the claim. Using the fact that 6(1 +
g\) = 1+ X\ we can write an equivalent expression

KAX1-q@+1+gx—-1-X < 8K-1A1-9q)
and simplifying

K\N1-¢)-A1l-¢g) < 6K-1)A1-9)

which leads to the common positive factor A(1 — ¢) hence
(K-1) < ¢K-1)

which holds for # > 1 and K > 2. But 8 > 1 is equivalent
to 0 < g < 1 or, equivalently, 0 < p < 0.25 hence (7) is
true for K under the hypothesis that it is true for K — 1.
Since (7) can be shown explicitly true for K = 2 the claim
is proven inductively. |

Proposition 3: Under the same assumptions as Propo-
sition 1 and K > 2, PIC and has greater K,,,; than SIC
when 0 < p < 0.25 and rs > 0.

Proof: To prove this proposition, we first note that
for p = 0 the denominator of the total power expressions
for both the PIC and SIC detectors can never go to zero
as K increases, hence both algorithms have theoretically
infinite capacity when the decision error probability is
zero. In order to prove that K,,,; is greater for PIC
than SIC when 0 < p < 0.25, we wish to show under our
previously established notation that

g\ logd

Since gA > 0 and logf > 0 we can express this inequality
equivalently as

1 -1
1> ogq

1+¢gX
1+ A

ghlogg > (14 ¢)\)log

where we have substituted 6 = ﬁ%\ Defining
1+¢gX
=qgAl -1 1
h(A,q) = gAlogg — (1 +gA)log T

then it is equivalent to prove that h(A,q) > 0forall A > 0
and 0 < ¢ < 1. To show this, we note that

1
lim h(X,q) =0 ~log 5 Y og(l1+A)>0 (8)

and that

limh(\,q) = O. 9
im h(A, ¢) 9)

Since h(g, A) is continuous in g on the open interval 0 <
g < 11for A > 0, we can compute its partial derivative in
this region as

q+aqk

0
1+4gA <

2 ping =

1
34 Alog

where the inequality follows directly from the the as-
sumptions 0 < ¢ < 1 and A > 0. This implies that
h(A, q) is monotonically decreasing on the open interval
0 < ¢ < 1 and this fact combined with (8) and (9) implies
that h()\, ¢) > 0 on the open interval 0 < ¢ < 1. [ |

Intuitively, PIC detection tends to outperform both
SIC and MF detection in the 0 < p < 0.25 interval be-
cause the decisions from the first stage are reliable enough
such that cancellation is beneficial to the final decision
statistics at the output of the second stage. The first
user in a SIC detector is actually decided via MF detec-
tion and their decision statistic is subject to the interfer-
ence of all of the other users. The second user’s decision
statistic is subject to K — 1 interference terms and so
forth. PIC detection attempts to cancel all of the mul-
tiple access interference for each user hence, when the
interference estimates are reliable (0 < p < 0.25), the
results of this analysis imply that, under operating con-
ditions that satisfy the approximations used to derive (2)
and the assumptions of Proposition 1, better performance
can be achieved by canceling all of the multiple access in-
terference in parallel rather than successively.

VI. NUMERICAL RESULTS

Although the prior section analytically showed that
PIC detection requires less total transmit power and pro-
vides greater theoretical system capacity than SIC and
MF detection, this section presents numerical examples
that demonstrate that the actual performance difference
may be quite significant. Figure 1 plots the total normal-
ized power from Table I for PIC, SIC, and MF detectors
as a function of K for several values of p. Note that the
MF power requirements do not change as a function of
decision error probability since there is no interference



cancellation. These results clearly show that PIC detec-
tion may require several orders of magnitude less power
than the SIC and MF detectors in the cases considered.
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Fig. 1. Normalized total power required for PIC, SIC, and MF
detection to meet the SINR requirement s = 10 for r = 0.01.

Figure 2 plots the theoretical system capacity expres-
sions from Table I for PIC, SIC, and MF detectors as a
function of p for two values of s. These results clearly
show that PIC may offer several orders of magnitude
greater theoretical system capacity than the SIC and MF
detectors in the cases considered.

10 )
— MF
- sic
- - PIC
6 \\
10 | ~ 4
N
~
~
<
N
5 S S
10°F ~ ~ J
N
~s=20dB > s=10dB
~ < <
3 N <
E ~ N
<00t N RN i
g ~ >
5] ~ ~
O ~ ~
3 ~ <
£10°r ~ ~. |
3 ~ ~
2 < N
" ~ ~
N ~
<
o= — _s=10dB \\\ N
10°} Sl - - E
- < N
N N
- - N
_ s=20dB ST- L ~
1 e _ ~ \\ ~
10 s=10dB T T - L S o D
- ~_ N
s=20dB T~ =)
0 \\ \
10 — \75 \74 \73 \72 \7]
10 10 10 10 10 10

Decision error probability (p)

Fig. 2. System capacity for PIC, SIC, and MF detection to meet
the SINR requirements s = 10dB and s = 20dB for r = 0.01.

VII. CONCLUSIONS

In this paper we derived an expression for the SINR
of the PIC detector and examined its implications on
power efficiency and theoretical system capacity. In the
case where all users have the same SINR requirement and
where the signature correlations are identical between all
users, we showed analytically that PIC outperforms SIC
and MF detection in terms of power efficiency and the-
oretical system capacity. Numerical results suggest that
the performance differences may be significant.

APPENDIX

In this Appendix, we present the exact expressions for
the terms used to calculate the SINR of the PIC detector.

I. U, FOR £ #£ k

Recall that U, = E[b® —sgn(y¥) | b*]. Since the users’
bits are assumed independent and zero mean then ¥y, =
—E[sgn(y®) | b*]. Conditioning temporarily on all of the
users’ bits, we can write

E[sgn(y?)|b] = P@“ >0]|b)— P <0|b)

—rT Ab —r] Ab
Q| —* -{1-e|—
g g
] Ab
1-209( ¢
g

where we have used the facts that y® = r] Ab+on® and
Q(z)+Q(—z) = 1. To remove the conditioning on b, first
denote B™® as the set of cardinality 25~ of all possible,
equiprobable, binary K-vectors with the k** user’s bit
fixed to the known value b®). Then it follows that

= 3 (-2 (%)

beB(k)

1 ; Ab
e (")

beBk)

Efsgn(y®) | s®]

and U, follows directly.

II. Qg FOR (£ £ k) # (M # k)
Recall that

E[(6) — sgn(y®@))(6™ — sgn(y™)) [6] — ¥, ¥y
= E[b(l)b("‘) |b(k)] — E[b(l)sgn(y("‘)) | b(k)]
—E[bsgn(y)) [6™] + Blsgn(y)sgn(y ™) 6]
R IALY

Qe =

Since the users’ bits are assumed independent and
zero mean, E[B®W ] = 0. To compute
E[b®sgn(y™) | b*], we can temporarily condition on b
to use a prior result in this Appendix to write

Eb®sgn(y"™)|b] = b® [1 -2Q (r;';Ab)] .

ag



Now, removing the conditioning on b, we can write

i 5, (52)

beB(’“)

S Z b(‘)Q(T Ab)

beB(’“)

Eb®sgn(y™) [6()]

An expression for E[b®™sgn(y®) | 5*'] can be derived sim-

11arlﬁ

e remaining term required to compute g, is
E[sgn(y®)sgn(y™)|b*®]. Temporarily conditioning on
all of the users’ bits, we can write

E[sgn(y)sgn(y™)|b] = +P
4P
-P

-P

w® >0rn{y™ > 0}[d)
¥ <opn{y™ <o0}|b)
¥ >0pn{y™ <0}|b)
¥ <opn{y™ >0} |b).

—~ =~ ==

Using the notation of [10, pp. 936], where

/ / g(z,y,p) dy dz
h k

where g(z,y, p) is the bivariate Gaussian pdf parameter-
ized by p, it can be shown that

T T
-r, Ab —r, Ab
(T )

L(h,k,p)

Efsgn(y)sgn(y™)[b] =

T T
r, Ab r_  Ab
+L (la_y ma 7plm)
—r] Ab ’I'TAb
—L ( L ’ plm)
g g
_ L(

r/Ab —r] Ab )
> » —Pem
a a

1>

T T
r, Ab r_  Ab
M<47m7plm) .
g g

Now, removing the conditioning on b, we can write

Ab 'rT Ab
1 P s Pém

beB(’“)

Efsgn(y)sgn(y™) [ 6*)] =

from which Qy, follows directly. Note that there is no
closed form expression for L(h,k,p) except in special
cases. Computation of E[sgn(y‘®)sgn(y™) | b*'] will, in
general, require numerical integration.

IT1. Q4 FOR £ #k

The results from the prior section of this appendix
can be applied directly to this case, recognizing that
E[(®)? |p™] = E[(sgn(y?®))?|b®] = 1. We can then
write

1 r,] Ab
Qu = 2+—2K—3 Z b(Z)Q (—ZO' )—‘I’%

beB*)

IV. &y, FOR L #£ kK

In order to derive an exact expression for ®y;, we will
state a useful result first. Suppose that v and v are unit
variance, zero mean, Gaussian random variables and that
Efuv] = p. Then it can be shown via direct integration
that

Elusgn(t +v) |t] = (10)

2p ( —t? )

—exp| —].
V27 P2

Recall that ®4, = E[(b® — sgn(y®))n™ | b*]. Since the
users’ bits and channel noise are assumed independent
and zero mean, then ®y, = —E[sgn(y“@)n® |b*]. Con-
ditioning temporarily on all of the users’ bits, and recog-
nize that sgn(y®) = sgn(y'” /o) for o # 0 then we can

use (10) to write
(—r[ b)2
g

2p4x,

E[sgn(y)n® | b] N

exp

The conditioning on b is removed as before to write

Pek Tl Ab)
E[sgn(y®)n® [p(®] = — E exp (
K-2 2
V2r2 beB® 20

and @y, follows directly.
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