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Abstract —

This paper describes a new technique for improv-
ing the performance of multistage parallel interfer-
ence cancellation (PIC) multiuser detection. The fo-
cus of the paper is on the hard-decision multistage
PIC detector due to the fact that it possesses two de-
sirable properties: (a) very low computational com-
plexity in binary communication systems and (b) the
optimum (joint maximum likelihood) bit estimates
are a fixed point of the hard-decision PIC iteration.
Unfortunately, the hard-decision PIC iteration is also
known to sometimes demonstrate two modes of un-
desirable convergence behavior: convergence to non-
optimum fixed points and limit cycles. This paper
demonstrates that limit cycles tend to occur with
much greater probability than convergence to non-
optimum fixed points. To improve the performance
of the hard-decision multistage PIC detector, we pro-
pose a reactive limit cycle mitigation algorithm. The
results suggest that significant performance improve-
ments may be possible in some cases with only modest
increases in computational complexity.

I. INTRODUCTION

One promising technique for mitigating multiple access in-
terference in CDMA communication systems is parallel inter-
ference cancellation (PIC) multiuser detection. PIC multiuser
detection was first introduced for CDMA communication sys-
tems in [1] and [2] as the multistage detector and was shown
to have low computational complexity, good performance, and
close connections to the optimum joint maximum likelihood
detector. PIC multiuser detection has also been the subject
of extensive research more recently due to its applicability to
3G cellular standards [3].

Since Varanasi and Aazhang’s pioneering work in the early
1990’s, there has been an increasing interest in understand-
ing the performance of hard-decision multistage PIC detec-
tion, e.g. [4]-[8]. The results of these papers suggest that the
hard-decision multistage PIC detector may offer significant
performance gains with respect to the matched filter detector
and even outperform the linear MMSE and decorrelation de-
tectors in some cases. An intuitive explanation for this good
overall performance is that the optimum (joint maximum like-
lihood [9]) decisions are a fixed point of the hard-decision PIC
iteration. Near-optimum performance is achieved when the
hard-decision PIC iteration converges to the optimum fixed
point with high probability.

Simulations and analysis have shown, however, that the bit
error rate performance of the hard-decision multistage PIC
detector is not equivalent to that of the optimum detector,

even for an infinite number of PIC stages. This suboptimum
performance is due to two factors, both demonstrated in this

paper:
1. The hard-decision PIC iteration may possess one or
more non-optimum fixed points in {—1, +1}%.

2. The hard-decision PIC iteration may not converge to
any fixed point but enter a limit cycle instead.

Evidence of limit cycles in the hard-decision PIC iteration can
be seen in the simulation results of [6].

With the suboptimum performance of the hard-decision
multistage PIC detector well documented, recent attention
has turned towards methods to improve the performance of
PIC detection. The research to date generally falls into one of
two approaches. The first approach is to modify the initializa-
tion of the multistage PIC detector such that the probability
of “good” convergence is improved. This may be achieved,
for instance, by using a linear transformation on the bank
of matched filter outputs prior to multistage PIC detection.
Decorrelation of the matched filter outputs was explored in
[2] and was shown in [9] to reduce the likelihood of limit cycle
behavior with respect to using a conventional matched filter
multistage PIC initialization. The tradeoff of this approach is
that the linear transformation results in increased computa-
tional complexity which may be prohibitive in cases when the
spreading codes are pseudo-random.

The second approach to improving the performance of the
multistage hard-decision PIC detector is to modify the inter-
ference cancellation nonlinearity of the detector such that the
effects of incorrect interference estimates are minimized. As
an example of this approach, the linear PIC detector (first
described in [10]) replaces the nonlinear sgn(-) function of the
hard-decision PIC detector with a linear mapping. The perfor-
mance of the linear PIC detector has been extensively investi-
gated, e.g. [11]-[15]. Other examples of this approach are par-
tial interference cancellation [16], weighted linear/nonlinear
cancellation [17], linear clipping and deadzone nonlinearities
[18]-[19] and sigmoidal interference cancellation nonlinearities
[20]-[22]. The tradeoff of these approaches is that the opti-
mum fixed point of the original hard-decision PIC iteration
is lost, in general, and that the implementation complexity of
these improved PIC detectors tends to be higher than that of
the hard-decision multistage PIC detector.

In this paper, we consider a new approach towards improv-
ing the performance of multistage PIC detection. Our results
suggest that limit cycles are the largest cause of poor perfor-
mance in the hard-decision multistage PIC detector and we
propose an algorithm to mitigate limit cycle behavior. The
proposed algorithm does not modify the initialization or in-
terference cancellation nonlinearity of the hard-decision PIC



detector but rather observes the output of the hard-decision
PIC iteration and reactively corrects for poor convergence be-
havior. The advantages of this approach are that the cor-
rection only needs to be applied when needed, the desirable
properties of the original PIC iteration are retained while the
undesirable properties are mitigated, and the computational
complexity remains low.

We assume a synchronous CDMA multiuser communica-
tion scenario with binary signaling, nonorthogonal transmis-
sions, and an additive white Gaussian noise channel. The
communication system model is identical to the basic syn-
chronous CDMA model described in [9]. The number of users
in the system is denoted by K and all multiuser detectors con-
sidered in this paper operate on the K-dimensional matched
filter bank output given by the expression

y=RAb+on (1)

where R € RF*K is a symmetric matrix of normalized
user signature crosscorrelations such that Rgr = 1 for m =
1,...,K and |Ry| < 1 for all k # £, A € RF*¥ is a diagonal
matrix of positive real amplitudes, b € B¥*! is the vector of
i.i.d. equiprobable binary user symbols where B = {£1}, ¢
is the standard deviation of the additive channel noise, and
n € R¥*! represents a matched filtered, unit variance AWGN
process where E[n] = 0 and E[nn'] = R. The channel noise
and user symbols are assumed to be independent.

II. HARD-DECISION MULTISTAGE PIC DETECTION

Under the assumption that the receiver has perfect knowl-
edge of the amplitudes and signature crosscorrelations of all
the users in the system, the hard-decision multistage PIC de-
tector’s output after iteration m + 1 is given as

dim+1) = sgn(y— (R—-1)Ad(m)) (2)

where d(m) is the K-vector of tentative binary decisions at
the output of the m™ stage. Typically, the PIC iteration is
initialized by setting d(0) = sgn(y). The multistage PIC de-
tector’s final decisions may occur at some pre-set final stage
M or, as is the case in this paper, the iteration may be moni-
tored such that final decisions are generated upon convergence
of the iteration.

Since R, I, and A are all symmetric matrices, the hard-
decision multistage PIC detector can be shown to be a spe-
cific case of a symmetrically connected iterated map neural
network [23] or a symmetrically connected binary Hopfield
neural network operating in fully parallel update mode [24].
Both of these papers prove that neural networks belonging to
this class can only demonstrate two types of convergence be-
havior: convergence to a fixed point or period-2 limit cycles.
The following four-user example demonstrates both of these
types of convergence behavior for the hard-decision multistage
PIC detector.

EXAMPLE 1:
Suppose that A =1,

4 1 1 -3
1 1 4 -2 =2
R = 1 -2 4 0|
-3 -2 0 4
and that y = [-0.25,1.75,—1.75,—-0.75]". It

can be shown that the hard-decision PIC it-
eration in (2) has two fixed points: d =

[-1,1,-1,—1]" (the optimum fixed point) and
d = [1,1,—1,1]". The hard-decision PIC itera-
tion also has a period-2 limit cycle between the
pointsd = [-1,1,—1,1] " andd = [1,1,-1,-1]".

The following lemmas provide additional intuition on the
attractors of the hard-decision PIC iteration.

Lemma 1. Givend € {—1,+1}*, d is a fired point of (2) iff
d is a local mazimum (neighborhood size of Hamming distance
one) of the likelihood function 2b" Ay —b' ARAbD.

Lemma 2. Suppose (2) enters a period-2 limit cycle such
that d(m) = d(m — 2) # d(m — 1) for all m > M. The
Hamming distance between d(m) and d(m — 1) is at least 2
for allm > M.

The proofs of these lemmas are straightforward and are
omitted for space.

Despite the conceptual simplicity of the hard-decision PIC
iteration in (2), little is actually known about the regions of
attraction of the iteration’s fixed points and period-2 limit
cycles. For example, initializing the PIC iteration at a point
Hamming distance one from a fixed point of the iteration does
not guarantee convergence to that fixed point. Example 1
explicitly demonstrates this by showing a case where the op-
timum fixed point is only Hamming distance one from both
limit cycle points.

A graphical analysis showing regions in y-space leading to
fixed point and period-2 limit cycle attractors was presented
for the two-user case under the initializations d(0) = sgn(y)
and d(0) = sgn(R™'y) in [9]. This analysis makes it pos-
sible to predict the behavior of the hard-decision multistage
PIC detector before the application of any iterations and, if
necessary, proactively modify the initialization and/or the “in-
terconnection matrix” (R — I)A to achieve desirable conver-
gence behavior. Such an analysis appears to be difficult for
the general K > 2 case, however. This realization, combined
with the fact that each hard-decision PIC iteration has low
computational complexity, suggests that reactive techniques
for improving the convergence behavior of the hard-decision
multistage PIC detector may be more appropriate. Moreover,
since period-2 limit cycles are (a) the primary cause of poor
performance (see Section IV) and (b) simple to identify at the
output of the hard-decision PIC iteration, reactive methods
for limit cycle mitigation should provide significant perfor-
mance gains with minimal additional complexity. With this
motivation, the following section develops a reactive limit cy-
cle mitigation algorithm that corrects for period-2 limit cycle
behavior without affecting other modes of convergence.

III. MITIGATION OF LIMIT CYCLES

In this section, we develop a reactive technique for limit
cycle mitigation that, unlike the stabilization techniques pro-
posed in [23], does not modify the original hard-decision PIC
iteration or its initialization. The limit cycle mitigation algo-
rithm described below retains the desirable properties of the
hard-decision PIC iteration while correcting only for undesir-
able limit cycle behavior.

The essential idea behind the limit cycle mitigation algo-
rithm is that it is a simple task for a receiver, in the pro-
cess of performing the hard-decision PIC iteration, to iden-
tify the onset of a period-2 limit cycle or convergence to a
fixed point. On the other hand, it will often be difficult for



a receiver to determine if convergence was to the optimum
fixed point or a non-optimum fixed point without significant
computational expense. These facts, combined with the evi-
dence in Section IV suggesting that limit cycle behavior tends
to occur with much higher probability than convergence to
non-optimum fixed points, lead to the following limit cycle
mitigation algorithm.

Limit Cycle Mitigation Algorithm

1. In each bit interval, hard-decision multistage PIC detec-
tion is applied until the iteration converges to a fixed
point or a period-2 limit cycle begins.

2. If the multistage PIC detector converges to a fixed
point, this fixed point is used as the output (bit esti-
mates) of the detector. No special action is taken.

3. If the multistage PIC detector enters a period-2 limit cy-
cle, the following limit cycle correction steps are taken.

(a) Of the K tentative decisions at the output of the
PIC iteration, let 2 < k < K denote the Hamming
distance between the states in the limit cycle.

(b) Partition the tentative decision vector d into a
limit cycle part and a fixed part. Since the in-
dexing of the users is arbitrary, we can reorder
the users for conceptual clarity such that the limit
cycle part is the first x elements of d and the
fixed part is the last K — x elements of d. De-
note d = [dic dyixep]’ and set dprxpp equal
to the fixed part of the tentative decision vector.

(¢) Conditioning on the fixed bits drrxEp, perform
a conditional joint maximum likelihood (CJML)
optimization on the limit cycle bits drc, i.e.,

dro-—civmr =

arg  max  2d' Ay —d' ARAd. (3)

drce{-1,+1}%

(d) Form the output (bit estimates) of the detector as

- |

We reiterate that the algorithm posed above does not at-
tempt to rectify convergence to non-optimum fixed points but
only corrects for limit cycle behavior due to their relative fre-
quency and the ease at which they can be identified. Intu-
itively, the limit cycle mitigation algorithm assumes that the
fixed bits in a period-2 limit cycle have a high probability of
being correct and that one or more of the bits toggling in
the limit cycle have a low probability of being correct. The
algorithm exploits this fact to perform a conditional joint max-
imum likelihood optimization only on the toggling bits, typi-
cally at a much lower computational cost than a full, uncon-
ditional maximum likelihood search.

We also note that the limit cycle mitigation algorithm de-
scribed above is similar in spirit to the group detector pro-
posed in [25]. In this context, the group size corresponding to
the original hard-decision multistage PIC detector is one. If
a limit cycle occurs, then the users are partitioned into two
groups (the users with toggling bits and the users with fixed
bits) of size kK and K — k and a final “group detection” iter-
ation is performed on the k users with toggling bits. Unlike
[25], however, the members, and consequently the sizes, of the
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groups in the limit cycle mitigation algorithm proposed above
are dynamically determined by the properties of the limit cy-
cle.

The following section presents numerical examples that
demonstrate the effectiveness of the limit cycle mitigation al-
gorithm in several operating scenarios.

IV. NUMERICAL RESULTS

In this section, we present new simulation results on the
convergence behavior of the original hard-decision multistage
PIC detector and on the gain in performance obtained through
the limit cycle mitigation algorithm developed in Section III.
All of the simulations in this section assume that the users
are received with equal power (i.e., A = al), that the spread-
ing codes are random, independent, and binary valued with
spreading gain N = 16, and that the hard-decision PIC iter-
ation is initialized such that d(0) = sgn(y). The output of
the hard-decision PIC detector is compared after each stage
to the output of the prior stage to see if the iteration has con-
verged to a fixed point. If not, the output is compared to the
output of the stage twice prior to determine if the iteration
has entered a period-2 limit cycle. If either of these results
occurs, the iteration is terminated and the bit estimates are
set equal to the output of the final stage.

A Convergence Behavior of Hard-Decision PIC

Figure 1 plots the relative probability of each mode of con-
vergence of the hard-decision multistage PIC detector. These
results show that (2) often converges to the optimum fixed
point, especially for smaller values of K, and that the prob-
ability of convergence to a non-optimum fixed point tends to
be relatively small the cases shown. These results also demon-
strate that period-2 limit cycles tend to occur with much
greater probability than convergence to non-optimum fixed
points over the entire range of cases considered.
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Fig. 1: Probability of the modes of convergence for hard-decision
“FP-opt”:

point convergence, “FP-nopt”: non-optimum fixed point conver-

multistage PIC detection. Notation: optimum fixed

gence, “LC”: period-2 limit cycle.

Denoting M as the number of PIC iterations required to
achieve fixed point convergence or enter a period-2 limit cycle,
we note that M is a discrete valued random variable. At least
one PIC iteration is required to detect a fixed point and at
least two PIC iterations are required to detect a period-2 limit
cycle. Figure 2 plots the probability mass function (pmf) of
M and the probability that the PIC iteration converges to a
fixed point as a function of M. These results suggest that the
number of required PIC iterations tends to increase with K
and corroborate the results in Figure 1 by showing that the
probability of overall fixed point convergence tends to decrease



significantly as K increases. The results shown here are also
used in the complexity analysis of Section V.
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Fig. 2: Probability mass function of M denoted by ‘o’.

as a function of M denoted by ‘x’.

Figure 3 plots the pmf of k, the Hamming distance be-
tween the last two states at the output of the hard-decision
multistage PIC detector upon termination. The event kK = 0
is equivalent to the event that (2) converges to a fixed point
(optimum or non-optimum). These results are consistent with
the results of Figures 1-2 and show that the overall fixed point
convergence probability decreases significantly as K increases.
Moreover, the average number of toggling bits in a period-
2 limit cycle also tends to increase with K, especially as K
approaches N. These results also demonstrate Lemma 2 by
showing that no period-2 limit cycles of the hard-decision PIC
iteration have Hamming distance one.
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Fig. 3: Probability mass function of x.

B Performance of PIC with Limit Cycle Mitigation

Figure 4 shows the probability that the limit cycle miti-
gation algorithm developed in Section III is able to convert
a period-2 limit cycle to the optimum fixed point. Although
these results suggest that the limit cycle mitigation algorithm
converts a large majority of the period-2 limit cycles to the op-
timum fixed point, these results also show that optimum fixed
point conversion is not guaranteed, in general. An explana-
tion for this is that successful limit cycle conversion requires
the fixed bits in the conditional joint maximum likelihood op-
timization of (3) to be optimum. This requirement is satisfied
in most cases but clearly not with probability 1.
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Fig. 4: Probability that a period-2 limit cycle is converted to opti-
mum (joint maximum likelihood) decisions via the limit cycle mit-

igation algorithm.

Figure 5 demonstrates the gain in bit error rate perfor-
mance obtained through limit cycle mitigation with respect
to the original hard-decision multistage PIC detector, the
matched filter detector, and the optimum (joint maximum
likelihood) detector. These results show that the limit cycle
mitigation algorithm may indeed significantly improve the bit
error rate performance of the original hard-decision multistage
PIC detector, especially when the number of users is small and
the SNR is high.

V. COMPLEXITY ANALYSIS

In this section, we evaluate and compare the computational
complexity of the hard-decision multistage PIC detector with
limit cycle mitigation to the original multistage PIC detector
and the optimum (joint maximum likelihood) multiuser detec-
tor. The results in this section provide insight into the tradeoff
between the improved performance demonstrated in the prior
section and the increased implementation complexity of the
limit cycle mitigation algorithm.

For the purposes of complexity comparison, we assume that
the following values are precomputed and available to the mul-
tiuser detectors without any computational cost:

G = (R-1)A,
H = ARA, and
z = 2Ay.
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Also to facilitate the comparison, we define a complezity unit
as one binary multiplication® and one signed addition.

A Multistage PIC Detection

The computational complexity of each stage of interference
cancellation for the original multistage PIC detector can be
determined by inspection of (2). Computation of Gd(m) re-
quires K? binary multiplications and K(K — 1) signed ad-
ditions. Subtracting Gd(m) from y also requires K signed
additions, resulting in a total of K? signed additions. We
assume that the sgn(-) operation in (2) and the binary com-
parisons required to determine if the iteration has converged
require no additional computational complexity.

Since the number of PIC iterations required before ter-
mination is random (see Figure 2), the complexity of the
hard-decision multistage PIC detector is also random. The
prior analysis implies that the average complexity of the hard-
decision multistage PIC detector is equal to E[M]K? complex-
ity units.

B Joint Maximum Likelihood Detection

Under the previously established notation, the optimum
joint maximum likelihood detector can be written as a com-
binatorial optimization of the likelihood function

b = arg max 2d z—d Hd. (4)

de{—1,+1}K
Following a similar method of analysis as before with the ad-
ditional assumption that each real valued comparison involved
in finding the maximum of (4) is computationally equivalent
to one signed addition, we find that the joint maximum like-
lihood detector can be implemented with 2% (K? + K) binary
multiplications and 2% (K2 4+ K) — 1 signed additions. For

1By “binary multiplication”, we mean the multiplication of a
real valued number by +1.

purposes of comparison, we can apply a slight approximation
to these results to conclude that the (deterministic) complex-
ity of the joint maximum likelihood detector is 2% (K2 + K)
complexity units.

C  Multistage PIC Detection with Limit Cycle Mitigation

Since the limit cycle mitigation algorithm is executed only
when a limit cycle terminates the PIC iteration, the prior re-
sults imply that the average computational complexity of the
multistage PIC detector with limit cycle mitigation may be ex-
pressed as E [MK'2 +2%(K% + K)} complexity units. Clearly,
when x = 0, no limit cycle occurred and no additional com-
plexity results with respect to the original multistage PIC de-
tector. On the other hand, when a period-2 limit cycle does
occur, there are 2 < k < K toggling bits and the conditional
joint maximum likelihood optimization for these k bits re-
quires the expense of 2"‘(&2 + k) additional complexity units
with respect to the original multistage PIC detector.

D Numerical Results

Figure 6 combines the experimental distribution results ob-
tained in Figures 2 and 3 with the analytical complexity re-
sults developed in this section to compare the overall compu-
tational complexity of the multistage PIC detector with limit
cycle mitigation to the original multistage PIC and optimum
multiuser detectors. The simulations used to obtain these
results assume that the users are received with equal power
(i.e., A = al) at 10dB SNR and that the spreading codes
are random, independent, and binary valued with spreading
gain N = 16. These results show that, when K is small, the
computational complexity of multistage PIC detection with
limit cycle mitigation is very similar to that of the original
multistage PIC detector. Intuitively, this is a reasonable re-
sult since period-2 limit cycles tend to occur infrequently in
this case and, when they do occur, they tend to have have
small Hamming distance. On the other hand, the complexity
of multistage PIC detection with limit cycle mitigation tends
to track the complexity of the optimum detector for larger
values of K. This is a result of the increased frequency of
period-2 limit cycles and the increased Hamming distance per
limit cycle when K is large. Figure 6 also shows that, al-
though the computational complexity of the multistage PIC
detector with limit cycle mitigation tends to be roughly two
orders of magnitude less than that of the optimum detector
at large values of K in the cases considered, the incremental
complexity per user of both detectors is similar (on a loga-
rithmic scale) for large K. This implies that a multistage PIC
detector using the limit cycle mitigation technique developed
in this paper will tend to exhibit average computational com-
plexity significantly less than the optimum multiuser detector
but still exponential in K for large values of K.

VI. CONCLUSIONS

This paper presents a new technique for improving the per-
formance of multistage PIC detection. Our results suggest
that limit cycles are the largest cause of poor performance in
the hard-decision multistage PIC detector, hence we propose a
heuristic algorithm to reactively correct for limit cycle behav-
ior. The proposed limit cycle mitigation algorithm retains the
desirable properties of the original hard-decision multistage
PIC iteration while detecting and correcting only for period-
2 limit cycles. Simulation results suggest that the limit cycle
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Fig. 6: Implementation complexity comparison between optimum
(joint maximum likelihood), multistage PIC with limit cycle miti-

gation, and original multistage PIC detection.

mitigation algorithm is often successful at converting limit cy-
cles to optimum fixed point convergence. Consequently, limit
cycle mitigation tends to significantly improve the bit error
rate performance of the hard-decision multistage PIC detec-
tor in a variety of operating scenarios with the greatest im-
provements observed when the number of users is small with
respect to the spreading gain and when the SNR is high.
The computational complexity of the limit cycle mitiga-
tion algorithm developed in this paper, although similar to
the original hard-decision PIC detector when K is small, be-
comes exponential in K as K becomes large. A potential topic
for future research would be the development of lower com-
plexity limit cycle mitigation algorithms that offer significant
performance gains with complexity polynomial in K.
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