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This dissertation considers the performance and applications of parallel interfer-
ence cancellation (PIC) multiuser detectors for digital multiuser communication
systems with nonorthogonal signaling. The majority of this dissertation focuses
on wireless code division multiple access (CDMA) communication systems but we
also consider the application of multiuser detection and PIC to digital subscriber
loop communication systems here as well.

The first section of this dissertation analyzes the performance of parallel inter-
ference cancellation detectors in the K-user synchronous, nonorthogonal, binary
communication scenario. We derive exact and approximate expressions for the
bit error rate of the hard-PIC (HPIC) detector where the multiuser interference
estimates are formed after hard decisions are performed on estimates of the in-
terfering users signals. We compute expressions for the exact and approximate
signal to interference plus noise ratio of the HPIC detector and present an ana-
lytical comparison to the successive interference cancellation (SIC) and matched
filter (MF) detectors. We also analyze the performance of the linear-PIC (LPIC)
detector where the multiuser interference estimates are formed prior to the hard
decisions on estimates of the interfering users signals. We show that the HPIC

detector is a better estimator of multiuser interference than the LPIC detector.



We derive an exact expression for the bit error rate of the LPIC detector and show
that there exists a nontrivial class of operating conditions where the LPIC detec-
tor performs poorly. We present an analysis of the large-system case with random
spreading sequences of length N that shows that the multistage LPIC detector
does not converge to the decorrelating detector when K/N > 0.17.

In the middle section of this dissertation, we consider two distinct techniques
for improving the performance of the HPIC detector. The first technique, called
partial cancellation HPIC (PC-HPIC), attenuates each user’s multiuser interfer-
ence estimate by a individual scalar partial cancellation factor optimized under
three different performance criteria. The second technique, called soft cancella-
tion PIC (SC-PIC) replaces the sgn(-) nonlinearity in the HPIC detector with a
function that minimizes the Bayesian mean squared error of the interfering user’s
bit estimate. We present numerical results that suggest that both techniques yield
significant performance improvements.

The final section of this dissertation considers the application of PIC multiuser
detection to the IS-95 digital cellular downlink and to digital subscriber loops
(DSLs). We show via analysis and numerical results with measured on-air data that
PIC detection can significantly improve the fidelity of IS-95 downlink reception,
especially in cases when the desired signal is received in the presence of strong out-
of-cell multiuser interference. Our analysis of DSLs shows that PIC detection, as
applied to the problem of crosstalk cancellation, does not provide any performance
benefit in most cases. We demonstrate that more sophisticated multiuser detectors
do have the potential to accurately cancel crosstalk and significantly improve the

performance of DSLs.
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CHAPTER 1

INTRODUCTION

“I can’t understand why people are frightened by new ideas. I'm fright-

ened of old ones.”

— John Cage

1.1 Motivation

Two factors have spawned a great deal of the remarkable growth of telecommunica-
tions equipment and services over the last decade: the rapidly evolving media rich
Internet and World Wide Web, and the explosion of demand for wireless access
to voice and data services. Recently, the widespread deployment and advanced
technology of second generation digital cellular systems has enabled a convergence
of these applications to consumers around the world who are now just beginning
to enjoy wireless access to email, the World Wide Web, and other information ser-
vices. Third generation digital cellular systems, currently under development by
the international standards bodies, promise even greater data rates and more ex-
tensive voice, data, and multimedia services towards the goal of ubiquitous access
to any information service from anywhere on Earth.

Industry reports estimate that 273 million cellular handsets shipped to a world-
wide subscriber base of 470 million users in 1999 and analysts currently predict
that 900 million handsets will ship in 2005 to a worldwide subscriber base of 1.4
billion users. Currently, among the competing technologies fueling this growth,
the most rapidly growing cellular technology is Code Division Multiple Access

(CDMA), a multiple access communication method originally used for military



communications in the 1940’s and adapted to cellular communication systems by
Qualcomm in the 1980’s (see [Vit95] for a good introduction to second generation
CDMA cellular systems). The worldwide subscriber base for CDMA-based cellular
phones was slightly over 50 million users at the end of 1999 and grew 118 percent
from December 1998. Analysts predict that CDMA-based cellular phones will ac-
count for 31 percent of the worldwide cellular phone shipments in 2005, from a
base of 13 percent in 1999.

The disproportionately large growth rate of CDMA cellular systems is, from
the consumer perspective, due largely to improved sound quality, increased trans-
mission reliability, improved battery life, and new services such as email and World
Wide Web access. From the service providers’ perspective, CDMA cellular systems
are attractive because they are easier to plan and install than competing technolo-
gies and offer increased capacity while maintaining spectral compatibility with first
generation analog cellular systems. These factors have also positioned CDMA as
a likely technology to be used in worldwide standards for third generation digital
cellular systems.

The exponential growth of CDMA digital cellular subscribers, in addition to
the seemingly insatiable demand for access to bandwidth intensive applications and
its penetration into the wireless market, has led to a dramatic increase in research
in the area of improving the quality and efficiency of CDMA digital cellular com-
munication systems. Unlike copper or fiber based communication systems where
additional bandwidth can be added to existing systems by upgrading or installing
additional cables, wireless and cellular communications systems have a fixed, finite
amount of available bandwidth from which to serve their growing and increasingly

sophisticated subscriber base. Coupled with the increasing performance of mi-



croprocessors and other integrated circuits, the three most promising technologies
that will enable cellular systems to meet the future demands of subscribers are

currently:
e antenna arrays and spatial diversity,
e source and channel coding, and
e multiuser detection.

This dissertation focuses primarily on the third enabling technology: multiuser
detection. Multiuser detection refers to a class of algorithms in a communication
receiver that “exploit the considerable structure of the multiuser interference in or-
der to increase the efficiency with which channel resources are employed” [Ver98|.
Prior to 1986, the conventional wisdom among researchers in CDMA cellular com-
munication systems was that the multiuser interference observed in each user’s
received signal was well modeled by a Gaussian random process and that matched
filter detection, which ignored the structure of the interference, was nearly opti-
mum in this case. In 1986, Sergio Verdu developed the optimum (in the sense of
minimum bit error rate) multiuser detector for CDMA communication systems by
considering and exploiting the structure of the multiuser interference. Verdu'’s de-
tector offered significantly improved performance with respect to the matched filter
detector but, unfortunately, this dramatic performance improvement also came at
the cost of an equally dramatic complexity increase. Since Verdu’s groundbreaking
result, the field of multiuser detection has become a vibrant area of research that
remains active even today. The primary focus of the research in multiuser detec-
tion since 1986 has been the development of suboptimum multiuser detectors for

CDMA systems that can be implemented with lower complexity than the optimum



detector while offering near optimum performance.

Within the field of multiuser detection, there exists a class of detectors called
“decision-driven” multiuser detectors (see, for example, [Ver98, Ch. 7] and [HD98])
that offer good performance under a wide variety of operating conditions and
have the feature of very low computational complexity. Decision-driven multiuser
detectors use a heuristic concept in order to improve the quality of reception which
can be stated in essence as follows: Given that the received signal is composed of
three parts, the desired signal, the aggregate structured multiuser interference,
and the unstructured channel noise, the decision-driven multiuser detector forms
tentative decisions on the digital transmissions of all of the users and then uses
these decisions to generate an estimate of some or all of the aggregate structured
multiuser interference. This estimate is then subtracted from the received signal
to form a new output from which new digital decisions are made. This idea is
quite intuitive in that, if we assume that the aggregate multiuser interference was
estimated perfectly, the output of this operation is composed only of the desired
signal and the additive, unstructured channel noise. The multiuser interference is
eliminated and the fidelity of the received signal is improved, resulting in improved
bit error rates or increased system capacity.

This dissertation focuses on a particular realization of a decision-driven mul-
tiuser detector called the Parallel Interference Cancellation (PIC) detector. The
first PIC receiver for CDMA communication systems was proposed by Varanasi
and Aazhang in [VA90] and [VA91] where their PIC receiver was called a multi-
stage detector. The multistage/PIC detector was shown to have close connections
to Verdu’s optimum detector and also to possess several desirable properties in-

cluding the potential for near optimum performance, very low computational com-



plexity, and low decision latency. This combination of factors has led to an increase
in research for various forms of PIC detection and several authors have even sug-
gested recently that PIC detection is one of the most promising types of multiuser
detection [BCW96]. In this dissertation, we present new analytical results expos-
ing several aspects on the performance of two different types of PIC detection, we
develop and test new approaches to improve the performance of PIC detection,
and we investigate two practical, “real-world” applications for PIC detection.
The next section highlights the recent results in the literature regarding PIC

detection relevant to this dissertation.

1.2 Literature Survey

A good introduction to CDMA cellular communication systems is [Vit95] and a
good introduction to multiuser detection for CDMA communication systems is
[Ver98]. In particular, Chapter 7 of [Ver98] presents a useful overview of decision
directed multiuser detectors including successive interference cancellation, parallel

interference cancellation, and decision feedback detectors.

1.2.1 Hard Parallel Interference Cancellation

Hard Parallel Interference Cancellation (HPIC), first called multistage detection
and often just called parallel interference cancellation (PIC), was first described for
asynchronous multiuser CDMA communication systems by Varanasi and Aazhang
in [VA88] and [VA90] where the multistage detector was derived from an analysis
of the optimum, joint maximum likelihood detector. The HPIC detector was inde-

pendently proposed as an adaptive cochannel interference cancellation detector by



Kohno et al. in [KIHP90]. The multistage detector for synchronous systems was
described in [VA91] and a bit error rate analysis was presented for the two-stage
HPIC detector with a linear decorrelating detector front end. Extensions to the
general multipath channel case were presented in [FA95].

The bit error rate performance of the HPIC detector has been considered in
the aforementioned papers and by Hottinen et al. in [HHT95] via simulations of a
multipath fading environment. Yoon et al. [YKI93| present a first order analysis
of the bit error rate of the multistage HPIC detector that relies on an assumption
that the decision statistics prior to the each stage’s hard decision device are well
modeled as independent Gaussian random variables. A more accurate bit error
rate analysis of the HPIC detector in the K-user synchronous scenario, also under
a Gaussian approximation on the multiuser interference, was derived by Divsalar
and Simon in [DS94]. Divsalar and Simon recognized that the decisions at the
output of the matched filter bank were in fact not independent of one another and
proposed an approximate analysis in the case of random spreading sequences and
random received phases that required numerical evaluation of explicitly defined
one and two-dimensional definite integrals.

In Chapter 2 of this dissertation, we present a new ezact analysis for the bit
error rate and the signal to interference plus noise ratio (SINR) of the two-stage
HPIC detector in the K-user synchronous case and explicitly describe methods
for their computation. New approximate expressions for the bit error rate and
SINR of the two-stage HPIC detector are also proposed. We present an analyti-
cal comparison of our approximate SINR expression to SINR expressions for the
successive interference cancellation and matched filter detectors and show that the

two-stage HPIC detector offers superior performance over a large class of operating



conditions.

1.2.2 Linear Parallel Interference Cancellation

Linear parallel interference cancellation (LPIC), also often called parallel inter-
ference cancellation (PIC), was first described by Kaul and Woerner in [KW94]
and independently by Patel and Holtzman in [PH94] where the authors noted that
linear multiuser interference estimates obviated the need for estimation of the user
amplitudes, as required in HPIC detection. The paper by Patel and Holtzman is
an often cited simulation comparison of the LPIC detector to a linear version of
the successive interference cancellation (SIC) detector where the authors concluded
that LPIC tended to perform better when the received user amplitudes were simi-
lar and that SIC tended to perform better when the received user amplitudes were
disparate.

The two-stage LPIC detector and the approximate decorrelating detector can
be shown to be equivalent linear detectors. An analysis of the approximate decor-
relating detector was given by Mandayam and Verdu in [MV98a| where the authors
derived an expression for the exact bit error rate and also proposed an approximate
expression. Simulations in weakly correlated systems showed that the approximate
decorrelating detector outperformed the matched filter detector in terms of bit er-
ror rate.

The multistage LPIC detector was compared via simulation to several other
common multiuser detectors by Buehrer et al. in [BCW96]. The bit error rate
of the multistage LPIC detector under an improved Gaussian approximation was
studied by Buehrer and Woerner in [BW96]. The asymptotic multiuser efficiency

of multistage LPIC detector was also studied by Buehrer and Woerner in [BW97].



Ghazi et al. showed analytically that, as the number of stages of the LPIC
detector approaches infinity, the LPIC detector converges to the decorrelating de-
tector [GMNK95] if the spectral radius of the signature waveform crosscorrelation
matrix is less than two.

In Chapter 3 of this dissertation, we present new analytical results regarding the
performance of the LPIC detector in the K -user synchronous scenario. We compare
the performance of LPIC and HPIC detectors and show that the HPIC detector
is a better estimator of multiuser interference. We present an exact bit error rate
expression for the multistage LPIC detector and show via analysis and numerical
examples that the LPIC detector can perform quite poorly in a large class of
operating conditions. Our results also show that the multistage LPIC detector
(which includes the approximate decorrelating detector if we fix the number of
stages to two) can actually perform worse than the matched filter detector in

several nontrivial cases.

1.2.3 Performance Adaptive Parallel Interference Cancel-

lation

Techniques to improve the performance of the LPIC detector have received a lot of
recent attention recently due to the fact that simulations (corroborated by the new
analytical results presented in in Chapter 3 of this dissertation) have shown that
the unmodified LPIC detector can exhibit poor performance in a large class of typi-
cal operating conditions. Correal et al. showed that the multistage LPIC detector’s
interference estimates were biased and proposed an ad-hoc partial cancellation fac-
tor in order to reduce this bias in [CBW97]. Correal et al. also demonstrated real

time implementations of their partial cancellation LPIC detector in [CBW98] and



[CBW99]. Renucci et al. derived an implicit expression for the bit error rate op-
timum partial cancellation factors in [Ren98], [RW98a|, and [RW98b]. Rasmussen
et al. also derived a weighted, multistage LPIC detector with weights chosen to
minimize the mean squared error at the output of the LPIC detector in [RGLM98].
Guo et al. demonstrated in [GRS198] and [GRSL00] that this approach could yield
precisely the linear MMSE detector in K stages, where K is the number of users
in the system. Guo et al. also proposed a weighted multistage LPIC detector for
long-coded CDMA systems with time invariant weights in [GRL99].

There has also been some recent work on the problem of improving the per-
formance of the HPIC detector. Abrams et al. observed that attempting to com-
pletely cancel incorrect binary decisions leads to a doubling of the interference in
the new decision statistic and proposed that the interference estimates should be
multiplied by a scale factor such that the mean interference cancellation energy is
minimized [AZJ95]. Divsalar and Simon took a different approach and proposed
a detector that, in the two-stage case, formed a decision statistic from a weighted
combination of the matched filter and the HPIC detector decision statistics in
[DSR98|. Divsalar and Simon’s work also extended to the multistage case and
they demonstrated via simulation that significant performance gains with respect
to the conventional HPIC detector were possible. Buehrer and Nicoloso commented
on Divsalar and Simon’s paper in [BN99] and cast their results in the context of
the bias reduction results first presented by [CBW97] for the LPIC detector.

A great deal of research on the topic of improving the performance of decision-
directed multiuser detectors doesn’t fall into the category of LPIC or HPIC detec-
tion and instead has centered around the mapping function from the soft decision

statistics at the output of the first stage to the interference estimates used for can-
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cellation. The conventional HPIC detector with binary signaling uses the sgn(-)
operation and the conventional LPIC detector simply uses an identity mapping.
In [ZB93] and [ZB98], Zhang and Brady examined PIC detection using multilevel
quantizer, dead-zone nonlinearity, and linear clipper interference estimation func-
tions. The linear clipper interference estimator was also considered for underwater
acoustical channels by Brady and Catipovic in [BC94]. A sigmoidal interference
estimator using the tanh(-) function, justified by Bayesian minimum mean squared
error arguments, was examined by Frey and Reinhardt in [FR97] and Gollamudi
et al. in [GNHB9S].

In Chapter 4 of this dissertation, we develop new methods to improve the per-
formance of HPIC detection. We develop and analyze the performance of the HPIC
detector in the K-user synchronous case using partial rather than full interference
cancellation. Our approach differs from the approach in [DSR98] in two important
ways. First, we propose that each user is assigned an individual partial cancella-
tion factor rather than one partial cancellation factor for all users. Second, rather
than an ad-hoc selection of partial cancellation factors, we derive expressions for
optimum partial cancellation factors under three different performance criteria.
It turns out that the partial cancellation factors that maximize the SINR of the
HPIC detector are equivalent to the minimum mean interference cancellation en-
ergy scale factors derived in [AZJ95]. In this chapter we also derive an expression
for the exact Bayesian MMSE interference estimator and show via a numerical
example that the approximate expressions suggested in [FR97] and [GNHB98| can
also be accurate. We present simulation results comparing the bit error rate and
SINR performance of the improved PIC detectors in several operating scenarios.

The results show that the improved performance PIC detectors exhibit significant
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performance gains with respect to the HPIC and LPIC detectors in several cases.

1.2.4 Multiuser Detection for Eavesdropping in CDMA

Systems

The uplink eavesdropping problem was considered by McKellips and Verdu in
[MV98b] where it was shown that power-controlled cellular systems caused an
eavesdropper to observe users at disparate powers which led to near-far problems
with conventional, matched filter detection. McKellips and Verdu derived analyti-
cal expressions for the received power distribution at the eavesdropper and tested
the performance of several multiuser detection schemes but did not investigate
decision-directed interference cancellation detectors. McKellips and Verdu also
considered cooperative eavesdropping syndicates in order to improve performance
with respect to a single eavesdropper in [MV98c¢|.

Golanbari and Ford considered successive interference cancellation for the IS—
95 downlink in [GF99]. The authors recognized that the eavesdropper was likely
to receive the downlink user transmissions at disparate amplitudes and that con-
ventional, matched filter detection would not provide sufficient performance. The
authors suggested using a decoder and reencoder in the interference cancellation
loop in order to improve the reliability of interference cancellation.

In Chapter 5 of this dissertation, we consider optimum and suboptimum mul-
tiuser detection techniques for eavesdropping in the IS-95 downlink. We derive
a new group-PIC (GPIC) detector that exploits the structure of the IS-95 down-
link and we demonstrate that the GPIC detector can offer improved performance
with respect to the conventional matched filter detector via simulation. We also

test the GPIC detector with measured on-air IS-95 downlink data and show that
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the GPIC detector can provide dramatically improved performance for weak base

station eavesdropping.

1.2.5 Multiuser Detection for Digital Subscriber Loops

Digital subscriber loop (DSL) communication systems provide a technique to de-
liver broadband Internet access through existing twisted pair copper wires from
telephone service providers to residential and business customers. Although not
a wireless communication technique, DSLs share many common features with the
wireless CDMA communication systems investigated in Chapters 2-5 of this dis-
sertation. Good introductions to DSL technology can be found in [Rau99] and
[SCS99.

DSL signals are carried between a telephone company and its customers on a
group of copper cables that are bundled in close proximity. The unshielded na-
ture of these cables leads to electromagnetic coupling and interference between the
signals, resulting in the observation of a desired signal corrupted by structured mul-
tiuser interference and additive unstructured channel noise. Multiuser interference
is typically called “crosstalk” in the DSL environment. Garth et al. recognized in
[GHW99] that the problem of crosstalk mitigation for DSL systems is quite simi-
lar to that of multiuser interference cancellation for CDMA systems and suggested
that, as Verdu did in 1986 for CDMA communication systems, researchers should
discard the Gaussian assumption imposed on the crosstalk and begin to exploit its
structure with sophisticated multiuser detection or crosstalk mitigation algorithms.
Several authors including Cioffi et al. in [CCLS98] have stated that crosstalk is the
limiting factor to achieving higher bandwidth efficiency and data transmission

rates for DSL systems. Im and Werner [IW95] and Im and Shanbhag [[S98] pro-
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posed crosstalk mitigation algorithms for use at the service provider’s equipment
that were essentially extensions of single user echo-cancellation techniques to the
multiuser case. Cioffi et al. [CCLS98] and Cheong and Cioffi [CC99] investigated
multiuser detection at the customer’s equipment to mitigate crosstalk and also to
show the potential for coexistence with home networking systems. They showed
that large performance gains were possible using information theoretic arguments.

In Chapter 6 of this dissertation, we examine the DSL crosstalk environment
and present a new first-order analysis of the relative amplitudes of the interfering
users as a first step toward developing a model for the crosstalk that reflects its
inherent structure. We then investigate several multiuser detection techniques
including optimum and interference cancellation detectors for crosstalk mitigation

in DSL communication systems.

1.3 Thesis Overview

This dissertation logically divides into three primary sections which can be de-

scribed as:
e Performance analysis of PIC detection (Chapters 2-3)
e Algorithms for improved PIC detection (Chapter 4)
e Applications of PIC detection (Chapters 5-6)

The contents of these chapters are described in more detail below.
Chapter 2 of this dissertation presents an analysis of two performance mea-
sures for the hard parallel interference cancellation (HPIC) detector: bit error rate

(BER) and signal to interference plus noise (SINR) ratio. To date, the majority of
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the performance studies on the HPIC detector have relied on simulations or approx-
imations on the multiuser interference but Chapter 2 presents a new ezact analysis
for both the bit error rate and the SINR of the two-stage HPIC detector. In addi-
tion to our exact expressions, we develop approximate expressions for the bit error
rate and SINR of the two-stage HPIC detector that are simpler to evaluate and
we demonstrate that these approximations are accurate in several cases. We also
present an analytical SINR comparison between the two-stage HPIC, successive
interference cancellation (SIC), and matched filter (MF) detectors that suggests
that HPIC detection offers superior performance under a large class of operating
conditions.

Chapter 3 of this dissertation presents a performance analysis for the linear
parallel interference cancellation (LPIC) detector. We compare the performance
of the two-stage HPIC and LPIC detectors and show that the two-stage HPIC de-
tector is a better estimator of multiuser interference. We compare the multistage
LPIC detector to the conventional matched filter detector and show that, some-
what surprisingly, the multistage LPIC detector’s error probability may be worse
than the matched filter detector under certain operating conditions. We develop
asymptotic results exposing the behavior of the multistage LPIC detector as the
number of stages goes to infinity and show that, in contrast to the matched filter
detector, the LPIC detector can exhibit bit error rates greater than 1/2 for one
or more users in a well defined class of operating conditions. We also examine
the implications of our prior results for large CDMA communication system with
random spreading sequences and show that the LPIC detector performs poorly

when the ratio of the number of users to the system spreading gain exceeds 0.17.
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Chapter 4 of this dissertation considers methods to improve the performance
of the HPIC detector. Although much has been written recently on improving
the performance of PIC detection, the vast majority of this work has focused on
the LPIC detector. In this chapter, we focus on improving the performance of
the HPIC detector, justified by the results in Chapter 3 which showed that the
unmodified two-stage HPIC detector tends to perform better than the unmodified
two-stage LPIC detector. We develop the partial cancellation HPIC (PC-HPIC)
detector where the HPIC detector’s interference cancellation estimates are scaled
using “partial cancellation factors” in order to attenuate unreliable estimates. We
also develop the soft cancellation PIC (SC-PIC) detector where the sgn(-) nonlin-
earity of the HPIC detector is replaced by an estimator minimizing the Bayesian
mean squared error of the interference estimates. We demonstrate via analysis
and simulations that both approaches can yield significant performance gains with
respect to the (unmodified) full cancellation HPIC detector.

Chapter 5 of this dissertation applies PIC detection to the downlink of the IS-95
digital cellular communication system, a second generation CDMA digital cellular
standard currently installed on 6 continents with over 50 million subscribers. The
PIC detector is nearly unique among multiuser detectors in that its complexity is
low enough to allow application to practical systems such as IS-95. We develop
a reduced complexity optimum detector that exploits the structure of the 1S-95
downlink, from which we derive a group-PIC (GPIC) detector. Simulations of
an IS-95 downlink eavesdropping scenario suggest that the GPIC detector offers
near-optimum performance in the cases considered and provides the largest benefit
when the multiuser interference from neighboring cells is high. We also examine a

snapshot of actual on-air data from an active IS-95 system and present results that
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suggest that GPIC detection offers significant performance improvements when
extracting weak signals in the presence of severe out-of-cell multiuser interference.
Chapter 6 of this dissertation diverges slightly from the prior chapters. Several
authors have noted that the multiuser detection techniques developed for CDMA
communication systems may also apply to digital subscriber loop (DSL) commu-
nication systems. DSL is a relatively new technology currently being deployed by
telephone service providers across North America in order to deliver broadband
Internet access through existing telephone wiring. The DSL signals are carried
between the service provider and the home users on a group of copper cables that
are bundled in close proximity. The unshielded nature of these cables leads to
electromagnetic coupling and interference between the signals, resulting in the ob-
servation of a desired signal corrupted by structured multiuser interference and
additive unstructured channel noise. Remarkably, the mathematical formulation
for DSL systems is quite similar to that of CDMA systems and in this chapter we
investigate the application of multiuser and PIC detection to DSL systems.
Chapter 7 of this dissertation summarizes the results presented in the prior
chapters and concludes with a discussion of open areas of future research stemming

from this work.

1.4 Thesis Contribution
The main contributions of this dissertation are listed as follows:
e Chapter 2

— Exact and approximate expressions for computing the bit error rate

of the two-stage HPIC detector under the K-user synchronous system
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model.

— Exact and approximate expressions for computing the signal to inter-
ference plus noise ratio (SINR) of the two-stage HPIC detector under

the K-user synchronous system model.

— An analytical SINR comparison between the two-stage HPIC, successive
interference cancellation (SIC), and matched filter (MF) detectors show-
ing that the two-stage HPIC detector provides superior SINR, transmit
power efficiency, and system capacity performance over a large class of

typical operating conditions.
e Chapter 3

— A comparison between two-stage HPIC and LPIC detectors in the K-
user synchronous case that showing that HPIC detection offers better

interference estimation performance.

— Simulations demonstrating the linkage between interference estimator

performance and the bit error rate of LPIC and HPIC detectors.

— An analytical comparison between the multistage LPIC and conven-
tional matched filter detectors in the K-user synchronous case showing
that there exists a class of operating scenarios where the LPIC detector

performs worse than the matched filter detector.

— An analysis of the multistage LPIC detector showing that, unlike the
matched filter detector, there exists a class of operating conditions where

the LPIC detector exhibits bit error rates greater than 1/2.

— An analysis of the LPIC detector in the K-user synchronous case with

random spreading sequences showing that, when the spreading gain (V)



18

and number of users (K) are both large, the two-stage LPIC detector
has worse SINR performance than the matched filter detector when

K/N >1/3.

— An analysis of the LPIC detector in the K-user synchronous case with
random spreading sequences showing that, when the spreading gain
(N) and number of users (K) are both large, the LPIC detector has
a bit error rate of at least 1/2 for at least one user in the CDMA

communication system when K/N > 0.17.
e Chapter 4

— Development and performance analysis of a performance adaptive two-
stage HPIC detector in the K-user synchronous case using partial rather
than full interference cancellation. Partial cancellation factors opti-

mized under three different performance criteria are developed.

— Development and performance testing of a two-stage soft-cancellation
PIC detector in the K-user synchronous case using the Bayesian Mini-
mum Mean Squared Error (BMMSE) estimator for the multiuser inter-

ference. Exact and approximate expressions are developed.
e Chapter 5

— Development of a general system model for the IS-95 digital cellular
downlink accounting for asynchronism and noncyclostationary cochan-

nel interference from neighboring base stations.

— Development of a reduced complexity optimum detector exploiting the

structure of the multicell IS-95 digital cellular downlink.
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— Development of a group-PIC (GPIC) detector exploiting the structure

of the multicell IS-95 digital cellular downlink.

— Performance testing of the GPIC detector via simulations and and ac-

tual on-air measured data.
e Chapter 6

— An analysis of near end crosstalker powers observed at the customer’s
modem in a discrete multitone, echo cancelled, asymmetric digital sub-

scriber loop communication system.

— Development of a simplified analytical model for crosstalk cancellation
in a discrete multitone, echo cancelled, digital subscriber loop commu-

nication system.

— Analysis and performance testing of several multiuser detectors, origi-
nally developed in the context of CDMA communication systems, for

crosstalk cancellation in digital subscriber loop communication systems.

1.5 CDMA Communication System Model

Chapters 2-5 of this dissertation study PIC detection for CDMA cellular com-
munication systems. In Chapter 5, we develop a system model specific to the
[5-95 digital cellular downlink but in Chapters 2-4 we consider the general K-user
CDMA communication system model shown in Figure 1.1 below.

The binary valued data stream from the &k user is denoted as {b}. This
data stream is spread by a unique signature sequence (also called the “code” in

code division multiple access) and converted from discrete time to continuous-time
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ow(t)
{bg)} 4@7 Pulse Shaping Channel 1

Signature 1

{b;ZK)} @7 Pulse Shaping Channel K

Signature K

Figure 1.1: K-user CDMA communication system model.

via the pulse shaping operation. The channels account for multipath effects, asyn-
chronism, and (complex) attenuation of the signal. The unstructured interference
is modeled as an additive white Gaussian noise process denoted as ow(t) where
w(t) has zero mean and unit power spectral density. The continuous-time signal
observed at the input of the receiver is denoted as 7(t).

In Chapters 2-4 of this dissertation, we assume that the users transmit syn-
chronously, that the pulse shapes are such that they have support on [0,7") where
T is the duration of the baud interval, and that the channels are single-path.
These assumptions are equivalent to the assumptions used to develop the basic
K-user CDMA communication system model described in [Ver98|. Under these

assumptions, we can write the received signal as

K 00
r(t) = Z Z alPoP s (t — nT) + ow(t)

k=1 n=—o0

where a®) denotes the amplitude of the k™ user in the n'* baud interval and s (¢)
denotes the unit energy signature waveform of the k™ user in the n** baud interval.

It has been shown [Ver98] that the baud-rate sampled vector output of a bank of



21

filters matched to the spreading waveforms of each user is a sufficient statistic for
optimum demodulation. The matched filter bank is shown in Figure 1.2 where
the continuous-time received signal () is filtered by a bank of K matched filters
where the £ matched filter computes the inner product of the received signal with

the k' user’s spreading waveform.

T

B —

7(t) ——  Matched Filter Bank

T

A

(K)

— 1w,

Figure 1.2: Matched filter detector for K-user CDMA communication system.

In Figure 1.2, each continuous-time matched filter output is sampled once per
baud interval 7' and the k™ user’s real valued, discrete-time output stream is

denoted as {y'} where

n

A (n+1)T
y = / r(t)s®(t —nT) dt
nT

(n+1)T

K 00
= 3N e [ s )l - ) d

/=1 m=—0o0 nT

(n+1)T
—i—a/ st — nT)w(t) dt.
nT

Since the imposed assumptions allow us to consider symbol-by-symbol detection

and hence suppress the symbol index n, we can write the k™ user’s matched filter
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bank output as

y® = q®p® 4 Z Ppea®b® + on®
£k
where
A T
Pre = / sW(t)s®(t) dt
0
and

1=

(k)

/0 " SOty d.

We can group the matched filter bank outputs into a K-dimensional vector and

express the vector output of the matched filter bank as
y=RAb+on (1.1)

where R € RE*E is a symmetric matrix of user signature crosscorrelations such
that Ry = pre. The signature waveforms are assumed to be normalized to unit

energy such that Ry, =1 for all £ =1,..., K which implies that | Ry, < 1 for all

k # (. The matrix A = diag(a™,...,a") is a K x K diagonal matrix of positive
real amplitudes, b = [0, ..., b%]T is a vector of i.i.d. equiprobable binary data
symbols where b € B = {£1}, and n = [n®, ..., n"]T represents the matched

filtered, unit variance AWGN process where it can be shown that E[n] = 0 and

E[nn'| = R. The channel noise and user symbols are assumed to be independent.

1.6 PIC Detection Framework

All of the PIC detectors considered in Chapters 2-4 of this dissertation operate

exclusively on the vector of matched filter bank outputs given by (1.1). Moreover,
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these PIC detectors all share a common structure, illustrated for the 3-user case in
Figure 1.3 for a two-stage PIC detector. The structure of Figure 1.3 suggests that
the two-stage PIC detector may be extended to K-users and/or multiple stages
without any conceptual difficulty.

The essential feature of PIC detector X that distinguishes it from PIC detector
Y is the choice of the interference estimator fy”’(y™®). The interference estimators

for the PIC detectors considered in Chapters 2-4 of this dissertation are summa-

rized in Table 1.1.

Table 1.1: Summary of PIC detectors.

X ™)
HPIC a®sgn(y™)
LPIC y®

PC-HPIC | gra®sgn(y™®)
SC-PIC | a® tanh(y™®/\)

Extending Figure 1.3 to the K-user case, the output of the two-stage PIC
detector X, prior to the hard decision device, may be written as
y(k) _ a“”b“”—i—Zp [a“)b‘“ —f“)( (e))] +on® (1.2)
X Kkl x \Y . .

£k

~
residual multiuser interference

-’

This expression suggests an important perspective on PIC detection that we will
formalize in later chapters of this dissertation: fy’(y®) can be viewed as an es-
timator of a“b® and the performance of PIC detector X is closely related to the

performance of its estimator. If f”(y®) is an accurate estimator of a®“b® then the

residual multiuser interference term in (1.2) is small and the desired user’s signal
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(1)
y ~KW®) —— W
P12
P21
(2)
y ~H?) —— i
P23
P31
(3)
v ~R) —— B
P32

Figure 1.3: Two-stage PIC detector for 3-user CDMA communication system.
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is impaired only by additive channel noise. On the other hand, if f{’(y®) is a par-
ticularly inaccurate estimator of a”b“; then the residual multiuser interference
term in (1.2) may actually be larger than the interference term of the matched
filter detector and performance may suffer.

Throughout this dissertation we will also find it convenient to group the outputs

of the two-stage PIC detector into a K-dimensional vector as

yx =y — (R—1I)fx(y) (1.3)

where I is the K x K identity matrix and fy(y) = [fx (@), ..., fx (y)]".
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1.7 Table of Abbreviations

ADSL
BER
CDMA
DMT
DSL
EC
FEXT
GPIC
HPIC
IS-95

JML
LPIC
MAI

MF
NEXT
PC-HPIC

PIC
SC-PIC
SIC
SIC2
SNR
SINR

Table 1.2: Abbreviations used.

Asymmetric Digital Subscriber Loop, [Rau99] and Chapter 6
Bit error rate, [Pro95]

Code Division Multiple Access, [Vit95]

Discrete MultiTone, [Rau99] and Chapter 6

Digital Subscriber Loop, [Rau99] and Chapter 6

Echo Cancellation, [Rau99] and Chapter 6

Far End CrossTalk, [Rau99] and Chapter 6

Group Parallel Interference Cancellation, Chapter 5

Hard Parallel Interference Cancellation, Chapters 2 and 4

Mobile Station — Base Station Compatibility Standard for Dual-
Mode Wideband Spread Spectrum Cellular Systems Interim
Standard 95, [Tel95] and Chapter 5

Joint Maximum Likelihood, [Ver98]

Linear Parallel Interference Cancellation, Chapter 3
Multiple Access Interference, [Ver98]

Matched Filter, [Ver98|

Near End CrossTalk, [Rau99] and Chapter 6

Partial Cancellation Hard Parallel Interference Cancellation,
Chapter 4

Parallel Interference Cancellation

Soft Cancellation Parallel Interference Cancellation, Chapter 4
Successive Interference Cancellation, [Ver98] and Chapter 2
Two-stage Successive Interference Cancellation, Chapter 6
Signal to Noise Ratio, [Pro95]

Signal to Interference plus Noise Ratio, [Ver98] and Chapter 2



CHAPTER 2
PERFORMANCE ANALYSIS OF HARD DECISION PARALLEL

INTERFERENCE CANCELLATION

This chapter presents an analysis of two performance measures for the hard par-
allel interference cancellation (HPIC) detector: bit error rate (BER) and signal to
interference plus noise ratio (SINR). Bit error rate, or, equivalently, probability
of decision error, is a classical performance measure that has been analyzed for
a variety of multiuser detectors including the matched filter (MF), decorrelating,
and minimum mean squared error (MMSE) detectors [Ver98], to name just a few,
and is often one of the most important performance measures for uncoded com-
munication systems. To date, the majority of the performance studies on bit error
rate of the HPIC detector have relied exclusively on approximations or simulations
(see for instance [YKI93, HHT95, DS94]). The first section of this chapter presents
an analytical study of the bit error rate of the two-stage HPIC detector. We show
that exact computation of the bit error rate is indeed quite difficult even for a
small number of users and is computationally infeasible for more than a handful
of users. We suggest an approximation that yields a much simpler expression for
the bit error rate of the HPIC detector and show that our approximation tends to
be accurate in several cases.

The second section of this chapter presents an analysis of the SINR of the HPIC
detector. SINR is an alternative performance measure that is often, but not always,
closely related to the bit error rate performance of a multiuser detector. SINR can
actually be a more relevant measure of performance than bit error rate when the
detector’s soft outputs are to be used by a channel decoder. In Section 2.2, we de-

rive an exact expression for the SINR of the two-stage HPIC detector and, in order

27
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to obtain useful analytical results, we also suggest an approximation that tends to
yield accurate results under conditions when the matched filter bank outputs have
reasonably low error probability. We extend these approximate SINR results to
consider the implications on the power efficiency and theoretical system capacity
of the two-stage HPIC detector. In the case when all users have equicorrelated sig-
nature waveforms, we show analytically that the HPIC detector outperforms the
matched filter and successive interference cancellation (SIC) detectors in a large

class of operating conditions.

2.1 Bit Error Rate Analysis

This section presents a bit error rate analysis for the two-stage HPIC detector as
defined by (1.2) and Table 1.1. Our results differ from the bit error rate analysis
in [VA91] where the authors calculated the exact bit error rate of the two-stage
HPIC detector with a decorrelating first stage. The results in this chapter apply
to the two-stage HPIC detector with a matched filter bank first stage. Moreover,
the bit error rate analysis in [VA90], for the asynchronous case with matched filter
bank first stage, is not quite correct since the authors’ analysis implies that the
matched filter bank decisions of users 2, ..., K are independent of the noise in user
one’s soft matched filter output. Our analysis shows that this is actually not a
valid assumption and that the exact expression for the HPIC detector’s bit error
rate requires evaluation of several K-dimensional integrals of the K-dimensional
joint Gaussian pdf. Unfortunately, these integrals do not reduce to closed form
expressions except in degenerate cases and, in general, require numerical solution

methods in even the K = 2 case. Since these results imply that computation of the
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exact bit error rate of the HPIC detector is essentially an intractable problem for
more than a handful of users, we pose a judicious approximation that allows us to
derive a simpler expression for the approximate bit error rate of the HPIC detector
that does not require integration. We verify the accuracy of this approximate bit
error rate expression in a large class of operating conditions in the two-user case
by direct comparison to the exact bit error rate expression. We also demonstrate
the accuracy of the approximate bit error rate expression in the K-user case via

simulation.

2.1.1 Exact Analysis

From (1.2) and Table 1.1, we can write the k' user’s two-stage HPIC detector

output in the K-user synchronous case as

yﬁﬁglc — a®p® 4 Zpkﬂ (@b — aWsgn(y®)] + on™®. (2.1)
£k

To compute the exact bit error rate of the two-stage HPIC detector, we denote
without loss of generality user number one as the desired user. The bit error rate
(or probability of decision error) of the HPIC detector for user one can then be

written as
Pipic = Plynpic > 0,0 = —1) + P(yppic < 0,04 = +1).
By the symmetry of the users’ bits and channel noise, it can be shown that
P(ygpic > 0,0 = —1) = P(ypic < 0,07 = +1)
hence

Pipic = 2P(yypic > 0,0 = —1).
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Denoting b= [b®, ..., b%)] as the (K —1)-vector comprised of all users’ bits except

the desired user, we can write the desired probability as

P(yl(-lll)DIC > 07 b(l) = _1) = Z P (y|(.|1|)3|c > 07 b(l) = —]_,B = ’l_l,)
ueBK-1
- Z P (ygpic > 010 = =Lb=a) P (0¥ = —1,b = @)
ueBK-1
- L > Py >0|b—[—11ﬂ}T
~ 9K Ynpic = )
ueBK-1

where B = {£1} and where we have used the assumption that all of the users’
bits are equiprobable and independent of each other. If we condition y,(j,)glc on
b= [—1, ﬂT]T and assume that A, R, and o are fixed and known, then the key
step in order to evaluate the bit error rate of the two-stage HPIC detector is to view
Ypic as a function that maps the realizations of the random variables {n® }} | to
a point in R, Although (2.1) conditioned on b appears to be a function of only
one random variable, n®, (2.1) is also a function of the matched filter outputs
{y“ } oz Since y conditioned on b is a function of the random variable n'”, then
Yiimc is actually function of the K correlated Gaussian random variables {n}£ .

In this context, it can be shown that y,(j,)glc is a measurable mapping [Bil95] from

RE to R implying that there exists a set Q(w) C R such that
Ypic > 0 and b = [—1,QT}T & neQu).

This then implies that the bit error rate of the two-stage HPIC detector can be

computed via

1 _
Pipic = oK1 Y. P(neQu)

’EI/EBK7 1

= SR Z /weﬂ(u) fw) dw

ucBK-1

(2.2)

where f is the joint Gaussian pdf of the K-dimensional channel noise vector n

with zero mean and covariance matrix R.
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Although (2.2) is an exact expression for the bit error rate of the two-stage
HPIC detector, evaluation of (2.2) is not straightforward since the set (w) is not
given in an explicit form. To construct the set (@) explicitly in the synchronous
K-user case, we denote d*® = sgn(y®) and d = [d?,...,d"]. Since d® is the

decision generated by the matched filter bank for user k then it can be shown that

d* = +1 and b = [—l,ﬂT]T S y*® >0and b= [—1,&T]T

K

& —pat + Z preaPu” +on™ >0 (2.3)
(=2
W _ ZK (0,0

PRNORS Pr1a (=2 Pred U

o

and that

d¥ =—1and b= [—1,QT}T S y® <0and b= [—1,QT}T
K

& —ppa + Z preaPu +on® <0 (2.4)
=2

K 0,
o < PR = Dy preau’
o

These results can be combined to write

d=vandb=[-1,u']" & ncS(u,0) (2.5)

where S(@, ) is a rectangular subset of RE~1. Observe that the events d = v,
for all » € BX !, satisfy the requirements (unconditionally or conditioned on b) to
form a partition of the probability space since these events are mutually exclusive
in that

P(&:ﬁ,&:wb:[—l,qff) =0 Vo#£dv

and exhaustive in that
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Application of the total probability theorem then allows us to write
P e > 010 (1077 ) = 5P (>0, 0 0= 1] )20

and (2.1) and (2.5) imply that

n € S(u,v), and

n® > a(l)_zf:2 p1xa ) [y (k) (k)] (27)

g

e neQu,v)
where Q(, v) is a rectangular subset of RE explicitly defined by (2.3), (2.4), (2.5),
and (2.7). The exhaustive property of d implies that
Qa) = |J Qo)
veBK -1

and the mutually exclusive property of d implies that
Qa,v)[ U, v) = 0 Vo#£v.

This then implies that {Q(@, D) }yeprx-1 specifies a convenient partition of the set
Q(w). Hence, the K-dimensional integral in (2.2) over the complicated set (@)
can be conveniently expressed as a sum of 25! integrals over the K-dimensional
rectangular regions specified by the partition {Q(@, D) }5eprx-1 such that

Bie = 5o 2 2 [ fw)de (28)

aeBK—1 pepk—1 Y wEA(a,D)

Combined with (2.3), (2.4), (2.5), and (2.7), this last expression yields an explicit
method for calculation of the bit error rate of the K-user, two-stage HPIC detec-
tor. The integration regions Q(w, ) are explicitly derived for the two-user case

in Table 4.1 of Chapter 4. Unfortunately, the integrals in (2.8) do not simplify
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to a form where the K-dimensional integration of the joint Gaussian pdf can be
avoided except in trivial cases (e.g., R = I). This implies that computation of
the bit error rate of the HPIC detector requires the numerical evaluation of 2252
integrals over K-dimensional rectangular regions, a computationally prohibitive
task for K more than a handful of users. A reasonable approximation for the bit
error rate of the two-stage HPIC detector requiring no integration is developed in

the next section.

2.1.2 Approximate Analysis

In this section we pose an approximation for the bit error rate of the two-stage
HPIC detector of (2.1). This approximation eliminates the integration required
in the exact K-user bit error rate expression (2.8) and is shown to be reasonably
accurate in several cases.

Using the notation of the prior section, we can apply Bayes’ rule to (2.6) to

write

If we assume that m is approximately independent of n® then this implies that
conditioning on d = ¥ does not imply anything about n® and we can pose the

first approximation as

B 1 _ K (k) [p (k) _ oy(k)
P<y|(-|1|)3|c>0|d:f’>b: [_LQT}T) ~ Q(a i Prit - ])

o

where Q(x) 2 fxoo e /2 dt. To form the second approximation, we first note that

Pld=olb=[-1aT]") = P(a¥ =0 % =v®|b=[-1aT]").
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If we assume that n™ is approximately independent of n® for all k # £ then this
implies that, conditioned on b, the matched filter decision d*’ is approximately

independent of d“ for all £ # ¢ and we can pose the second approximation as
T c T
Pla=slo=[-1a"]") ~ [[P(d"=0v"[b=[-1a"]").
k=2
We note that each of the probabilities in the product can be expressed as a single ()

function. In light of the exact bit error rate results in the prior section, these results

imply that the bit error rate of the two-stage HPIC detector may be approximated

as
K
1 Typic (@, D) ame (@, v™)
Pipc = 9K—1 Z Z Q <T HQ — (2.9)
ueBK-1 peBK -1 k=2
where
K
Q?Hp|c(’ﬂ,,’ﬁ) = qW _Zplka(k)[u(k)_,v(k)]
k=2
and

K

SCMF(’l_L,U(k)) = £=2

K
pe1a = " preaPu® if o® =41
=2

Figures 2.1, 2.2, and 2.3 plot the exact (2.8) and approximate (2.9) bit error
rates of the two-stage HPIC detector in the two-user synchronous scenario for the
cases when the user signature waveform crosscorrelation is p = 0.2, p = 0.5, and
p = 0.8. The approximations appear to be accurate in a large class of operating
conditions but the ratio of approximate to exact bit error rate is also plotted in
each case to indicate the regions in SNR-space where (2.9) has lower accuracy.
These results suggest that (2.9) tends to estimate the bit error rate conservatively
(the approximate bit error rate is greater than the exact bit error rate) over most

of the two-user SNR-space.
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Figure 2.1: Exact and approximate bit error rates for user one at the output of

the two-stage HPIC detector with two users and p = 0.2.
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Figure 2.2: Exact and approximate bit error rates for user one at the output of

the two-stage HPIC detector with two users and p = 0.5.
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Figure 2.3: Exact and approximate bit error rates for user one at the output of

the two-stage HPIC detector with two users and p = 0.8.

Figure 2.4 shows a comparison of the approximate bit error rate expression (2.9)
to simulation results for the two-stage HPIC detector in the K-user synchronous
scenario for the case with random, binary spreading sequences of length N = 32.
The approximate bit error rate expression appears to be reasonably accurate in
most cases and, as was seen in the two-user case, it appears to estimate the bit error
rate conservatively (the approximate bit error rate is greater than the simulated
bit error rate) in the cases considered.

We conclude this section by noting that even the approximate bit error rate
expression (2.9) is not of a form that allows us to answer questions such as, “For
a bit error rate performance requirement P,f|1,§|c, what is the minimum value of ¢
necessary to satisfy this requirement?”. The next section of this chapter considers
the signal to interference plus noise ratio (SINR) performance of the two-stage
HPIC detector where it turns out that we will be able to answer just such a

question.
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Figure 2.4: Simulated and approximate HPIC bit error rates for K =4 and K = 8

users with random spreading sequences of length N = 32.
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2.2 SINR Analysis

In this section, we study the signal to interference plus noise ratio (SINR) perfor-
mance of the two-stage HPIC detector and its implications on required transmit
powers and theoretical system capacity. We present an exact expression for the
SINR of the two-stage HPIC detector in the K-user synchronous case and, al-
though the exact SINR expression is in fact simpler that the exact bit error rate
expressions of the prior section, we suggest a simplifying approximation that holds
in typical operating scenarios when the error probability of the matched filter de-
tector is reasonably low. Using this result, we consider the case when each user in
the CDMA communication system has a particular SINR requirement and derive
a general expression for the minimum transmit powers necessary to satisfy these
requirements. Note that, in a nonorthogonal multiuser system such as CDMA,
increasing one user’s transmit power to meet their SINR requirement also has the
effect of increasing the interference seen by the other users in the system, hence
lowering their SINR. The approximations used in this section allow the required
transmit powers to be computed via a set of simultaneous linear equations.

As a first step towards understanding the SINR performance of HPIC, we de-
rive closed form expressions for the total required transmit power and theoretical
system capacity of the two-stage HPIC detector in the equicorrelated case where
all users have identical signature waveform crosscorrelations. These expressions
are analytically compared to the results for the successive interference cancella-
tion (SIC) and matched filter (MF) detectors derived in [LE99] under identical
assumptions. We provide analytical proofs showing that, in the cases considered,
the two-stage HPIC detector requires less total transmit power and has greater the-

oretical system capacity than the SIC or MF detectors. Numerical results verifying
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the analysis are also presented.

2.2.1 Exact SINR of Two-Stage HPIC

The notation SINRy’ denotes the SINR of the k' user’s output of multiuser de-

tector X € {HPIC, LPIC, MF, SIC} defined as

E (k) b(k)2

—_— - 2.10
vy [0 210

where y)(('“) denotes the £ user’s soft output from multiuser detector X prior to

hard decision. We can then compute the SINR of the HPIC detector as

£k

D00 PrePrma©a Qp, + 20 prea® Py + o
ik mzk iZk

2

SINR{ibc = (2.11)

where we have used the assumption that the users’ bits and noise are independent

and zero mean and where

U, 2 El %),

[

E[e(l)e(m) | b(k)] _ E[e(l) | b(k)]E[e(m) | b(k)], and

Dy A E[e©n® | b®]

. A . . .
with € = b — sgn(y®) for notational convenience. Exact expressions for ¥, ),

and ® are presented in the following analysis.

o U, for { £k
Recall that U, = E[b® —sgn(y”) | b®]. The assumptions that the users’ bits

are independent and zero mean imply that ¥, = —E[sgn(y“) |6*®]. Condi-
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tioning temporarily on all of the users’ bits, we can write
Elsgn(y) | 6] = P(y® > 0]b) — P(y < 0|b)

0 (—riAb) B <1_Q <—rijAb>> 12

_1_90 <r£TAb>

o

where 7/ is the (" row of the signature cross correlation matrix R and where
we have used the facts that y© = r] Ab+ on'® and Q(z) + Q(—z) = 1. To
remove the conditioning on b, first denote B® as the set of cardinality 241
of all possible, equiprobable, binary K-vectors with the k™ user’s bit fixed
to the known value b6*. Then it follows that

Blan(y)|0%] = sy (1‘262(7{34 b>>

beBk)

1 r, Ab
- 1_2K72 Z Q( 40 )

beB*)

and ¥, follows directly as its negative.

o Oy for (0 # k) # (m # k)

Recall that

Q= E[(0 = sgn(y")) (6™ — sgn(y™)) [b"] = U, ¥y,
= E[BOb™ [%] — E[b@sgn(y™) | b®] — E[b™sgn(y®) | b*]

+E[sgn(y")sgn(y™) [ b®] — W, W,,.
We will derive expressions for each element of €2, in the following analysis.

— The assumptions that the users’ bits are assumed independent and zero

mean imply that E[b®b | b®] = 0.
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— To compute E[b®sgn(y™) | b*)], we can temporarily condition on b and

use (2.12) to write

E[b%sgn(y™) 8] = b® [1-2@ <T;Ab>}.

o

Removing the conditioning on b, we can write

1 TA
E[pOsgn(y™) 0] = s 0 8¢ [1—262(“” b)]
o

beBk)

_ ;1 Z b(Z)Q <'I” Ab>
K-

beBk)

An expression for E[b"sgn(y®) | b*] can be derived similarly.

— To compute E[sgn(y“)sgn(y™)|b®] we can temporarily condition on

all of the users’ bits to write
E[sgn(y“)sgn(y™)|b] = +P({y" >0}n{y™ >0}|b)
P({y"” <0}n{y™ < 0}|b)
P({y" >0} n{y"™ < 0}|b)

P({y® <0} n{y™ > 0}1b).

Using the notation of [AS72, pp. 936], where

L(h, k, p) // g(x,y, p)dydz

where g(x,y, p) is the bivariate Gaussian pdf parameterized by p, it can
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be shown that

Elsgn(y“)sgn(y™)|b] = +L

Ab —r) Ab )
s Pem

+

Ab TT Ab )
y Ptm

St
L(U

(7

(=

b‘

Ab ’I“T Ab )
y T Pem

—L

Ab —rT Ab >
s —Ptm

g o

TAb rTAb
EN M( ‘ ,ngm)_

Removing the conditioning on b, we can write

1 r) Ab r) Ab
Elseay Jsgnly ™) 1] = oy 3 a1 (TA0, AR )

beBh) 7
These results can be combined to yield an exact expression for €2,. Note
that there is no closed form expression for L(h, k, p) except in special cases.
Computation of E[sgn(y“)sgn(y™)|b*®] will, in general, require numerical

integration of several two dimensional integrals.

QM for /¢ 7£ k
The results of the prior case for €2y, can be applied directly to this case,

recognizing that E[(0©)?|b™] = E[(sgn(y®))? | b®] = 1. We can then write

1 r, Ab
Qu = 2+ 55 Zb@)@(f )-xpg.

beB(k)

(I)gk for ¢ 7£ k
In order to derive an exact expression for ®,, we will state a useful result

first. Suppose that 4 and v are unit variance, zero mean, Gaussian random
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variables and that Euv] = p. Then

Elusgu(t +v) | t] =
/ / (t + = [ ! (u? — 2puv + 2)] du d
us Il ’U €XP | — 757 U — uv v u av
& om/1— p2 20%(1 - p?) P
and it can be shown via the substitution w = “=2- and subsequent inte-

\/1—p?

gration that

Elusgn(t +v)|t] = \/Z%exp <_;2> . (2.13)

Recall that @, = E[(0® — sgn(y®))n™ |b™]. Since the users’ bits and
channel noise are assumed independent and zero mean, E[b®“n®] = 0 and
Oy, = —E[sgn(y®)n® | b®]. Conditioning temporarily on all of the users’
bits, and recognizing that sgn(y“) = sgn(y“ /o) for o # 0, we can use (2.13)

to write

_ (LA”)
2pu exp o
V21 2

Elsgn(y”)n® [b] =

The conditioning on b is removed as before to write

Pk —(r/ Ab)*
Eflsgn(y“)n® | o¥] = ——— E exp <7
V22K =2 bepie 202

and @y follows directly as its negative.

These results combined with (2.11) yield an expression for the exact SINR of the
two-stage HPIC detector. Although this expression is simpler to compute than
the corresponding exact bit error rate of the two-stage HPIC detector, the exact
SINR expression is still unwieldy and difficult to analyze. In the next section we
develop an approximate expression for the SINR of the two-stage HPIC detector
that tends to be accurate in typical operating conditions and leads to analytical

comparisons with the SIC and MF detectors.
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2.2.2 Approximate SINR of Two-Stage HPIC

To facilitate an analysis of the two-stage HPIC detector that exposes its behavior
in typical operating scenarios, we will impose the following “normal-operating”

assumptions also imposed in [LE99] and indirectly in [Ver98, pp. 378]:

1. Assume that € is approximately independent of b*) for all £ # k, or in other
words that an error in the decision of the matched filter output for user /¢ is

independent of the bit transmitted by user k.

2. Assume that € is approximately independent of ¢ for all £ # m, or in
other words that matched filter decision errors for user ¢ are independent of

matched filter decision errors for user m.

3. Assume that € is approximately independent of n® for all £ # k, or in
other words that matched filter decision errors for user ¢ are independent of

the Gaussian channel noise in the &' user’s soft matched filter output.

These assumptions are well justified unless the error probabilities at the output of

the matched filter detector are high. They imply that

0 V(E#K)# (m#k)

0 VE#F.

&
3
2

&
2

The remaining term requiring calculation is €2y, which can be derived as

Qe = B[(e)?|6¥] — Ble® b2

~ E[(€)] -0 = 4P
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where Pyl = P(b® # sgn(y®)) is the probability of error of the ¢ user’s matched
filter output and where the imposed assumptions were used in the approximation.
Under these approximations, the SINR of the HPIC detector may then be written

as

a®

Zﬁyﬁk Tkga(l)ﬁlpl\(/f:: +1

SINR{{pc = (2.14)

where a® = (a® /0)? is the normalized power (or SNR) of the k' user and ry, =
p2, is the squared crosscorrelation of the £ and (" users’ signature waveforms.
Figures 2.5, 2.6, and 2.7, plot the exact (2.11) and approximate (2.14) SINRs
(in dB) of the two-stage HPIC detector in the two-user synchronous scenario for
the cases where p = 0.2, p = 0.5, and p = 0.8 respectively. The approximations
appear to be accurate in a large class of operating conditions when p is small.
The ratio of approximate to exact bit error rate is also plotted in each case to
indicate the regions in SNR-space where the approximations have lower accuracy.

As expected, the approximations are less accurate in this case as p approaches one.
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Figure 2.5: Exact and approximate SINR (in dB) for user one at the output of the

two-stage HPIC detector with two users and p = 0.2.
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Figure 2.6: Exact and approximate SINR (in dB) for user one at the output of the

two-stage HPIC detector with two users and p = 0.5.
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Figure 2.7: Exact and approximate SINR (in dB) for user one at the output of the

two-stage HPIC detector with two users and p = 0.8.
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2.2.3 Power Efficiency

In this section, we use the result of (2.14) to calculate the normalized power re-
quired by each user in the system in order to meet a particular SINR requirement.
If we define the normalized power vector a = [, ..., a]T then (2.14) implies

that

a=[4S( — I)Pla+ Se
(2.15)
=[I -48S(T — I)P]™'Se
where S is a diagonal matrix with the /" element equal to the output SINR

requirement for user ¢, P is a diagonal matrix with the £0'" element equal to Py,

I' is a matrix of squared signature crosscorrelations given as

T11 e "MK

Tkl -.-- TKK

where 74 = 1 for all /, and e is a K-vector with all elements equal to one. If the
inverse exists in (2.15) then there is a unique solution for the normalized user pow-
ers given S, I', and P. Also note that when the interference cancellation is perfect
(i.e., when P = 0) then a = Se or, in other words, each user’s normalized power
(SNR) is equal to their output SINR requirement. This is intuitively satisfying
since perfect cancellation implies that there is no residual multiuser interference
in the outputs of the two-stage HPIC detector and that Gaussian noise is the only

channel impairment.
Proposition 1. Under the following assumptions:

1. The squared user crosscorrelations are all identical, i.e., e = 1 for all k # £,

2. The user output SINR requirements are all identical, 1.e., S = sI, and
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3. The decision error probabilities are all identical, i.e., P = pI,

then the total transmit power required for two-stage HPIC' detection may be written

as

Ks
Taa = 2.16
c 1—4drsp(K —1) (2.16)

Proof. Under the assumptions of the proposition, we can rewrite (2.15) as

a = s[I—4spA] e (2.17)
A

where A is defined such that its diagonal elements are all equal to zero and its
off-diagonal elements are all equal to . The inverse in this last expression can be
computed explicitly since A has explicit solutions to its eigenvalues and eigenvec-

tors. Denoting & = —4rsp, it can be shown that the diagonal elements of A™" are

all identical and equal to - and that the off-diagonal elements of

A~! are all identical and equal to x2(K_1)+xx(2_K)_1. It then follows directly that

s(x(2—K)—1+ (K —1)x)

a™ = .
?(K-1)+22-K)-1

Recognizing that the numerator and denominator have the common factor x — 1,

we can simplify this last expression to write

S

*) _
T E D1

hence the total normalized power required for the HPIC detector is given in (2.16)

after the substitution © = —4rsp. O
The following remarks expose some of the intuitive properties of (2.16):

e The cases of perfect cancellation (p = 0) or orthogonal transmission (r = 0)

are identical and lead to a total normalized power requirement of Ks.
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e For fixed K, nonzero crosscorrelation or nonzero error probabilities lead to a
penalty term in the denominator of (2.16) that increases in the total power

required.

2.2.4 System Capacity

A theoretical measure of system capacity, denoted as K,,.;, can be defined as the
operating point at which the required power is infinite, or equivalently, when the
denominator of (2.16) equals zero. In this case, we can state that, for the HPIC

detector,

(2.18)

max

~ drsp

which implies that the system capacity is approximately inversely proportional to
the product of the squared signature crosscorrelations r, the required output SINR

s, and the error probability p of the MF first stage.

2.2.5 Comparison to MF and SIC Multiuser Detectors

Using the two-stage HPIC SINR results derived in the prior section and the SINR
results on SIC and MF multiuser detectors from [LE99], we can form Table 2.1 to
compare the total power required (e o) and system capacity (K,,qz) of the HPIC,
SIC, and MF detectors for a given SINR requirement under the assumptions of
Proposition 1. We note that the expressions for total power and system capacity
for the SIC detector are simplified but equivalent to the expressions presented in
[LE99].

Comparison of the HPIC and MF detectors is straightforward. A system using

T

HPIC detection requires less total transmit power e' a and has a higher K.,
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Table 2.1: Summary of multiuser detector total power and system capacity results

under the assumptions of Proposition 1 for 2 152:;.
Detector e o Koo
MF o | et
SIC | i | Teg
HPIC | st | 7 T 1

than a system with MF detection when p < 0.25 for any admissible values of K,
r, and s. Conversely, for p > 0.25, a system using MF detection requires lower
total transmit power and has a higher K,,,, than HPIC for any K, r, and s.
Since an error probability p > 0.25 describes an unusual operating region where
communication has very low reliability, we can say roughly that the HPIC detector
is uniformly superior to the MF detector in terms of SINR, total required power,
and system capacity in the equicorrelated case.

We compare HPIC and SIC detectors in the following propositions.

Proposition 2. Under the same assumptions as Proposition 1 and K > 2, HPIC
detection requires less total transmit power than SIC detection when 0 < p < 0.25

and rs > 0.

Proof. To show that HPIC requires less total power than SIC we will show that

Ks - o — 1
1 —4rsp(K —1)  r(1— 4p6¥)

A ) )
for 6 = 15[1—:;. For notational convenience we define

qg = 4p

A = T8
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and we also assume that all parameters are such that both denominators are pos-
itive in order for this comparison to make any sense. In this case we can cross
multiply the expressions to get the following equivalent expression

KA1 —¢0%) < (0% —1)(1 — g\(K — 1))
for 0 = % and collection of like terms yields

KAX1—q)+1+g\ < 05(1+qgN). (2.19)

It can be shown that (2.19) holds for K = 2 under the assumptions of the propo-
sition. To show that (2.19) also holds for arbitrary K we will use an inductive
proof. Assume that (2.19) holds for some value of K — 1. Then we will show that

it also holds for K. The hypothesis of the induction implies that
(K-=DA1l—q)+14+gr < 05 1+q)

for a particular value of K —1. Multiplying both sides by 6, the hypothesis implies

that
(K — DAL —q)+1+q\] < 05(1+qN).
This last expression, combined with (2.19), implies that it is sufficient to show that
KXl1—q)+1+4+¢g\ < O[(K—-1AN1—-q)+ 1+ g

in order to prove the claim. Using the fact that 6(1 +¢\) = 1+ A we can write an

equivalent expression
KNl—¢q@)+1+g\—1-)X < O(K—-1)A1-9q)
and simplifying

KAl—-¢q)—A1l-q) < 6(K—-1A(1-q)
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which leads to the common positive factor A(1 — ¢) hence
(K-1) < 6(K-1)

which holds for # > 1 and K > 2. But § > 1 is equivalent to 0 < ¢ < 1 or,
equivalently, 0 < p < 0.25 hence (2.19) is true for K under the hypothesis that it
is true for K — 1. Since (2.19) can be shown explicitly true for K = 2 the claim is

proven inductively. O

Proposition 3. Under the same assumptions as Proposition 1 and K > 2, HPIC

has greater K4, than SIC when 0 < p < 0.25 and rs > 0.

Proof. To prove this proposition, we first note that when p = 0 the denominator
of both the HPIC and SIC total power expressions can never go to zero as K
increases, hence both algorithms have theoretically infinite capacity when the MF
decision error probability is zero. In order to prove that K,,,, is greater for HPIC
than SIC when 0 < p < 0.25, we wish to show under our previously established
notation that

1 —logq
—+1> .
qA * log 6

Since gA > 0 and log# > 0 we can express this inequality equivalently as

1+gA
Al > (1 Al
gAlogg > (1+¢A)log———
where we have substituted 6 = %. Defining
1+gA

h(X,q) = gA\logq — (14 gA)log

14+ A
then it is equivalent to prove that h(),¢) > 0 for all A > 0 and 0 < ¢ < 1. To

show this, we note that

. 1
lqligl h(X,q) =0 —log T log(14+A) >0 (2.20)
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and that
limh(A,q) = O. (2.21)
qtl

Since h(g, ) is continuous in ¢ on the open interval 0 < ¢ < 1 for A > 0, we can

compute its partial derivative in this region as

0 q-+qA
—h(\ = Al
34 (A q) 8T o

<0

where the inequality follows directly from the the assumptions 0 < ¢ < 1 and
A > 0. This implies that h(), ¢) is monotonically decreasing on the open interval
0 < ¢ < 1 and this fact combined with (2.20) and (2.21) implies that h(X,q) > 0

on the open interval 0 < ¢ < 1. O

Intuitively, HPIC detection tends to outperform both SIC and MF detection
in the 0 < p < 0.25 interval because the decisions from the first stage are reliable
enough such that cancellation is beneficial to the final decision statistics at the
output of the second stage. The first user in a SIC detector is actually decided via
MF detection and their decision statistic is subject to the interference of all of the
other users. The second user’s decision statistic is subject to K — 1 interference
terms and so forth. Unlike SIC detection, HPIC detection attempts to cancel all of
the multiple access interference for each user. When the interference estimates are
reliable (0 < p < 0.25), and the operating conditions satisfy the approximations
used to derive (2.14) and the assumptions of Proposition 1, the results of this
analysis imply that better performance can be achieved by canceling all of the

multiple access interference in parallel rather than successively.
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2.2.6 Numerical Results

Although the prior section analytically showed that HPIC detection requires less
total transmit power and provides greater theoretical system capacity than SIC and
MF detection, this section presents numerical examples that demonstrate that the
actual performance difference may be quite significant. Figure 2.8 plots the total
normalized power from Table 2.1 for HPIC, SIC, and MF detectors as a function of
K for several values of p. Note that the MF power requirements do not change as
a function of decision error probability since there is no interference cancellation.
These results show that HPIC detection may require several orders of magnitude
less power than the SIC and MF detectors in the cases considered.
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Figure 2.8: Normalized total power required for HPIC, SIC, and MF detection to

meet the SINR requirement s = 10 for r = 0.01.

Figure 2.9 plots the theoretical system capacity expressions from Table 2.1 for
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HPIC, SIC, and MF detectors as a function of p for two values of s. These results
show that HPIC may offer several orders of magnitude greater theoretical system

capacity than the SIC and MF detectors in the cases considered.

10

— MF |
- sic |1
N — - PIC |
sl S~ —
10 ~ |
~ k|
- i
\\\
~ ~N
10°F T~ U 1
<
> (s=20dB > (s=10dB
3 N RN
£ ~ ~
X 4 ~ ~
10 ~ ~ i
2 ~ N
S \\ \\
g ~ ~
8 \\ \\
e 3L \\ \\ 4
(7] 10 ~ ~
g \\ \\
[]) ~ ~
~ <
~ <
2l — = _s=10dB S >
10°F T T — — ~ ~ E|
e ~ ~
AN -
~o N
_ s=20dB So o N
s — = - _ _ ~ =~ ~
10 s=10dB T T S
s=20dB T~ T~
~. \
100 -6 ‘—5 ‘—4 ‘—3 ‘—2 ‘—I
10 10 10 10 10 10

Decision error probability (p)

Figure 2.9: Theoretical system capacity for HPIC, SIC, and MF detection to meet

the SINR requirements s = 10dB and s = 20dB for » = 0.01.

2.3 Conclusions

In this section we analyzed two important performance measures of the HPIC
detector: bit error rate and SINR. We showed that computing the exact bit er-
ror rate of the HPIC detector is difficult even for a small number of users and
computationally infeasible for a system with more than a handful of users. An

approximate expression for the bit error rate of the HPIC detector was derived
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that shows promise with low computational complexity and good accuracy in a
variety of operating conditions.

We also derived an exact expression for the SINR of the HPIC detector and
derived an approximate expression to facilitate analytical results. We examined
the implications of the SINR results on power efficiency and theoretical system ca-
pacity. In the case where all users have the same SINR requirement and where the
signature correlations are identical between all users, we showed analytically that
HPIC outperforms SIC and MF detection in terms of power efficiency and theoret-
ical system capacity. Numerical results suggest that the performance differences

may be significant.



CHAPTER 3
PERFORMANCE ANALYSIS OF LINEAR PARALLEL

INTERFERENCE CANCELLATION

3.1 Introduction

This chapter! analyzes the behavior of the LPIC detector in the synchronous K-
user CDMA communication scenario as described in in Section 1.5. From (1.2)
and Table 1.1, we can write the £ user’s two-stage LPIC detector output in the
K-user synchronous case as
?Jfkp)m = a®p® 4 Z pkg[a“)b“) _ y(u] + on®. (3.1)
£k
From (1.3), we can group the two-stage LPIC detector’s outputs into a K-vector

to write

Yprc=Y — (R_ I)’!J-

We note that under this notation it is evident that the two-stage LPIC detector is
equivalent to the approzimate decorrelator [Ver98] which has received some atten-
tion in the literature recently [MV98a] due to its low computational complexity
and good performance under certain operating conditions. Hence the analytical
results in [MV98a] apply here to the two-stage LPIC detector.

In this chapter we also consider LPIC detectors with M stages of interference

!The results presented in this chapter are due in large part to a collaborative ef-
fort with Mehul Motani, a fellow graduate student at Cornell University, Professor
Venu Veeravalli of Cornell University, and Professor H. Vincent Poor of Prince-
ton University, and have been submitted for publication to IEEE Transactions on
Information Theory.

57
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cancellation which may be compactly expressed in matrix notation as

Yipicm+1) = y— (R—I)y.pc(m) m=0,1,...,.M -1 (3.2a)

Yiric0) = y (3.2b)

where M = 1 specifies the two-stage? LPIC detector and M = 0 specifies the
MF detector. In contrast to the HPIC detector of Chapter 2, we note that the
LPIC detector is in fact a linear detector for any number of stages of interference
cancellation in the sense that the LPIC detector’s soft outputs can be expressed as a
linear combination of the original matched filter outputs y. Unlike the majority of
linear detectors, including the decorrelating and MMSE detectors, implementation
of the LPIC detector does not require a matrix inversion and hence the LPIC
detector is attractive due to its relatively low complexity.

The goal of this chapter is to develop a better understanding of the behavior and
performance of the LPIC detector. Other authors have noted limitations in LPIC
performance including the original paper by Kaul and Woerner [KW94] where
the authors noticed that there existed conditions where interference cancellation
actually degraded system performance. Since then, several authors have proposed
various improvements to the LPIC detector including [CBW97], [RW98a], and
[BN99]. We do not propose to fix the LPIC detector in this chapter but rather
to understand it better so that we can bound the operating regions where the
LPIC detector exhibits good or bad performance. In that spirit, this chapter
is presented as a collection of related analytical results that compare the LPIC

detector to the HPIC and MF detectors as well as expose the asymptotic behavior

2In this chapter, we will consistently use the symbol M to describe the number
of stages of interference cancellation. Under this notation, M + 1 describes the

actual number of detector stages in the sense that M = 1 describes the two-stage
LPIC detector.
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of the LPIC detector as the number of stages of interference cancellation (M)
approaches infinity.

The remainder of this chapter is organized as follows. Section 3.2 compares the
performance of the two-stage HPIC and LPIC detectors in order to gain a better
understanding of the significant performance differences between these detector
observed by several authors. Section 3.3 compares the LPIC detector with M
stages of interference cancellation to the conventional matched filter detector and
shows that the LPIC detector’s error probability may be worse than the matched
filter under certain operating conditions. Section 3.4 analyzes operating conditions
that lead to the LPIC detector exhibiting an error probability greater than 0.5.
Section 3.5 develops asymptotic results on the behavior of the LPIC detector as
the number of interference cancellation stages M — oc. Section 3.6 examines the
implications of the results in the prior sections for a CDMA communication system
with random spreading sequences in the “large-system” scenario where the number
of users K and the spreading gain N both approach infinity but the ratio K/N is

kept constant.

3.2 LPIC vs. HPIC Performance Comparison

This section presents an analytical performance comparison between the two-stage
HPIC and LPIC detectors. The results in this section are motivated by simulation
studies (e.g., [BN99]) which have shown that the two-stage HPIC detector can
significantly outperform the two-stage LPIC detector in terms of error probability
under a variety of operating conditions. Unfortunately, the results of Chapter 2

suggest that direct analysis of the two-stage HPIC detector’s error probability is
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difficult in general since the exact HPIC error probability expressions involve K-
dimensional numerical integration of the joint Gaussian probability distribution
function. Rather than comparing the error probabilities of the two-stage HPIC
and LPIC detector directly, we choose to instead compare the performance of
their interference estimators with the intuition that better interference estimates
would tend to yield better error probability performance.

Recall that, under the K-user synchronous system model, the two-stage LPIC
and HPIC detector outputs for the k% user from (1.2) and Table 1.1 may be written

explicitly as

(k) _ k) 7,(k )1 (L ¢ k
ylpic = a'® pk) + § Dkt [a( po y( )] —I—Un( )
N———
t#k A (D)
=—€LpIC
(k) _ k)7 (k 01, J4 [ k
Ynpic = a™pk) + E Pklla( IHO _ gl )sgn(y( ))],_Hjn( )
Gk N
="CHPIC

Comparison of these expressions reveals that the fundamental difference between
the two-stage HPIC and LPIC detectors is in the multiple access interference es-
timates. Intuitively, one would expect better estimates to generally lead to better
error probability performance hence we will examine the bias and mean squared
error (MSE) of the HPIC and LPIC estimators in the following analytical devel-

opment.
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3.2.1 LPIC Interference Estimator Performance

We can calculate the bias of the two-stage LPIC detector’s multiple access inter-

ference estimator (for the ¢** user) as

f o o) _ (0
biasipic = Elegpic | 0]
— E Zpgka(“b(’” +on®
k£t
= 0

since E[b®] = 0 and E[n®] = 0 for all k. This shows that the matched filter
outputs are conditionally unbiased estimators for the product of the ¢** user’s
bit and amplitude. We note that it has been observed in [CBWO97] that this
unbiasedness property does not extend to additional stages of the LPIC detector
and that later stages of the LPIC detector might exhibit significant bias in the
multiple access interference estimates.

The MSE of the ¢"* user’'s LPIC multiple access interference estimator can be

calculated as
MSE[%\c = E [(efpic)” [ 8]
2
=E <Z pﬁka(k)b(k) + O'TL(Z)) (33)
kAL

= Z (a®pu)” + 0

k2L

where we have used the facts that E[bb'] = I, E[bn"] = 0, and E[nn"] = R.
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3.2.2 HPIC Interference Estimator Performance

The bias of the ¢ user’s multiple access interference estimator for the HPIC

detector can be calculated as

biasjpic = Eleypic | 0]

= 0- Plsgu(y) = 59) — 295 - P(sgn(y") # b°)

— _2a(f)b(l)P(Sgn(y(f)) 7& b(l))

where P(sgn(y®) # b®) = P\l is the matched filter detector’s probability of bit

error for user ¢ given by the expression in [Ver98| as

1 aOpO 4 a®pk)
Pl £09) = iy Y @)

g
b0 =1
oK) e{£1} vE£L

where Q(z) 2 [ e~"/2dt. We observe that the ¢** user’'s HPIC multiple access
interference estimator is biased unless P(sgn(y™“) # b®) = 0.
The MSE of the ¢*" user’s HPIC multiple access interference estimator can be
calculated as
MSEI(-ﬂ’IC =E [(‘ﬁ(—ﬁvlc)2 | bm}
= (a")’E [[sgu(y") — ||
(3.4)
— (a0 Plsgn(y) = b) + 4 Plsga(y) £ b))
= (a")*4P(sgn(y") # b").
We note that both the bias and MSE of the HPIC multiple access interference
estimator are proportional to the probability of bit error from the first (matched

filter) stage.
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3.2.3 LPIC vs. HPIC Performance Comparison

An exact analytical comparison of MSEp,c and MSE{{},c is difficult due to the sum
of @ functions involved in the evaluation of (3.4). An explanation for the significant
performance difference between the HPIC and LPIC detector seen in the simulation
results of [BN99] is possible if we resort to a Gaussian approximation for the
multiple access interference (e.g., see [Pur77]). Even though this approximation
is not valid under all circumstances (see [PV97]), its use in this case provides
some insight into the relative performance of the HPIC and LPIC multiple access
interference estimators in the absence of more exact methods. Moreover, the result
presented in the following proposition is shown in Section 3.6.1 to be asymptotically
exact in the case of large CDMA systems with random spreading sequences.

Under the Gaussian approximation assumption, the multiple access interference
is assumed to be well-modeled as a Gaussian random variable and the probability
of bit error for user ¢ can be written as

a® a®

P(sgn(y") # ) = Q =Q | ———
\/MSEfh

\/Zk;él (a pei)” + 02

hence

a®
VMSE{3,c

where AMSEﬁLlC denotes the approzimate MSE of the /" user’s interference esti-

MSE{jpic & AMSE{h,c = 4(a“)?Q (3.5)

mate with the HPIC detector. With this development we can prove the following

proposition.
Proposition 4. For arbitrary R, o, A, K, and {, MSE),c > AMSE\ b

Proof. Let & = a/y/MSE{},c. Then z > 0 since a® > 0 and MSE{c > 0. An
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upper bound on the @ function for > 0 is given in [Ver98] where

Then

© 2
AMSEﬁig'C < 4a“/ LSQELP'C exp <—%>
T

hence it suffices to show

4x < x2> -1
exp | ——
Vor 2
for x > 0 in order to prove the proposition. Since both sides of the inequality are

positive we can take the natural logarithm to write

4 2
In(z) + In <—> — % <0

2

but In(z) < x — 1 for all x > 0 hence

4 x? 4 x?

The discriminant of this quadratic equation is given by

1-4 1—lln 4 =—-1+2In 4
2 2 2T 2T

which is strictly less than zero, hence the quadratic equation in (3.6) has no real
roots. This implies that (3.6) is either always less than zero or greater than
zero. Inspection of (3.6) shows that it is always less than zero, hence MSE[},c >

AMSE{jpc. O

As a numerical example of the interference estimator performance, consider a
multiuser communication system with K = 6 equipower, equicorrelated users such

that pg, = p for all k # (. The exact and approximate interference estimator MSE
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performance for the two-stage LPIC and HPIC detector is shown in Figure 3.1
over a range of typical SNR values for several values of p. Note that the approx-
imate HPIC interference estimator MSE (AMSE[}} ) is quite accurate in all of
the cases shown and is nearly indistinguishable from the exact HPIC interference
estimator MSE (MSE}}3,c) in the cases where p = 0.2 and p = 0.5. Moreover, these
cases demonstrate the superiority of the HPIC interference estimator in terms of
MSE and give some feeling for its relative performance with respect to the LPIC

interference estimator.

. p=0.1 . p=0.2 . p=0.5
10 T T 10 T T 10 T T
—©- LPIC MSE -©- LPIC MSE -6~ LPIC MSE
—&- HPIC MSE —&- HPIC MSE —&- HPIC MSE
—— HPIC AMSE —— HPIC AMSE —— HPIC AMSE

MSE
MSE

-1

SNR SNR SNR

Figure 3.1: MSE of two-stage LPIC and HPIC estimators for 6 equipower, equicor-

related users.
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3.3 Comparison to the Matched Filter Detector

The goal of this section is to show that the matched filter detector outperforms
the multistage LPIC detector at any stage in terms of error probability when the
desired user’s amplitude exceeds a finite threshold. Analogous results comparing
the matched filter to the linear decorrelating and MMSE detectors have recently
been obtained by Moustakides and Poor in [MP99]. Here, we use a similar method
of proof for the LPIC detector. We denote the error probability for the £ user of
the LPIC detector with M stages of interference cancellation and MF detector as

P5ic(M) and P} respectively.

Proposition 5. For arbitrary fized desired user k, LPIC detector with M > 0
stages of interference cancellation, correlation matric R # I, noise standard devi-

ation o > 0, and interfering user amplitudes a' Y # k, there exists an amplitude

threshold a* < oo such that Plyc (M) > Pyt for a® > a*.

Proof. For nonzero noise power, the probability of a decision error for the k' user

of an arbitrary linear detector F can be expressed as

oy vo e )

beBy, oV I Rf
where By, is the set of all possible bit vectors such that b* = +1 and b € {£1}
for all ¢ # k and f* € RE*! denotes the effective linear operation on the matched
filter bank outputs to form the decision statistic for user k. The matched filter
detector is given as f* = e,. The LPIC detector’s output after M stages of

interference cancellation can be written as

Yipic(M) = Z(I - R)"y=L(M)y

m=0
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hence f* = L(M)ey. Since Q(z) is a monotonically decreasing function in z,

e, L(M)RAb - e, RAb
o\/e, L(M)RL(M)e, o+/e] Rey

implies that P{5,(M) > P{;.. We note that this is a sufficient but not necessary

condition and the converse is not necessarily true. Observing that e} Rej, = 1,

Aey, = a™ey, and denoting d = b — e, we can rewrite (3.7) as

a®el L(M)Rey, + e, L(M)RAd < \/e,jL(M)RL(M)ek (a® + e, RAd) (3.8)

for all d € Dy, where D;, is the set of all vectors such that the £ element d* = 0
and d® € {£1} for all £ # k. Using the Schwarz inequality and the fact that R is

nonnegative definite, we note that

e, L(M)Re, = e;L(M)R'*R'?e,

< \/ekTL(M)RL(M)ek\/e,IRek

= \/e/ LONRL(M)e,

with equality if and only if L(M) = oI or if and only if R = I. In the case where
R = I the users’ signatures are all mutually orthogonal and the LPIC detector is
identical to the matched filter detector. Since our proposition assumes that R # I

we can rearrange the terms in (3.8) to write

[e,jL(m)RA - \/e,jL(M)RL(M)ekekTRA] d

a™ >
Ve, L(M)RL(M)e, — e} L(M)Re,

Vd € Dy,

hence the threshold

* [ekTL(m)RA - \/ekTL(M)RL(M)eke,jRA} d
a = Mmax
deDy vel L(M)RL(M)e, — e] L(M)Rey

will satisfy the requirements. We can remove d from this expression by exploiting

the binary nature of its elements to maximize the right hand side of the inequality
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by setting

d" = sgn <[e,IL(M)RA - \/e,;rL(M)RL(M)ekekTRA] eg> Ve £k

from which it follows directly that

o |\/el L(M)RL(M)ere] Re; — ekTL(M)Reg‘
a* = < 00 (3.9)
ve, L(M)RL(M)ey, — e} L(M)Re;

and that P5\c(M) > P} for a® > a*. O

We note that the existence of the amplitude threshold a* < oo does not rely on
the structure of the LPIC detector and the above analysis applies to any linear
detector that is not a function of the user amplitudes including the decorrelating
detector. Computation of the threshold a* is dependent on the particular linear
detector. We also note that a* is not a necessary threshold but sufficient and is
quite likely to be loose in the sense that values of a® significantly less than a* may
also cause the LPIC detector to exhibit a higher probability of bit error than the
matched filter detector.

As a numerical example, consider the two-stage (M = 1) LPIC detector where

L(M) =2I — R. The communication system has K = 3 users with ¥ /o = 4 for

k =2,..., K. The normalized user correlation matrix is given by
4 2 1
1
R = -
1 2 41
11 4

Computation of (3.9) under these conditions yields a* ~ 4.69 and a plot of the

error probabilities shows that the actual crossover point occurs at a'¥ ~ 2.25.
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Figure 3.2: Example of error probabilities P'pc(M) and Py} for a two-stage LPIC

detector (M = 1) and K = 3 equipower users.
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3.4 LPIC Misperformance

This section shows the existence of operating conditions where the LPIC detector
exhibits a probability of error P5)(M) > 0.5.* This behavior is in contrast to the
matched filter detector which never exhibits a probability of error greater than 0.5
under any operating conditions within the scope of the K-user, synchronous, binary

system model. We make this claim more precise with the following proposition.

Proposition 6. For an arbitrary fived desired user k in a system with K > 2
users, an LPIC detector with M > 0 stages of interference cancellation where M
is odd, and equal amplitude users such that A = al and £ > 0, there erists R

such that P{gc(M) > 0.5.

Proof. Applying the assumptions of the proposition to the left hand side of (3.7) we
can write the argument of the ) function for the LPIC detector’s error probability

expression as

e, L(M)RAb B ae, L(M)Rey ae, L(M)Rd
ov/e] L(M)RL(M)e ov/e, L(M)RL(M)e, o+/e]L(M)RL(M)e,
ar B(a)
hence
1
Plhic(M) = 555 Y Q (o + Bu(d). (3.10)
deDy,

Recognizing that d € Dy implies that —d € Dy, and that ;(—d) = —fx(d) we can

rewrite (3.10) as

Piic(M) = o 3 Q (o + fild)) + @ (0 — ().

deDy,

3We note that if the detector is aware of the fact that its binary decisions have
error probability greater than 0.5 then a simple sign change on the decisions would
yield an error probability of less than 0.5. In this context, this section describes
the operating regions where this misperformance occurs so as to alert the detector
when such a bit-flipping strategy might be beneficial.
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Suppose temporarily that ap < 0. Since Q(z) is monotonically decreasing in x

then

Q (o + Bi(d)) + Q (i — B(d)) > Q (Br(d)) + Q (=Sk(d)) =1

and it follows directly that

o O Qan+ () +Qax — Ad) > 5 > 1= S = o

deDy, deDy,

Hence it is sufficient to show that there exists R such that oy < 0. Since a/o > 0

and /e L(M)RL(M)e, > 0 then P{c(M) > 0.5 if and only if there exists
R such that e} L(M)Re; < 0. We note that for the matched filter detector
L(M) = I hence o = a/o > 0 for all R. This justifies our earlier claim that the
matched filter detector cannot have an error probability greater than 0.5.

Returning to the LPIC detector, we wish to show that there exists R such that
e, L(M)Re; < 0. To show this, recall that the multistage LPIC detector may be
written as

L(M)=) (I-R)"

m=0

Let I — R = VAV ™! where V is a matrix with columns representing the eigen-

vectors of (I — R) and A is a diagonal matrix of corresponding eigenvalues. Then

M

2 AT

m=0

LM)=V v

[t can be shown that each eigenvector of (I — R) is also an eigenvector of R and

that if A is an eigenvalue of (I — R) then 1 — ) is an eigenvalue of R. Using these
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facts, we can write

LOMR = V i

71

M
NS WIS
Lm= m=0
= V[I—AM“}V '
= I-VAYHVH
hence
e, L(M)Re, =1—¢, VA"V g (3.11)

In order to prove the existence of an R such that (3.11) is less than zero we will
constrain the remaining analysis to the equicorrelated case where pyy = p for all
k # (. In this case it can be shown that I — R has one eigenvalue equal to (1—K)p
and K — 1 eigenvalues equal to p. Furthermore, it can be shown that V can be

written in the form

V:|:’U1 vy ... ’UK:|

where the normalized eigenvectors are given by

1 T
v, = ——
1 \/E{llll"‘ 1}
1 T
v = — —
2 \/5[1 100 ...0
1 T
V3 = —— —
3 \/6[11 2.0 ... 0
1 T
v = — —
K \/(K_1)+(K_1)2[1111... (K —1)

where v, is the eigenvector corresponding to the unique eigenvalue. We have

used the normalized eigenvectors so that V! = V. Using the fact that in the
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equicorrelated, equipower case e,;rVAMHV_lek does not depend on the choice of

k, we can set k = K and explicitly evaluate (3.11) to write

1_KM+1 M—+1 K_12M+1
1—e VATV ile, =1 <( )" ( \°p ) .

K TE-Dt (K12
Under our assumption that M is odd then (1 — K)M 1 = (K — 1)#*! and we can

simplify this expression to write the following condition

X e
<1 M . 12
(gmrrm=y) <rst v 1)

Satisfying this condition leads to an autocorrelation matrix R which causes the

LPIC detector with M stages of interference cancellation to exhibit an error prob-

ability of greater than 0.5. O

We note that when K = 2, the lower bound on p is computed to be 1 for any
value of M, hence no admissible choice of p will lead to an error probability greater
than 0.5 at any stage in the two-user equipower scenario. On the other hand, when
K > 2 then the lower bound is strictly less than one for all odd values of M and
is decreasing in M. The common case of the two-stage LPIC detector (M = 1)

leads to the following condition on p

In the limit, as M — oo (through all odd values of M) it can be shown that the

condition on p is

<p<l

We note that this condition is equivalent to R having an eigenvalue greater than 2

in the equicorrelated case. The fact that the bound is decreasing in M implies
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that the performance of the LPIC detector may become worse at later stages when

compared to earlier stages. In fact, if

1
K—1-">Ur-1

then the two-stage LPIC detector will not exhibit a probability of error greater
than 0.5 but eventually, for M large enough and odd, the multistage LPIC detector
will exhibit a probability of error greater than 0.5.

As a numerical example, consider a communication system with K = 8
equipower, equicorrelated users where a/o = 10 and p = 0.25. Figure 3.3 shows
the error probability for any user k versus M, the number of interference cancel-
lation stages. Note that P5\(M) > 0.5 for all odd values of M > 3. Moreover,
note that, at even values of M, the LPIC detector exhibits poor error probability
performance with respect to the matched filter detector in this example, yet the
error probability does not exceed 0.4 for any even value of M. This example sug-
gests that the error probabilities for odd and even values of M converge to a pair
of respective fixed points symmetric around 0.5 as M — oo. A rigorous proof of
this conjecture is left as an open problem.

Figure 3.4 shows the minimum values of p versus M such that P5\c(M) > 0.5.
Examination of Figure 3.4 or calculation of (3.12) shows that values of p satisfying
0.3780 < p <1 when M =1 and K = 8 lead to an LPIC detector error probability
of greater than 0.5. This agrees with the results shown in Figure 3.3 where p = 0.25
and the error probability of the two-stage LPIC detector is less than 0.5. When
M = 3, Figure 3.4 shows that values of p satisfying 0.2401 < p < 1 when M =3
and K = 8 will lead to an LPIC detector error probability of greater than 0.5, also

agreeing with the results shown in Figure 3.3.
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Figure 3.3: Example of error probabilities Ppc(M) and P} for an LPIC de-

tector with M stages of interference cancellation in an equicorrelated, equipower

communication system with K = 8 users.
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Figure 3.4: Correlation lower bound (3.12) of an LPIC detector with M stages of

interference cancellation for odd values of M.
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3.5 LPIC Asymptotic Behavior for Large M

This section analyzes the behavior of the LPIC detector in the asymptotic case
where the number of interference cancellation stages M goes to infinity. It has been
shown in [GMNK95] that the multistage LPIC detector converges to the decorrelat-
ing detector as M — oo when the spectral radius of the signature crosscorrelation
matrix p(R) is less than 2. This section analyzes the asymptotic behavior of the
LPIC detector when p(R) > 2.

Recall that the multistage LPIC detector may be expressed as

LM) =Y (I-R)"

m=0

Let p(R) represent the spectral radius of the signature crosscorrelation matrix R
where p(R) 2 max, |7%| and where the {7;} is the set of eigenvalues of R. Note
that 7, = 1 — A\ where {\;} is the set of eigenvalues of (I — R) under the notation
established in Section 3.4. It was shown in [GMNKO95] that

L(x)=) I-R"=R"'

m=0
if R is nonsingular and if p(R) < 2. If p(R) > 2 then there exists at least one
|\k] > 1 and it is clear that L(M) does not converge to R ' as M — oco. The
following proposition analyzes the error probability of the LPIC detector when

p(R) >2as M — oo.

Proposition 7. Let P{5\c(M) be the error probability of an LPIC detector with M
stages of interference cancellation for the k™ user. Given R such that p(R) > 2,
there exists M* and k such that Plyc(M) > 0.5 for all odd integer values of

M > M*.
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Proof. The proof of the proposition relies on the result in Proposition 6, which
states that

PHc(M) > 0.5« e L(M)Rey, < 0.

Hence it suffices to show that given R such that p(R) > 2, there exists k and M
such that e, L(M)Re; < 0.

Since R is symmetric, it can be decomposed as R = VI'V'", where V is an
orthogonal matrix consisting of the eigenvectors of R and I is the diagonal matrix
containing the eigenvalues of R. Moreover, since L(M)R is a polynomial in R, it

has the decomposition
LIM)R=VfIT)V'

where f(T') = diag(f(71), ..., f(7x)) and f(3) = % Y p_o(l — %)™ Letting

V =[v; --- vg|, we can also write

LONR = vew] f(n).

Let XY ={¢ e {1,2,...,K} : 7 > 2}. Then we can write

e, L(M)Re; = Z e, v, epf(v) + Z e, v, erf(Ve).
tex X

It can be shown that 0 < f(vy,) < 7, for any M if 0 < ~, < 2. This fact combined
with the property that all of the elements of V' are finite implies that the second
summation can be upper bounded by a finite constant C' that does not depend on
M or k. Hence we can write

e, L(M)Re;, < Z e, v, e,f(v) +C.

lex

It can be shown that f(7,) < 0 when v, > 2 and M is odd. Moreover, f(v,) is

unbounded from below as M — oo when 7, > 2 and M is odd. This implies that
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there exists M* such that

Z e v, ef(v) < —-C

lex

since each eigenvector v, can not have all zero elements and we can choose k such

that e} v, # 0 for at least one ¢ € X. This implies that
e, L(M*)Rey, < 0.
Finally, for any odd M > M*,
e, L(M)Re; < e L(M*)Re;, < 0.
0

The previous proposition indicates that if p(R) > 2, there exists at least one
user whose probability of error will exceed 0.5. It is tempting to think that if
p(R) > 2, all users will exhibit error probabilities greater than 0.5 for sufficiently
large M. The following example indicates otherwise.

Suppose we have K = 5 users and a signature crosscorrelation matrix R which

satisfies

1 -1 -1 -1 3

R=—|-1 7 11 7 7|- (3.13)

The spectral radius of R is given by its largest eigenvalue which is computed to be

p(R) = 32/11 = ; > 2 and it can be verified that all other eigenvalues of R are in
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the open interval (0,2). The unit-norm eigenvector associated with the maximum

eigenvalue is given as

N | =

vl —

T
[01111}-

Examination of the quantity ey L(M)Rey for user k = 1 reveals that

K
e/ L(M)Re; =0- f(32/11) + > _e]vw/ e f(y) > 0= Pc(M) < 0.5
(=2

since f(vy,) > 0 for ¢ = 2,..., K and any value of M. The key to this example
is that the eigenvector associated with the maximum eigenvalue has a zero in
a fortuitous location for the user £k = 1. All other users £ # 1 would exhibit
misperformance. In any case, this example confirms our claim that not every user
will necessarily exhibit an error probability greater than 0.5 when p(R) > 2 since
there is no guarantee that the eigenvector associated with the maximum eigenvalue
has all nonzero entries for general R.

The prior example leads to the following proposition. The proof is similar to

that of Proposition 7.

Proposition 8. Suppose R satisfies p(R) > 2 and has an eigenvector, associated
with an eigenvalue greater than two, with all nonzero entries. Then there exists

M* such that for all k, Plgic(M) > 0.5 for all odd integer values of M > M*.

Recall that even though P{5 (M) > 0.5 for odd values of M, P'pc(M) may
be less than 0.5 for even values of M as shown in Figure 3.3.

Proposition 8 leads to the natural question, “When does R have an eigenvector
with nonzero entries which is associated with an eigenvalue greater than two?” We
have not been able to classify all such correlation matrices, but Perron’s Theorem
[HJ94, pp. 500] and its extensions identify a large class of such matrices. The

theorem states that



81

Theorem 1. Perron’s Theorem. If A is an n X n matriz with positive entries,

then
1. p(A) > 0 and is a simple (multiplicity one) eigenvalue of A.
2. The eigenvector associated with A = p(A) has positive entries.

Although Perron’s Theorem may be generalized from the class of all positive
matrices to particular classes of nonnegative matrices [HJ94, pp. 508, 516], it does
not extend to the case of signature crosscorrelation matrices with negative ele-
ments. This implies that the class of signature crosscorrelation matrices with two
or more negative elements (since signature cross correlation matrices are symmet-
ric and all elements on the diagonal are equal to one) are not covered by Perron’s
Theorem or its extensions. One example of just such a signature crosscorrelation
matrix was given in (3.13). On the other hand, the implications of Perron’s The-
orem are stronger than necessary and simulations suggest that it is actually fairly
difficult to find valid signature crosscorrelation matrices with an eigenvalue greater
than two and an associated eigenvector with one or more elements equal to zero.
The simulations presented in the next section (see Figure 3.8) suggest that the
LPIC misperformance results described in this section extend to all users even in

the case of random signature sequences.

3.6 Random Signature Sequences: Large-System
Analysis

This section considers the implications of the general results developed in the prior

sections to a CDMA communication system where the elements of R are random
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and change at each bit interval. More precisely, given a CDMA communication
system with spreading gain N, this section considers the case where the signature

crosscorrelation matrix can be written as

R = %STS (3.14)

where § € BY*X and the £ column of S is denoted by s, and represents the
k" user’s binary random spreading sequence. All elements of S are independent
and randomly chosen with equal probabilities. To obtain analytical results, we
will focus on the “large-system” case described in [VS99] where the spreading gain
(N) and the number of users (K) both approach infinity but their ratio 8 = K/N

converges to a fixed constant.

3.6.1 Performance Comparison

Since Proposition 4 holds for arbitrary R then it also holds for R described by
(3.14). It turns out that the large-system random spreading sequences case allows
us to reconsider Proposition 4 without the use of the Gaussian approximation
to achieve an ezact comparison of the MSE of the interference estimates for the
two-stage LPIC and HPIC detector.

In the large-system case it was shown in [Ver98, pp. 116] that the average error
probability for the matched filter detector with random spreading sequences can

be written without approximation as

E[P(sgn(y") # b)) = E[Pyt] = Q (%)

where

1
a = lim — E (a™)?. (3.15)

K—o0
k#L
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This result in combination with (3.4) allows us to express the average interference

estimate MSE for the ¢ user of the two-stage HPIC detector as

It is also possible to calculate the average interference estimate MSE of the ¢** user

E[MSEmvlc] = 4(0(())262 <L> .

of the two-stage LPIC detector in the large-system random spreading sequences

case without approximation as

EMSE{pc] = £ [(elpic)” | 0]
2
=F (Z s; 8,a® 0™ + an(‘)>
Py,

1
=0’ + 4 lim — ) (a®)*

K—oo K

k£t
= o* + pa’
where we have used the property that
1/N ifk=j
Els/sis; 8] =
0 otherwise

Hence, in the large-system random spreading sequences case, we can write the

eract expression

a®

E[MSEpc] = 4(a)’Q | ———=
E[MSE{

which leads to the following proposition.

Proposition 9. For random R given by (3.14), arbitrary fized o, A, and ¢,

E[MSE},c] > E[MSE{},c] asymptotically as K — oo, N — oo, and K/N — [3.

Proof. The proof follows that of Proposition 4. O
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Figure 3.5 plots the analytically determined interference estimator MSE’s of the
LPIC and HPIC detectors for several values of § in the large-system case with
random spreading sequences. This figure verifies the proposition and shows that
the HPIC detector’s interference estimates have lower MSE than the LPIC detector
at any point in SNR-space for any value of 3. The performance difference between

the LPIC and HPIC detectors is several orders of magnitude for small values of 3.

MSE
/
/
/

[~ LPIC MSE p=1/16 Vs
H| =< LPIC MSE p=1/8 ~

1oL & LPIC MSE p=1/4 AN R i
f| = LPIC MSE p=1/2 N ]
[| -7~ HPIC MSE B=1/16 ~ -
[| —x— HPIC MSE p=1/8 Y
|| -o- HPIC MSE p=1/4
—%- HPIC MSE p=1/2

| |

4

| | | | | | |
0 2 4 6 8 10 12 14 16 18 20
SNR dB (equal for all users)

10

Figure 3.5: MSE of two-stage LPIC and HPIC detector interference estimators in

a large system with random spreading.

We also compare the error probability performance of the two-stage HPIC and
LPIC detectors in Figure 3.6. This figure shows a simulation of two-stage LPIC
and HPIC detector error probabilities in a large system (N = 256) with random

spreading sequences for several values of 3. The HPIC detector outperforms the
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LPIC detector at all points in the simulation. This result adds credence to our
intuition that better interference estimates tend to lead to better PIC detector

output (e.g., BER or SINR) performance.

Average probability of error

L[~5~ LPIC BER p=1/16
- < LPIC BER p=1/8
_|| e~ LPIC BER p=1/4
10 H % Lpic BER B=1/2
| -7~ HPIC BER p=1/16
| —x- HPIC BER p=1/8
| o~ HPIC BER p=1/4
—%- HPIC BER =1/2
I I

| | |
0 2 4 6 8 10 12 14 16 18 20
SNR dB (equal for all users)

10

Figure 3.6: Bit error rate of two-stage LPIC and HPIC detectors in a large system

with random spreading.

In summary, Proposition 9 and the simulation results of Figure 3.6 suggest that
the two-stage HPIC detector is not only uniformly superior to the two-stage LPIC
detector in terms of interference estimator performance but may also be superior to
the two-stage LPIC detector in terms of error probability for large CDMA systems

with synchronous users and random spreading sequences.
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3.6.2 Comparison to the Matched Filter Detector

Direct interpretation of Proposition 5 in the large-system case with random spread-
ing sequences is difficult since, unlike the matched filter, an exact expression for
the LPIC detector’s average probability of error E[Pp,c(M)] is difficult to obtain
even in the two-stage (M = 1) case. Rather than directly comparing the error
probabilities of the MF and LPIC detectors, we can instead compare their output
SINRs using the SINR definition of Chapter 2 in (2.10). In this case, the expecta-
tions in (2.10) are averaged over the transmitted data, noise, and random signature
sequences.

We note that the MF detector’s error probability in the large-system case with

random spreading sequences is a function only of its SINR where

B[P = Q ( %) ~Q <\/SINR;2)F) (3.16)

as shown in [Ver98, pp. 116 and 281] with a* as defined in (3.15). For an expression
of the form in (3.16) to also apply to the multistage LPIC detector it is necessary
to show that the LPIC detector’s decision statistic after M stages of interference
cancellation can be modeled by a Gaussian random variable in the large-system,
random spreading sequences scenario. Although numerical evidence suggests that
this may indeed be the case, a rigorous proof of this property appears to be difficult
and remains an open problem. We proceed with the SINR analysis but caution the
reader that these results do not directly lead to any conclusions about the relative
bit error rates of the LPIC and MF detectors. Moreover, we justify the choice of
SINR as a useful performance measure by noting that SINR is a more relevant
measure of performance than bit error rate if the multiuser detector’s outputs are

to be used by a decoder.
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The asymptotic SINR of the approximate decorrelator for a large CDMA sys-

tem with random spreading sequences is given in [Ver98, pp. 281] as

(a(1 = p))*
o (1= B+ B%) +@(5* + B°)
where we have used the fact that the two-stage (M = 1) LPIC detector is equivalent

SINRY) = SINRY, (1) =

to the approximate decorrelator. Comparison of SINR;?,(1) to SINR}, reveals

that (a”)? can be factored out of both expressions and that there is no a* threshold
behavior as seen in Proposition 5. Instead, the relationship between SINR{,(1)
and SINR;,- depends on 3 and the ratio of mean interference to noise power a?/o?.
The region in (a*/o?, 8) space where the MF detector outperforms the two-stage
LPIC detector in terms of asymptotic SINR in the large-system random spreading
sequences case is shown in Figure 3.7. Note that the MF detector outperforms the
two-stage LPIC detector for almost all values of 3 when @?/o? is small since the
multiple access interference estimates are unreliable in this region. Inspection of the
asymptotic SINR expressions for large a*/o? also yields the somewhat surprising
result that the MF detector outperforms the two-stage LPIC detector in terms of
asymptotic SINR for all g > 1/3.

Calculation of the asymptotic SINR of the multistage LPIC detector for ar-
bitrary M > 1 is more complicated and appears to require computation of the
moments of the random eigenvalues of R from the distribution given in [VS99].

An analytical comparison of the MF and multistage LPIC detectors’ asymptotic

SINRs remains an open problem.

3.6.3 LPIC Misperformance and Asymptotic Results

Proposition 6 does not have direct application in the case when the signature

crosscorrelation matrix R is random since Proposition 6 involves selection of some
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Figure 3.7: SINR{3,c(1) < SINR{j in the region marked “MF” and SINR{},(1) >

SINR{r in the region marked “two-stage LPIC” for the large-system scenario with

random spreading sequences.
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particular R to show misperformance of the LPIC detector. However, Proposi-
tion 7 does have a meaningful interpretation due to the following theorem by Bai

and Yin [BY93].

Theorem 2. (Bai and Yin). Let S be a N x K matriz of independent and iden-
tically distributed (i.i.d.) random variables with zero mean and unit variance. Let

R = %STS. If E|S1|* < oo, then, as K — 0o, N — oo, % — § € (0,1), the
largest eigenvalue of R converges to (1 + \/B)2 with probability one. The minimum

etgenvalue converges to (1 — \/3)2 with probability one.

This theorem indicates that the largest eigenvalue of R, defined as v, = p(R)

with R as defined in (3.14), converges asymptotically to a deterministic value

Yonaz = (1+ \/B)2 (3.17)

as K and N both go to infinity and K/N — (. Recall that Proposition 7 considered

the case where p(R) > 2. Manipulation of (3.17) yields

(1+\/B)2>2:ﬂ><\/§—1)2z0.17.

This implies that for K/N > 0.17, p(R) > 2 almost surely. In this case, Proposi-
tion 7 implies that at least one user will have probability of error greater than 0.5
almost surely in each bit interval. To be precise, we note that the misperforming
user may be different for each realization of R so this result does not necessarily
imply that the average error probability (over all possible realizations of R) is nec-
essarily greater than 0.5 for one or more users. The numerical example presented
in Figure 3.8 suggests that all users may indeed have an average error probability
greater than 0.5 as M — oo, but a rigorous proof of this conjecture is left as an
open problem since it appears to require knowledge of the asymptotic structure of

the eigenvectors of R.
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Figure 3.8: CDMA system with spreading gain N = 256 and random spreading
sequences error probability versus number of LPIC interference cancellation stages
M. All users have unit amplitude and the noise standard deviation is o = 0.3.

The single user bound is & 4.29 - 10™* in this case.
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3.7 Conclusions

This chapter examined several performance aspects of the multistage LPIC detec-
tor. We presented analytical evidence that supports the recent simulation evidence
of other authors (e.g., [BN99]) suggesting that Varanasi and Aazhang’s HPIC de-
tector may outperform the LPIC detector in a large class of common operating
scenarios. The LPIC detector was also shown to exhibit a worse error probability
than the matched filter detector in the case where the desired user has sufficiently
high amplitude. We showed that, unlike the matched filter detector, the LPIC
detector may exhibit an output error probability greater than 0.5 for binary sig-
naling under certain operating conditions. Asymptotic results were presented that
describe bounds on the good-performance regions of the LPIC detector in terms
of the eigenvalues of the signature crosscorrelation matrix as the number of inter-
ference cancellation stages (M) approaches infinity.

The implications of the prior results were studied in the last section for CDMA
communication systems with large bandwidth, a large number of users, and random
spreading sequences. We showed the somewhat surprising result that the two-stage
LPIC detector exhibits worse asymptotic output SINR performance than the MF
detector when K /N > 1/3 for any choice of desired user amplitude and interference
or noise powers. We also showed the asymptotic result that application of the
multistage LPIC detector to a CDMA system with K/N > 0.17 will not yield the
decorrelating detector as M — oo and that at least one user will exhibit an error

probability worse than 0.5 in each bit interval.



CHAPTER 4
PERFORMANCE ADAPTIVE PARALLEL INTERFERENCE

CANCELLATION

The prior chapters of this dissertation analyzed the two most common implemen-
tations of parallel interference cancellation: LPIC and HPIC. The common thread
to both of these schemes, as well as the original work by Varanasi and Aazhang
[VA90, VA91], Yoon, Kohno, and Imai [YKI92], and Kawabe et al [KKKF93], is
that the PIC detector attempts to completely cancel the interference caused by all
other users in order to form its output decision statistic. As has been suggested re-
cently in [DSR98], full cancellation may not always be the best philosophy. Rather,
when the interference estimates are unreliable, it may be better to not attempt
to cancel any multiple access interference or perhaps to cancel only a portion of
the interference. Divsalar and Simon’s paper [DSR98| proposed an improved PIC
detector with an output decision statistic (in the two-stage case) formed from a lin-
ear combination of the full cancellation HPIC and matched filter detectors’ output
decision statistics. A single weighting factor was chosen to specify the proportion
of the linear combination and was selected in an ad-hoc manner to reflect the ex-
pected accuracy of the HPIC detector’s interference estimator. Divsalar and Simon
showed via simulation that, even with an ad-hoc choice of weighting factor, their
improved PIC detector offered significant performance improvements with respect
to the “brute force”, or full cancellation, HPIC detector in several cases.

Other than the work by Divsalar and Simon, the majority of the recent re-
search on improving the performance of PIC detection has focused on the LPIC
detector [BW96, BN99, CBW97, CBW98, RW98a, XWLNT99, GRL99] due to its

linear nature and the ability to obtain analytical results. Recently, an improved
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version of the LPIC detector was proposed that converges to the linear MMSE
detector in K stages [GRSLO00]. Unfortunately, since each stage requires K? mul-
tiplications and there are K such stages, the number of multiplications required
by this algorithm is on the order of K®. This complexity is equivalent (in order) to
the complexity of performing a K x K matrix inversion for direct computation of
the linear MMSE detector. More importantly, the key disadvantage of focusing on
improving the performance of the LPIC detector is that the ultimate performance
of any improved LPIC algorithm is limited by the fact that it is linear. It is evident
from the simulation results presented in [BCW96] that even the full cancellation
HPIC detector often outperforms the linear MMSE detector in terms of bit error
rate in a variety of scenarios. An improved performance nonlinear PIC detector, as
sought in this chapter, potentially offers even greater performance improvements.

This chapter focuses on the problem of improving the performance of the two-
stage HPIC detector through two distinct approaches. The first approach, devel-
oped in Section 4.1, proposes a scaling or attenuation of the hard decisions from
the matched filter bank first stage in order to attenuate unreliable bit estimates.
This idea is similar to that proposed by Divsalar and Simon in [DSR98] for the
two-stage case, but with two improvements. The first improvement is that we
suggest assigning an individual partial cancellation factor to each user rather than
assigning one partial cancellation factor to all users. We show via a two-user ex-
ample that assigning one partial cancellation factor to all users can be significantly
suboptimum with respect to the individual partial cancellation factor approach.
Our second improvement is that we consider analytical methods for computing
optimum partial cancellation factors for three different performance criteria. We

show that calculation of the partial cancellation factors to minimize the exact
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or approximate bit error rate of this detector is difficult and numerical methods
must be used to optimize the partial cancellation factors under these criteria (per-
haps justifying the ad-hoc partial cancellation factor selection in [DSR98]). We
also consider partial cancellation factor optimization under the SINR criterion and
show that, unlike the bit error rate optimizations, a simple expression for the SINR
maximizing partial cancellation factors can be obtained even in the general K-user
case. We compare the performance of each of these methods in the two-user case
to illustrate their relative performance gains with respect to the full cancellation
HPIC detector.

Section 4.2 develops the second performance adaptive approach. We propose to
improve the quality of the interference estimates from the matched filter bank out-
puts by forming estimates of the interfering users’ bits that minimize the Bayesian
MSE. This approach differs fundamentally from the first approach in that, rather
than optimizing some performance measure at the output of the PIC detector, we
instead optimize the performance of the interference estimates that are used to
generate the output of the PIC detector. As discussed in the prior chapters of this
dissertation, the intuition behind this approach is that if the interference estimates
are high quality, then the performance at the output of the PIC detector will also
tend to be good. An approximate version of this estimator is also proposed in
this chapter that has low computational complexity in the general K-user case
and simulation results are presented that suggest that this approach can offer very

good performance.
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4.1 Partial Cancellation HPIC

This section proposes a new performance adaptive detector called the partial can-
cellation hard parallel interference cancellation (PC-HPIC) detector in order to
improve the performance of the standard HPIC detector described in Chapter 2.
The motivation behind PC-HPIC is developed by showing that there exists a set of
operating conditions where HPIC actually performs worse than the MF detector in
terms of bit error rate. Intuitively, the poor performance of the HPIC detector is
due to the fact that the HPIC detector attempts to cancel all of the multiple access
interference even when the interfering users’ bit estimates are unreliable. When
the HPIC detector attempts to cancel a binary interference term with an incorrect
bit estimate, the interference is doubled rather than canceled. If this happens often
enough, the performance of the HPIC detector can actually be significantly worse
than the MF detector. The PC-HPIC detector addresses this problem by consid-
ering the reliability of the hard bit estimates used in the interference cancellation.
If the estimates are unreliable, the PC-HPIC detector only attempts to cancel a
portion of the multiple access interference to avoid the problem of interference
doubling.

From (1.2) and Table 1.1, we can write the k" user’s two-stage PC-HPIC

detector output in the K-user synchronous case as

Ypenpic = a®b+ Zpua“) [0 — gesgn(y®)] + on®. (4.1)
£k

From (1.3), we can group the two-stage PC-HPIC detector’s outputs into a K-

vector to write

Ypc-HPiIc — Y — (R - I)Angn(y)

where G = diag(gy,...,gx). These expressions are quite similar to the HPIC
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detector in (2.1) except for the real scalar terms {g,}£ , which denote the partial
cancellation or weighting factors. These partial cancellation factors are chosen in
order to mitigate the performance degradation due to interference doubling from
unreliable interfering bit estimates. In the case when G = I it is clear that the
PC-HPIC detector is equivalent to the full cancellation HPIC detector. In the case
when G = 0 it is clear that the PC-HPIC detector is equivalent to the conventional
MF detector.

The key ideas behind PC-HPIC are illustrated in this section by considering
the two-user synchronous CDMA system model. The two-user synchronous case
allows a graphical analysis that provides a visual intuition of the PC-HPIC de-
tector without the complexity inherent in the K-user problem and allows us to
demonstrate that significant performance gains can be realized by the PC-HPIC
detector with respect to the full cancellation HPIC detector. Chapter 2 presented
exact and approximate bit error rate expressions for the full cancellation HPIC
detector and we extend these results to provide equivalent expressions for the bit
error rate of the PC-HPIC detector in this section. As was seen in Chapter 2, com-
putation of the bit error rate of the full cancellation HPIC detector can be difficult
for the K > 2 case and we show in this section that, unfortunately, bit error rate
computations are no simpler for the PC-HPIC detector. We will show that this
leads to difficulties in computing the optimum partial cancellation factors under
either the exact or approximate bit error rate criteria even in the two-user case
and makes these approaches practically infeasible for K much larger than two. On
the other hand, Chapter 2 also presents a relatively simple closed form expression
for the approximate SINR of the full cancellation HPIC detector. We take advan-

tage of that result in this section by extending the SINR results to the PC-HPIC
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detector and computing the optimum partial cancellation factors that maximize
the output SINR of the PC-HPIC detector. It turns out that the expressions for
the SINR maximizing partial cancellation factors are relatively simple and extend

easily to the K-user case.

4.1.1 Exact Bit Error Rate of Two-User HPIC

In the two-user synchronous case, the matched filter bank soft outputs can be

written as

y(l) — a(l)b(1)+pa(2)b(2)+an(l)

y(2) — a(2)b(2)+pa“)b“)+an(2).

The HPIC multiuser detector forms a decision statistic for user one with the ex-

pression
?/ﬁl)vlc = aWb™ + pa®[b® — sgn(y®)] + on.

In the two-user scenario, the uncoded bit error rate of the MF detector [Ver98| for

user one can be written as

R = La(TE) o ()

o

To calculate the exact uncoded bit error rate of the HPIC detector in the two-user

case, we use the analysis of Chapter 2 to write (2.8) as

. 1
Pipic = 9 Z Z /weﬂ(u’v)f(w)dw- (4.3)

ue{x1} ve{£l1}
where the integration is 2-dimensional® in this case. Recall that, conditioned on

b = [—1,u]", the joint event sgn(y®) = v and ypc > 0 occurs if and only if

Tt is actually possible in this case to write (4.3) as a 1-dimensional integral of
a function composed as a product of an exponential and a () function for efficient
calculation in Matlab, but this is still technically a 2-dimensional integral.
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n = [nW,n®]" € Qu,v). Using (2.3), (2.4), (2.5), and (2.7), the rectangular

regions Q(u, v) are explicitly given in Table 4.1.

Table 4.1: Regions of n-space such that HPIC makes a decision error for user one
given b = —1.

IERER Q(u,v) |

o

pa(l) —|.-a(2)
g

(1) (2) 1) 442
EY T Iy G oy (TUFT

0D _2pa® paD)_a®)
+1 1 -1 (7,00 x (—o0, L=

(e

g

+1 ] +1 (%oo) x (”“(”;“(2),00)

Figure 4.1 plots the analytical bit error rates of the MF and HPIC detectors
for user one for the case when p = 0.2. The third subplot shows the ratio of the
MF bit error rate to the HPIC bit error rate where the HPIC detector has a lower
bit error rate than the MF detector over regions of the SNR-space with contours
greater than one. Figures 4.2 and 4.3 also show the cases when p = 0.5 and p = 0.8
respectively. The symmetry of the two-user problem implies that the bit error rate
plots for user two can be seen by simply swapping the axis labels.

These figures show that the HPIC detector tends to perform well in regions
of SNR-space where user two has higher SNR than user one since, in this region,
user two’s matched filter output produces reliable estimates of user two’s bits and
interference cancellation is accurate with high probability. On the other hand, the
MF detector tends to perform well in regions of SNR-space where user one has
higher SNR than user two. In fact, it is visibly evident in Figures 4.2 and 4.3 that
the MF detector has a lower bit error rate for user one than the HPIC detector in
the “southeast” corner of the SNR-space. The exact regions of SNR-space where

the MF detector outperforms the HPIC detector are plotted for p = 0.2, p = 0.5,
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Figure 4.1: MF and two-stage HPIC bit error rates for user one two users and

p=0.2.

HPIC BER
N
N // 18 l L@
% & 5 2 & %10 ¢ = °-gv|
o ' ; o -
Z Z
] ]
// IR U/Jf
NN Lt FEH
0 10 20 0 10
SNR user 1 SNR user 1

20

SNR user 2

Ratio MF/HPIC BER

20 e R

0 10
SNR user 1

20

Figure 4.2: MF and two-stage HPIC bit error rates for user one two users and

p=0.5.
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Figure 4.3: MF and two-stage HPIC bit error rates for user one two users and

p=0.8.

and p = 0.8 in Figure 4.4. In this figure, the MF detector has a lower bit error rate
in the regions “southeast” of the equiBER boundaries and HPIC has a lower bit
error rate in the regions “northwest” of the boundaries. Intuitively, the “southeast”
area of the plot represents a region where user one is received at high SNR and
at an amplitude much higher than user two. In this region, the MF detector’s
output for user one is fairly reliable but the MF detector’s output for user two is
unreliable due to the large amount of interference from user one. When the HPIC
detector attempts to cancel the interference from user two, the unreliable estimate
of user two’s bit too often leads to a doubling of the interference rather than a
cancellation. The end result is that the performance of the HPIC detector is worse
for user one in the “southeast” regions of the SNR-space when compared to the

MF detector.

4.1.2 Two-User Partial Cancellation Factor Analysis

A simple solution to the problem of poor the HPIC detector performance seen in

the “southeast” corners of the SNR-space of Figures 4.2-4.3 would be to turn off the
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Figure 4.4: EquiBER curves for HPIC and MF detectors for signature crosscorrela-
tion coefficients p = 0.2, p = 0.5, and p = 0.8. The MF detector has lower bit error
rate in the “southeast” regions and HPIC has lower bit error rate in “northwest”
regions of the plot. The equal power operating condition (¢ = a®) is shown by

the dotted line.
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interference cancellation when operating in the appropriate “southeast” region of
the SNR-space. In this case, turning off the interference cancellation would result
in the HPIC detector reconfiguring itself into the MF detector and performance
would improve accordingly. This reconfigurable HPIC/MF detector would require
some rule based on the parameters ¢V, a®, p, and ¢ in order to know when to
turn on/off the interference cancellation. Note that, unlike the full cancellation
HPIC detector, this detector requires knowledge of the noise power.

A more sophisticated approach to mitigating the problem of interference dou-
bling in the HPIC detector is the PC-HPIC detector. In the two-user synchronous

case, the PC-HPIC detector forms a soft decision statistic from the expression
y9 oe = b + pa® (b — gsgn(y®)) + on®

where ¢ is a real valued parameter, called the partial cancellation factor, chosen to
minimize the bit error rate. Clearly, setting g = 1 results in the full cancellation
HPIC detector and setting g = 0 results in the MF detector, hence, if ¢ is chosen
wisely, the bit error rate of this new detector should be no worse than either the

MF or full cancellation HPIC detectors.

Exact Bit Error Rate Optimization

To calculate the exact bit error rate of the PC-HPIC detector in the two-user
case, Table 4.2 shows the regions in n-space that result in a decision error for
user one conditioned on the transmitted symbols, as was described for the full
cancellation HPIC detector in Table 4.1. Note that the regions of integration
remain rectangular but are now a function of the partial cancellation factor g¢.
Given g, the error probability for user one is then given by (4.3) with rectangular

integration regions (2(u,v) from Table 4.2.
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Table 4.2: Regions of n-space such that PC-HPIC, parameterized by the partial

cancellation factor g, makes a decision error for user one given b = —1.
g,
[ ul v ] Q(u,v) |

1 -1 a4+ (1—g)pa® 00) x (—oo a1
o ) ? o
-1 +1 aM+(1+g)pa? 0 % <pa(1)+a(2)
a ’ o )

1| -1 | (e o) (‘oo,i”“m‘“(z)
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The problem here is not to compute the bit error rate of the PC-HPIC detector
but rather to compute the value of ¢ that minimizes it. To compute this value of

g, we first define

A

t 1 2 _ 9 2
hr(w,1) exp <_:v prw + w > dx

oo 2my/1— 2 2(1 — )

P

Sb

(D) ()
1 w pw —t
B \/_eXp< 7) (1—p>

and similarly

[

hR(w,t)

*© 1 2? — 2prw + w?
/ /T2 (‘ 21— ) )‘”
1 w? t— pw
Var <7>Q<m>'

Then the exact bit error rate of the PC-HPIC detector for user one can be written

from (4.3) and Table 4.2 as

o

(0.0 o (0.0

1

PR = 3 hy(w,ty)dy + /hR(w,tl)dy + /hL(w,tg)dy + /hR(w,tg)dy
f1(9) fa(9) f3(9) fa(g)
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where

a® + (1= g)pa®

fl(g) = p )
fulg) = L Ubg)d”
g
hoy
o Y
filg) = = mglea®
o Y
o= P T
g
pa® — ¢®
tg = —.
2 g

Proceeding toward the analytical solution to the optimum value of ¢, the derivative

of P,fﬂ,g,c with respect to g can be computed as

=B = P [ ((9). 1) — Bl falg). 1) + hu(Fa(o).t2) — Pl Filg). o)

using Theorem 6.1.7 of [Str95, pp.213]. Hence the value of g that minimizes the

bit error rate is also the value of g that solves the equation

hi(fi(g),t1) + ho(f3(9),t2) = hr(fa(g), t1) + hr(fi(g), t2),

or explicitly, after substitution and cancellation of common factors,

exp < p glp ()N o (I p N

o2 pz
paa® + glpata® — (pa®)]? 0 = (1 +9) p2 + 1Ja®
exp = p2

exp <—pa“)a(2) — glpa®a® + (pa(”)]Q) Q [F(+g)p+1a® )
o? o1 — p?

exp <pa(”a(2) — glpa®a® — (pa(”)]Q) 0 [(1 = g)p* — 1]a®
o? o/ 1 — p?

Unfortunately, there does not appear to be a closed form solution for g to solve this

last equation hence we must resort to numerical methods for a solution. Figure 4.5
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shows the numerically derived optimum values for g at each point in the SNR-space

for the cases when p =0.2, p=0.5 and p = 0.8.
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Figure 4.5: Bit error rate optimum PC-HPIC partial cancellation factor g.

Consistent with the results shown in Figure 4.4, the optimum cancellation factor
in each case is close to one when the users’” SNRs are in the “northwest” corner
of the SNR-space and is much smaller than one when the user SNRs are in the
“southeast” corner of the SNR-space. By the symmetry of the two-user case, the
same results can be easily stated for user two by simply swapping the axis labels.
This result illustrates a significant weakness in the approach used in [DSR98] where
all users are assigned the same partial cancellation factor. As an example of a case
where it is clearly suboptimum to apply an identical partial cancellation factor to
all users, suppose that user one’s SNR is 10dB, user two’s SNR is 15dB, and that
p = 0.5. In this case, the minimum bit error rate for user one is achieved if the
cancellation factor is set to g &~ 1 in this case. On the other hand, the value of g
that minimizes the bit error rate for user two, seen by simply swapping the SNR
axis labels, is ¢ &~ 0.38 in this case. Assigning a single partial cancellation factor
to both users in this case would degrade the performance of one or both users.

The results also suggest that, at values of p closer to 1, the optimum partial
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cancellation factor can be quite sensitive to the users’ SNRs. The third subplot of
Figure 4.5 shows that the partial cancellation factor contours are closely spaced
in the “northeast” corner, indicating that the optimum partial cancellation factor
is highly sensitive to small perturbations in this region. For example, in the case
where user two’s SNR is 20dB, if user one’s SNR is 16dB the optimum cancellation
factor is g ~ 1 but if user one’s SNR is 18dB then the optimum cancellation factor
is g &~ 0.4. This implies that ad-hoc selection of partial cancellation factors, as in
[DSR98], may lead to poor performance in the case when the users are received at

disparate powers.

Approximate Bit Error Rate Optimization

The second approach to computing the optimum partial cancellation factor g posed
in this section is to select ¢ to minimize the approximate bit error rate (2.9) of the
PC-HPIC detector. Since it was shown to be quite difficult in the last section to
calculate the optimum value of ¢ in order to minimize the exact bit error rate of
the PC-HPIC detector, we hope that minimizing the approximate bit error rate
expression will yield a simpler solution. In the two-user case, we can modify (2.9),
originally posed for the full cancellation HPIC detector, to account for the partial

cancellation factor inherent in the PC-HPIC detector to write

1) _ (2) _ 1) _ 4(2)
Plmemy Y % ottt g (o)

ue{£l}ve{£l}
Theorem 6.1.7 of [Str95, pp.213] implies that

o 0 1 1 2
QU@ =~ o) (~3(00)?)

hence the value of ¢ that minimizes (4.4) is the value of g that solves

@) “Aa® _ pa D[ 2 m _
oy M vexp< (a pQGJQ[U gv)) )Q<v[pa - a U]>:0_

ue{£l}ve{£l}
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Although it is possible to further simplify this last expression by canceling some
common factors, there appears to be no analytical solution for ¢ in this case and
we must resort again to numerical methods for a solution. Figure 4.6 shows the
numerically derived values for ¢ that minimize the approximate bit error rate
expression at each point in the SNR-space for the cases when p = 0.2, p = 0.5 and

p=0.8.
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Figure 4.6: Approximate bit error rate optimum partial cancellation factor g.

Figure 4.6 shows that, when the approximate expression is used for the bit
error rate of the PC-HPIC detector, the optimum value of ¢ is computed to be
negative in some cases, especially in the “southeast” corner of the plots for the
cases where p = 0.5 and p = 0.8. This is in contrast to the optimum values of
g numerically determined for the exact PC-HPIC bit error rate expression which

appear to always lie in the interval [0, 1].

Approximate SINR Optimization

The third approach to computing the optimum partial cancellation factors posed
in this section is to select partial cancellation factors which maximize the output

SINR of the PC-HPIC detector. Unlike the two prior cases, we will show that,
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under the“normal-operating” assumptions described in Section 2.2.2 that are well
justified unless the error probabilities at the output of the matched filter detector
are high, we can write a very simple closed form solution for the optimum partial
cancellation factor that maximizes the output SINR of the PC-HPIC detector.
The first step in the analysis is to modify the SINR expression (2.11), originally
posed for the full cancellation HPIC detector, to account for the partial cancellation
factor inherent in the PC-HPIC detector. In the two-user case with user one

designated as the desired user, (2.11) can be written as

(ab® + pa@)%)?
(pa®)2Qyy + 20 pa® Py + 02

SINRS&—HPIC -

where

[

Ble 1],

1>

E[(e)? [6™] — ¥2, and
Dy A E[e®n® | 50]

with € £ p® — gsgn(y®). Note that (2.11) holds here with the modification that
€® accounts for the partial cancellation factor of the PC-HPIC detector. We as-
sume that the error probabilities of the matched filter bank are sufficiently low such
that the three independence assumptions discussed in Section 2.2.2 hold. As in
the case with the full cancellation HPIC detector, the independence assumptions
imply here that ¥y =~ 0 and ®5; =~ 0 for the PC-HPIC detector. The remain-
ing term requiring calculation is €299 which, using the assumptions and the prior

approximation on W,, can be derived as
Qoy =~ E[(€(2))2] -0

~ (1+9)"Pge + (1 - 9)*(1 = Bge)

Q

L+ (4G — 2)g+ g°
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where Pl = P(b® # sgn(y®)) denotes the probability of error of user two’s
matched filter output. Note that this last expression is consistent with both the
full cancellation HPIC results when g = 1 and the MF results when g = 0. Under
these approximations, user one’s SINR at the output of the PC-HPIC detector

may then be written as

a®

SINRp, .
PERPIC T a1+ (4P — 2)g + 7] + 1

(4.5)

where a® = (a™ /o)? is the normalized power (or SNR) of the k™ user and r = p?
is the squared crosscorrelation of the users’ signature waveforms.

It is now straightforward to find the value of ¢ that maximizes (4.5). We can
use the trick that the value of g that maximizes the SINR is equivalent to the value

of g that minimizes the inverse of the SINR, or specifically

a® 1
— ; (£) 2
g = argmin {Toz(l) [1+ (4Pyr — 2)x + z°] + o0 } . (4.6)

Taking the derivative with respect to x and setting it equal to zero, we can explicitly

write the SINR maximizing value of the partial cancellation factor as
g = 1-2P3.

This expression is intuitive in the sense that if user two’s matched filter error
probability is zero, then ¢ = 1 and full cancellation is performed. On the other
hand, if the user two’s matched filter error probability is poor, say 1/2, then g = 0
and no cancellation is performed. This expression even makes sense in the unusual
case when the user two’s matched filter error probability is equal to one where,
due to the binary nature of the user’s symbols, the matched filter always makes
decisions that are the opposite sign of the correct decision. In this case, g = —1

which implies that the PC-HPIC detector will perform full cancellation of the
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negative of the matched filter decision. But this is equivalent to performing full
cancellation with the correct decision.

We also note that (4.6) is identical to the “optimum amplitude estimate” de-
rived in the context of a “feedback cancellation CDMA receiver” in [AZJ95]. In
[AZJ95], the authors analyzed a detector with similar structure to the HPIC de-
tector and derived an amplitude estimate for each user that minimizes the mean
squared value of the cancellation residue, defined under the notation of this chapter
as E[(b® —gsgn(y®))?]. Their results imply that the SINR maximizing partial can-
cellation factors also minimize the cancellation residue power, which also follows
intuitively from (4.5).

Figure 4.7 plots the approximate SINR maximizing values of g in the two-user
case at each point in the SNR-space for the cases when p = 0.2, p = 0.5 and
p = 0.8. The plots assume that the bit error rate of the MF detector is given by
the uncoded MF detector bit error rate in (4.2) with variables swapped between
users one and two to represent user two’s bit error rate. The results are intuitively
satisfying since little or no cancellation is specified in the “southeast” corners of the
plots and approximately full cancellation is specified in the “northwest” corners of
the plots, as expected.

Unlike the two prior cases where we showed that computation of the partial
cancellation factors that minimize the exact or approximate bit error rate expres-
sions was difficult even in the two-user case and we did not attempt to compute
partial cancellation factors when K > 2, the SINR maximizing partial cancellation
factor analysis does in fact extend quite easily to the K > 2 case. Using the inde-

pendence assumptions to state that €0, ~ 0 for all £ # £ and £ # 1 and m # 1, we
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Figure 4.7: Approximate SINR optimum partial cancellation factor g.

can extend (4.5) to the general K-user case to write

a®

SINRp¢_ppic (4.7)

K
kz riga®[L + (4P2e — 2) g + g2 + 1
=2

where r;, = p%k denotes the squared crosscorrelation of user one and user k’s
signature waveforms. It can be shown that the values of {g;}& , that maximize
(4.7) are equivalent to the values of {gx}/, that minimize the summation in the
denominator. Moreover, it is evident that each g, multiplies only one element in
the summation, hence the values of {g;} | may be chosen independently in order
to minimize the summation in the denominator. These facts lead to the SINR

maximizing value of the k' user’s partial cancellation factor as
g = 1-—2P4.. (4.8)

An important feature of the SINR maximizing partial cancellation factors is that
their values are independent of the user for which the SINR is maximized. Hence,
the set of partial cancellation factors that maximizes the SINR for user one also
maximizes the SINR for all other users in the system. But the primary advantage

of this SINR maximizing approach is that, if the receiver can form good estimates
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of the bit error rates at the output of the matched filter bank, computation of the
optimum partial cancellation factors is straightforward in this case for an arbitrary
number of users. This is in contrast to the results in the prior sections where we
showed that computing the exact or approximate bit error rate minimizing partial
cancellation factors was quite difficult even in the two-user case.

In the next section, we examine the performance of the PC-HPIC detector
with partial cancellation factors chosen according to each of the three methods

presented here.

4.1.3 PC-HPIC Performance Comparison

Rather than directly plotting the bit error rates of the PC-HPIC detector with
partial cancellation factors chosen from the three methods presented in the prior
section, in this section we instead plot the bit error rate performance gain of
the PC-HPIC detector with respect to the full cancellation HPIC detector in Fig-
ures 4.8, 4.9, and 4.10 for the cases when p = 0.2, p = 0.5 and p = 0.8, respectively.
A value of x on these contour plots denotes a point in SNR-space where the PC-
HPIC detector has a bit error rate x times less than the full cancellation HPIC
detector.

These results show that, as expected, the PC-HPIC detector does not pro-
vide any real performance gain over the full cancellation HPIC detector in the
“northwest” corner of the SNR-space but that PC-HPIC can provide significant
performance gains in regions on the “east” side of the SNR-space. The PC-HPIC
detectors with partial cancellation factors chosen via minimization of the exact
bit error rate expression and maximization of the approximate SINR expression

remarkably yield similar performance despite large gaps in the complexity of can-
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Figure 4.10: PC-HPIC bit error rate performance gains for user one with respect

to the full cancellation HPIC detector for the two-user case when p = 0.8

cellation factor computation. Despite the approximations imposed in the SINR
maximizing partial cancellation factors, these results show that the PC-HPIC de-
tector with SINR maximizing partial cancellation factors tends to yield equal or
better performance than the full cancellation HPIC detector at all tested points
in the SNR-space. On the other hand, the PC-HPIC detector with partial cancel-
lation factors selected via minimization of the approximate bit error rate criterion
do not always lead to improved performance as can be seen in Figure 4.8 where
there are contours with value below one indicating a degradation in bit error rate
performance.

We also note that the PC-HPIC detector with partial cancellation factors
selected via maximization of the approximate SINR criterion does not provide
any tangible performance gain in the two-user, equal power case. In Figures 4.9
and 4.10, it is evident that both the minimum exact BER and minimum approx-
imate BER PC-HPIC detectors yield significant performance gains on the equal
power line (SNR® = SNR®) in the high-SNR “northeast” corner of the SNR-

space. The maximum approximate SINR PC-HPIC detector does not provide any
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performance gain in this region. Moreover, the maximum approximate SINR PC-
HPIC detector yields only marginal performance gains (less than a factor of 2) at

any point on the equal power line in the cases considered.

4.2 Soft Cancellation PIC

As first discussed in [VA91] with regards to the multistage detector, the HPIC
detector has the desirable property that, given a desired user of arbitrary index k,
if the bit estimates of the interfering users ¢ # k are equal to the optimum joint
maximum likelihood (JML) estimates then it can be shown that the HPIC detector
yields the JML estimate for the desired user. This result suggests that there is a
linkage between the quality of the estimates used for interference cancellation and
the output performance (e.g., BER or SINR) of the PIC detector. Further rein-
forcing this intuition, Section 3.6.1 of this dissertation analyzed the mean squared
error (MSE) of the interference estimators for the unmodified two-stage HPIC and
LPIC detectors. Simulations suggested that interference estimates with lower MSE
result in better bit error rate performance for PIC detection.

In this section, we take this idea a step further. Specifically, we consider con-
sider the case when the £** user’s interference estimate is generated by the Bayesian
minimum mean squared error (BMMSE) [Kay93] estimator given the observation
y“. The problem is to find a closed form expression for the nonlinear function,
or estimator, yielding the BMMSE estimates. We call the particular performance
adaptive PIC detector the soft cancellation parallel interference cancellation (SC-

PIC) detector. From (1.2), we can write the decision statistic of the SC-PIC
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detector as

Y& e = a®b® + Zpkz (a0 — £ e (y™®)] + on®
Gk

where f&d_pic(y®) is the nonlinear Bayesian MMSE estimator of a5 given the
observation y“. The Bayesian MMSE estimator is derived in the following section

followed by a discussion on performance analysis and simulation results.

4.2.1 Bayesian MMSE Interference Estimation

Given the soft matched filter output of the ¢** user, denoted as y, as an ob-
servation for a6, the optimum estimator for a6 in terms of minimizing the
Bayesian MSE [Kay93, pp. 313] is the mean of the posterior pdf of a5, given

as
s([c)—mc(yw) = E[ab" |y"]

= aF [b(l) | y(l)]

since a'¥ is assumed constant and known. We can write

B[O |y9] = / bg(b | ) db
= (CDPb=—1]y9) + (+1)P(b = +1]|y)
1 1
390 = -1) 59y [0 = +1)
= OO ey T

where g(y© | b®) is the conditional pdf of the (" user’s matched filter observation
given the ¢ user’s bit and where the last equality is a result of the application of

Bayes’ rule. In the synchronous, K-user case,

1 1 —(y© —r,] Au)?
gy b0 =-1) = 9K -1 Z exp < v reAu) >

2mo 202
ueB-
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and

11 —(y© —r] Au)?
o0 110 =41) = g 3 e ()

2
2no ueBt 20

where B~ (BT) is the set of cardinality 2%~! of all possible binary vectors b such

that 0@ = —1 (b® = +1) and where 7, is the ¢'* row of the signature correlation

matrix R. The unconditional pdf of ¥ can also be written as

1 1 —(y© —r} Au)?
o) = g 3 e (T

2mo
ueBK

where BX = {£1}¥ is the set of cardinality 2 of all possible binary K-vectors.
Hence, the exact expression for the Bayesian MMSE estimator of b can be written

as
(Y -7/ Au)? —(yY—rtopAu)?
e exp () = Ve oxp (Lt

*(y(l)fTTA’uV
ZUEBK exp ( 202{

2 pcly') =

(4.9)

O —pT Ag)?
0 (y'V—r, Au)
ZueBK ur’ exp ( 202

@O ] Au>2)

_ a([)
ZueBK €xp ( 202

This last expression shows that a fundamental difference between SC-PIC and
PC-HPIC is that the SC-PIC interference estimates in (4.9) use the soft decision
statistic y> whereas PC-HPIC interference estimates in (4.1) use the hard decision
statistic sgn(y). Specifically, the PC-HPIC detector forms interference estimates
based on a linear scaling of the observation sgn(y“) where the linear scale factor
(also called the partial cancellation factor) reflects the average reliability of the
decision statistic computed from the operating conditions a*, a®, p, and o. The
information in the soft decision statistic y“ is not used. Like the PC-HPIC detec-
tor, the SC-PIC detector forms scaled interference estimates based on the averaged
reliability information available from the assumed known quantities a, a®, p, and

o, but SC-PIC explicitly uses the soft observation y“ rather than sgn(y®).
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Unfortunately, the complexity of the estimator given in (4.9) is quite high since
the detector must compute 2% values for each user to calculate the numerator and
denominator. This prevents direct application to systems with more than a handful
of users. One simplified approach would be to impose a Gaussian approximation on
the multiple access interference in the matched filter detector’s output. Specifically,
the matched filter detector’s output for the ¢/** user can be written as

y O = qWp® + Z pua®b® + on®

kAL
= gOp® 4 O

and the Gaussian approximation implies that I ~ N (0, ‘7?([)) where

ol = Z(Peka(k))2+02-
Py,

Using the Gaussian approximation, the prior analysis can be repeated to yield the

estimator minimizing the Bayesian MSE as

. aOy®
bsvmse = tanh< 5 > (4.10)

9@
Although the Gaussian approximation has been shown to be a tool of questionable
merit (see [PV97]) for analysis of the bit error rate of most multiuser detectors,
in this case the Gaussian approximation is applied as a soft cancellation heuristic
in order to avoid the complexity of calculating the exact soft cancellation function
given in (4.9). A simulated example of the approximate Bayesian MMSE estima-
tor’s performance with respect to the exact Bayesian MMSE estimator for the case
of 8 equal power users at 10dB SNR in a system with binary random spreading
sequences of length 16 is shown in Figure 4.11. This figure suggests that the per-
formance penalty incurred by the approximate BMMSE estimator can be quite

small in most cases.
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tors.
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Another nice feature of the approximate Bayesian MMSE estimator is that, at
least in the case when the signature sequences are fixed and the channel is fixed
or slowly time varying, the term o, could be estimated at the receiver without
explicit knowledge of all of the user amplitudes and signature crosscorrelation
factors since o is simply the variance of the k™ user’s matched filter output

conditioned on b™*.

4.2.2 SC-PIC Performance

Analytical bit error rate results for the SC-PIC detector are difficult to obtain
even in the two-user approximate BMMSE case since computation of bit error rate
requires two-dimensional integration of the joint Gaussian pdf over complicated
nonrectangular regions. As in [DSR98], we must resort to simulations to demon-
strate the performance of the SC-PIC detector. Moreover, since the simulations
are accurate only for bit error rates greater than 107, it would be misleading to
plot the performance gain (as a ratio of bit error rates) of the SC-PIC detector
with respect to the full cancellation HPIC detector as done in the prior sections
for the PC-HPIC detector. Instead, we plot the bit error rate contours (for values
greater than 107%) of the SC-PIC, PC-HPIC, and full cancellation HPIC detectors
directly for comparison.

Figures 4.12, 4.13, and 4.14 compare the simulated bit error rate performance
of the SC-PIC detector in the two-user case when p = 0.2, p = 0.5, and p =
0.8, respectively. The exact Bayesian MMSE estimates (4.9) were used in this
case since the two-user problem is not prohibitively complex. The SC-PIC bit
error rate figures are presented next to the bit error rate results for the PC-HPIC

detector with exact bit error rate minimizing partial cancellation factors and the
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Figure 4.12: Bit error rate of user one comparison of SC-PIC, PC-HPIC (minimum

exact BER), and full cancellation HPIC detectors when p = 0.2.
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Figure 4.13: Bit error rate of user one comparison of SC-PIC, PC-HPIC (minimum

exact BER), and full cancellation HPIC detectors when p = 0.5.

These results suggest that the HPIC, PC-HPIC, and SC-PIC detectors all per-

form approximately the same in the p = 0.2 case and performance differences are

more significant for higher values of p. Figures 4.15 and 4.16 show the regions

in SNR-space where the SC-PIC detector performs better or worse than the PC-

HPIC and full cancellation HPIC detectors for the cases when p = 0.5 and p = 0.8.
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Figure 4.14: Bit error rate of user one comparison of SC-PIC, PC-HPIC (minimum

exact BER), and full cancellation HPIC detectors when p = 0.8.

Due to the fact that the SC-PIC bit error rates were generated by simulations, the

plots show several distinct regions:

e Regions marked “SC-PIC” are regions where SC-PIC has better (lower) bit

error rate performance than the PIC detector to which it is compared.

e Regions marked “PC-HPIC” are regions where PC-HPIC has better (lower)

bit error rate performance than SC-PIC.

e Regions marked “HPIC” are regions where HPIC has better (lower) bit error

rate performance than SC-PIC.

e Regions with light shading are regions where the SC-PIC bit error rate sim-
ulation data is inconclusive and we are unable to say that one algorithm

outperforms another with reasonable confidence.

e Regions with dark shading are regions where SC-PIC and the PIC detector
to which it is compared both exhibit good performance with bit error rates

less than 107°. In these regions, the simulation data is also inconclusive in
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terms of ranking the performance of the algorithms.

SC-PIC vs. PC-HPIC SC-PIC vs. HPIC
20 20
15 15
(V] N
Fr} fa}
9] 9]
510 5 10
x o
=z 2
)] wn
S5t 5 SC-PIC
HPIC
0 ' 0 '
0 5 10 15 20 0 5 10 15 20
SNR user 1 SNR user 1

Figure 4.15: Bit error rate comparison between SC-PIC and PC-HPIC (minimum

exact BER) and SC-PIC and full cancellation HPIC detector when p = 0.5.

The figures show that, unlike the minimum exact bit error rate PC-HPIC de-
tector, the SC-PIC detector actually can perform worse than the full cancellation
HPIC detector in some regions of the two-user SNR space. The SC-PIC detector
tends to offer better performance in the case where both users SNRs are similar
and when their SNRs are relatively low. The reason for this may be due to the fact
that minimizing the Bayesian MSE of the multiple access interference estimates
is an inaccurate proxy for optimizing the bit error rate in the two-user case when
both users have high SNR. Large regions of SNR space are marked as inconclusive
either due to the fact that the regions exhibit very low bit error rates that are
difficult to accurately estimate via simulation or due to the fact that both of the
detectors’ bit error rates may be quite close in these regions.

In the two-user case, the result that the SC-PIC detector performs even better
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Figure 4.16: Bit error rate comparison between SC-PIC and PC-HPIC (minimum

exact BER) and SC-PIC and full cancellation HPIC detector when p = 0.8.

in terms of bit error rate than the bit error rate optimized PC-HPIC detector in
some regions of SNR-space may seem counterintuitive at first but it actually illus-
trates the important difference between the SC-PIC and PC-HPIC approaches to
improving HPIC performance. The interference estimates in the PC-HPIC detec-
tor are constrained to the form g,sgn(y”) and g, is optimized based on knowledge
of the user amplitudes, signature crosscorrelations, and noise power. These quan-
tities are all fixed and do give a measure of the average reliability of the interfering
user’s bit estimate, but the PC-HPIC detector does not use the soft matched filter
output which gives a measure of the instantaneous reliability of the bit estimate.
These results suggest that the functional constraint imposed on the interfering bit
estimates of the PC-HPIC detector, although certainly leading to improved perfor-
mance with respect to the full cancellation HPIC detector and better performance
in some cases than the SC-PIC detector, may not lead to the best possible perfor-

mance. A better approach would be to write the interference estimates in the form
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f(y“) where f is an estimator selected to optimize some performance measure.
The SC-PIC detector selects f such that the Bayesian MSE of the interference es-
timate is optimized. More sophisticated choices for f such as an f that minimizes
the output bit error rate of the PIC detector remain an open problem.

Figures 4.17 and 4.18 show the simulated mean bit error rates and SINR,
respectively, of several detectors in the case of 8 equipower users in a system
with random binary spreading sequences of length 32. The SC-PIC detector uses
the approximate Bayesian MMSE estimates (4.10) and the PC-HPIC detector
uses the SINR maximizing partial cancellation factors (4.8) in these simulations.
Figure 4.17 shows that the Divsalar [DSR98], PC-HPIC, and SC-PIC detectors
can all improve the BER performance of the HPIC detector but that the Divsalar
scheme is sensitive to the ad-hoc choice of partial cancellation factor. Figure 4.18
shows that the Divsalar detectors can actually exhibit worse SINR performance
than the full cancellation HPIC detector and that only the PC-HPIC and SC-PIC
detectors improve the SINR performance of HPIC detection in this case. This
may be an important consideration if the multiuser detector outputs are to be
used by a channel decoder. Unlike the PC-HPIC approach where an optimum
individual partial cancellation factor is computed for each user at each new bit
interval due to the changing signature crosscorrelations, the Divsalar detectors in
these simulations use a single, fixed, ad-hoc partial cancellation factor for all users
irrespective of the signature crosscorrelations. The PC-HPIC detector performs
somewhat better than the HPIC detector in terms of BER and SINR but actually
exhibits worse BER performance than one of the Divsalar detectors, perhaps due
to the evidence seen in the two-user case where the SINR maximizing PC-HPIC

detector does not offer much BER performance gain when users are received with
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equal power. The SC-PIC detector, even with the approximate Bayesian MMSE
interference estimates, is uniformly superior to the other detectors in both BER

and SINR in the cases considered.

0

10

T

—— HPIC
—-©- LPIC
-2 MF
-7 Divsalar g=0.33
—A— Divsalar g=0.66
— —#%— SC-PIC
i —— PC-HPIC (maxSINR)

S — - single user E

107

10 “F

mean bit error rate

10 F

10~ L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

SNR (equal for all users)

Figure 4.17: Mean bit error rate for various multiuser detectors in a scenario with

8 equipower users with length-32 random spreading sequences.

Figures 4.19 and 4.20 show the simulated mean bit error rates and SINR, re-
spectively, of the same detectors in the case of K € {2,...,12} equipower users
in a system with random binary spreading sequences of length 16. The SC-PIC
detector uses the approximate Bayesian MMSE estimates (4.10) and the PC-HPIC
detector uses the SINR maximizing partial cancellation factors (4.8) in these sim-
ulations. In both figures, the LPIC detector shows particularly poor performance
as the number of users increases, consistent with the results of Chapter 3. Also, in

both figures, the SC-PIC detector shows uniformly superior BER and SINR perfor-
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Figure 4.18: Mean SINR for various multiuser detectors in a scenario with 8

equipower users with length-32 random spreading sequences.



128

mance with respect to all of the other detectors in the cases considered, consistent
with the results in Figures 4.17 and 4.18. In Figure 4.19, the SC-PIC, PC-HPIC,
and Divsalar (¢ = 0.66) detectors all yield BER performance improvements with
respect to the LPIC, HPIC, and MF detectors, except in the case when K = 2
where, somewhat surprisingly, the LPIC detector outperforms all but the SC-PIC
detector. The Divsalar detector with ¢ = 0.66 actually outperforms the PC-HPIC
detector in terms of BER over the range of users considered, perhaps due to the
reasons explained for Figures 4.17 and 4.18. In Figure 4.20, the PC-HPIC de-
tector exhibits better SINR performance than either Divsalar detector as well as
the full cancellation HPIC detector. The Divsalar detectors exhibit worse SINR

performance than the full cancellation HPIC detector for small values of K.
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Figure 4.19: Mean bit error rate for various multiuser detectors in a scenario with

K equipower users at 10dB SNR with length-16 random spreading sequences.
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equipower users at 10dB SNR with length-16 random spreading sequences.
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4.3 Conclusions

In this chapter we proposed two new approaches to improve the performance of
PIC detection. Unlike the majority of the recent work on improved PIC perfor-
mance that has focused on the LPIC detector, we considered nonlinear schemes
that potentially offer superior performance to linear detectors. The results showed
that the techniques did indeed, in most cases, yield improved bit error rate per-
formance with respect to the HPIC, LPIC, and MF detectors. The PC-HPIC
detector with SINR maximizing partial cancellation factors and the approximate
Bayesian MMSE version of the SC-PIC detector appear to have the most promise
in CDMA systems with more than two users due to their relatively low complexity
and potential for high performance. The complexity of calculating the bit error
rate minimizing PC-HPIC partial cancellation factors prevents its consideration in
most practical cases and ad-hoc cancellation factors currently remain a computa-

tionally feasible, albeit suboptimum, alternative.



CHAPTER 5
APPLICATIONS OF MULTIUSER DETECTION:

EAVESDROPPING IN THE 1IS-95 DOWNLINK

5.1 Introduction

IS-95 [Tel95] is a worldwide standard for Code Division Multiple Access (CDMA)
digital cellular communication systems with over 50 million subscribers and in-
stalled systems in 6 continents. A mobile user in an IS-95 system typically de-
modulates the downlink transmission from their base station with a matched filter
receiver and coherent multipath combining. Since 1986 when Verdu derived the op-
timum multiuser detector [Ver86] for CDMA communication systems and showed
that multiuser detection receivers may significantly outperform the matched fil-
ter, there has been a great deal of research on suboptimum multiuser detection
techniques for CDMA. Unfortunately, the majority of these multiuser detection
receivers have been regarded as too complex for cost-effective implementation in
[S5-95 receivers.

In this chapter! we attempt to bridge the gap between multiuser detection re-
ceivers and the IS-95 downlink. In the context of a multi-cell environment, the
IS-95 downlink presents a unique challenge not often considered in the multiuser
detection literature: non-cyclostationary cochannel interference from neighboring

base stations. This feature of the IS-95 downlink precludes the use of linear mul-

'The theoretical results presented in this chapter appeared in part in [BJP99]
and are due to a collaborative effort with Professors H. Vincent Poor and Sergio
Verdu of Princeton University during my visit to their department in February,
1999. The on-air data results presented in this chapter are due to a collaborative
effort with Rich Gooch, Mariam Motamed, and David Chou of Applied Signal
Technology in Sunnyvale, CA, during my visit to AST in April 1999.
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tiuser detectors that use subspace tracking or adaptive gradient descent algorithms
since the interference subspace changes at each symbol interval. Moreover, com-
mon linear multiuser detectors such as the decorrelating and MMSE detectors are
also likely to be too complex for the IS-95 downlink since the non-cyclostationary
cochannel interference forces the receiver to recompute linear transforms at every
symbol interval.

The first goal of this chapter is to understand optimum multiuser detection in
the context of the IS-95 downlink. Although the optimum detector is often too
complex for implementation in realistic systems, its role is still important in order
to determine the relative performance of suboptimum multiuser detectors. We
find that the structure of the IS-95 downlink allows the optimum detector to be
posed in a computationally efficient form with complexity exponentially less than
a brute-force implementation.

The second goal of this chapter is to propose a computationally efficient nonlin-
ear multiuser detector for the IS-95 downlink called the Group Parallel Interference
Cancellation (GPIC) detector. The GPIC detector is derived from examination
of properties of the reduced complexity optimum detector and also exploits the
structure in the IS-95 downlink. Simulations of an IS-95 downlink eavesdropping
scenario suggest that the GPIC detector offers near-optimum performance in the
cases considered and provides the largest benefit when the desired signal is received
in the presence of strong cochannel interference. We also examine a snapshot of
actual on-air data from an active IS-95 system and present results that suggest
that GPIC detection offers significant performance improvements when extracting
weak signals in the presence of severe cochannel interference.

This balance of this chapter is organized as follows. In Section 5.2 we de-
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velop a concise model with mild simplifying assumptions for the IS-95 downlink
that includes the effects of the time and phase asynchronous, nonorthogonal, and
non-cyclostationary transmissions of a B base station communication system. In
Section 5.3 we use this model to examine the optimum (joint maximum likelihood)
detector in the IS-95 downlink context. In Section 5.4 we examine the structure
of the IS-95 downlink model to develop a reduced complexity optimum detector
that has exponentially less complexity than the brute-force optimum detector. In
Section 5.5 we develop the suboptimum GPIC detector with computational com-
plexity similar to conventional matched filter detection. In Section 5.6 we examine
the performance of the GPIC detector relative to the conventional matched filter
and optimum detectors via simulation and show that the GPIC detector exhibits
near-optimum performance in the cases we examined. Finally, in Section 5.7 we
apply the GPIC detector to an on-air snapshot of data from an active IS-95 sys-
tem to examine the potential for performance improvements in an eavesdropping

scenario.

5.2 IS—-95 Downlink System Model

Consider the simplified IS-95 downlink system model depicted in Figure 5.1 where
B cellular base stations each transmit digital information to their local users. We
denote b € 1,..., B as the base station index and we denote K, as the number of
data streams simultaneously transmitted by the b base station, not including the
pilot transmission. We note that K is typically greater than the actual number of
physical users in the cell since the IS-95 standard specifies that each base station

must transmit additional data streams for call setup, paging, and overhead infor-
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mation. For the purposes of this chapter, we will henceforth refer to each of these
data streams as a “user” even if the data stream is an overhead channel and not

actually allocated to a particular user in the cell. The total number of users in the

system is then K = Y0 | K.

pilot:1 — =
{8511’1)} — = Power Y
Channelizer B—= Modulator = Channel 1

Control
s} - -

Noise

@9@% To Receiver
pilot:B — =
{sPH} — = Power Y
Channelizer 65— Modulator = Channel B
() R Control /

Figure 5.1: IS-95 digital cellular downlink system model.

In general, an [S-95 downlink receiver in the cell system observes each base
station’s aggregate transmission through an individual propagation channel (in-
cluding multipath, delay, and attenuation) summed and corrupted by additive
channel noise. In this model, we consider only the portion of the IS-95 system
“inside the coders” in the sense that the transmitted symbols at the input to the
channelization block are from the output of the repetition and convolutional coders
as specified by the IS-95 standard. Although an actual IS-95 downlink receiver
would also be required to perform decoding and descrambling operations on its
received data stream, we limit the scope of this chapter to the problem of detect-
ing the coded symbols. To facilitate the analytical development in the following
sections, we also make the following simplifying assumptions which may be relaxed

or eliminated at the expense of greater notational complexity:
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e We ignore the soft-handoff feature of IS-95 where two base stations may be

transmitting identical bit streams to a single user.

e We assume the user population remains fixed over the receiver’s observation
interval. This implies that users do not enter or leave the system, users are
not handed off between cells, and that voice activity switching does not occur

during the observation interval.
e We ignore base station antenna sectorization.

The details of the IS-95 standard as it relates to the elements in Figure 5.1 may

be summarized as follows:

e Channelizer: Spreads and orthogonalizes the coded binary input symbols by
assigning a unique length-64 Walsh code to each user and linearly modulating
the input symbols with the this code. Each user’s Walsh code remains fixed
for the duration of the connection. The Walsh-0 code is always assigned to
the base station’s pilot signal which transmits a constant stream of binary
symbols equal to +1. The remaining 63 Walsh codes are assigned as needed

to the users in the cell as well as overhead and paging channels.

e Power Control: Sets the gain on each user’s transmission to provide no more
than an acceptable transmission quality to each user in order to not generate

excessive cochannel interference in neighboring cells.

e Modulator: Multiplies the aggregate base station transmission by a complex
pseudonoise (PN) code for base station discrimination and performs base-
band filtering and RF conversion. The PN-code has elements from the set

{1+j,1—j,—1+7,—1—7} and has a period of 25 chips. Each base station
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uses the same PN-code but is distinguished by a unique, fixed PN-phase.

Baseband filtering is specified by a FIR model in the IS-95 standard.

The channel noise is modeled as an additive, white, complex Gaussian random
process denoted by ow(t) where E(w(t)) = 0 and E(Re(w(t))?) = E(Im(w(t))?) =
1/2. The real and imaginary parts are uncorrelated and also assumed to be inde-
pendent of the base station transmissions.

Indexing the users by a two dimensional index (base station, user number), we
denote the (b, k)" user’s positive real amplitude and coded binary symbols at sym-
bol index n as a®¥ and s®* respectively?. Also denote the unit-energy combined
impulse response of the (b, k)™ user’s channelization code, PN-code, baseband
pulse shaping, and propagation channel at symbol index n as ¢**(¢). Note that
c®®(t) includes any inherent propagation delay and asynchronicity between base
stations and is assumed to be FIR. Let ¢, denote the received phase of the trans-
mission from the b base station. The baseband signal observed at the receiver

may then be written as

B L K,
r(t) = Z el Z a0t — nT) + Z sPRGER R (E —nT) | 4+ ow(t).
b=1 n=—1L k=1

where we have separated the terms corresponding to the non-data-bearing pilots
with the superscript notation (b,0). Note that, in general, ¢*(t) # c®*(t) for
n # m even if the propagation channel is time invariant since the IS-95 PN-code
changes at each symbol interval.

In order to represent the observation r(t) compactly, we establish the following

vector notation. If z{®*¥ represents a (possibly complex) scalar quantity corre-

2In contrast to the prior chapters where the symbol b was used to represent
binary user symbols, this chapter uses b to denote the base station index. As a
consequence, we use the symbol s to denote the binary user symbols in this chapter.
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sponding to the b base station’s k™ user at symbol index n we can construct the
vectors
V= [z ,xﬁ"Kb)]T ,
¥ = [m[f]LT, e m[z]q ! , and
T = [az[”T, s m[B]T]T .

The superscripts |, * and £ denote transpose, complex conjugate, and complex
conjugate transpose, respectively. Define s, a, and ¢(t) according to this notation.
Let A = diag(a) represent the K(2L + 1) x K (2L + 1) dimensional diagonal

amplitude matrix and let

& = diag(e!”,..., 0%, ... 9B . €I?B)
—_——— —— —_———
K7 terms Kp terms

be the K(2L+1) x K(2L+1) dimensional diagonal matrix of transmission phases.

Then we can write the continuous time observation as

B L
r(t) =Y e? > a0 (t — nT) +c' (t)®As + ow(t)
— =
\b:l n=—L _ users AWGN (5 1)

pilots
=p(t) +c' ()P As + ow(t)

where pilots are denoted as p(t) for notational convenience.

5.3 Optimum Detector

In this section we examine optimum (joint maximum likelihood) detection in the
context of our IS-95 downlink system model. In a single-cell scenario with single-
path channels, the receiver observes the transmission of K synchronous, orthogonal
signals in the presence of independent AWGN and it is easy to show that the opti-

mum detector is equivalent to the conventional single-user matched filter detector.
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However, when additional cells are considered, the receiver observes nonorthogonal
cochannel interference from the other cells and the optimum detector is not the
matched filter detector.

We assume that the receiver is able to acquire the pilot (and hence the PN-
phase) of each base station b € {1,..., B} perhaps via correlation with the known
periodic PN-code of length 2!°. This then allows the receiver to estimate the im-
pulse response of the propagation channel and transmission phase for each base
station. For each base station, the receiver can then construct a bank of 63 matched
filters, one matched filter for each of the non-pilot Walsh codes, in order to de-
termine which users (or equivalently, which Walsh codes) are active in each cell.
Since the receiver now knows the active Walsh codes, the PN-phase, the prop-
agation channels, and the baseband pulse-shaping, we can construct the set of
c®®(t) for the set of users in each cell. Finally, the receiver can then generate
amplitude estimates for each user and the pilots through a variety of methods. For
the purposes of the remaining analytical development, we assume that all of these
estimates are perfect and that the only unknowns in (5.1) are s and ow(t).

Let 7 represent a compact interval in time containing the support of r(¢) and let

U represent the set of cardinality 25L+1)

containing all admissible binary symbol
vectors of length K(2L +1). Then the decision rule for jointly optimum estimates

[Ver98| is given by

ueld

§ = argmaxexp < / | (t) cT(t)<I>Au|2dt> :

Manipulation of the term inside the exponent yields the expression for optimum

decisions on the IS-95 downlink as

3 = argmax2Re[u’ A®" (y — p)] —u  AP"R® Au

UEU N

(u)
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where y = [, ¢*(t)r(t) dt represents the K (2L + 1)-vector of matched filter out-
puts, p = [, ¢*(t)p(t) dt represents the K (2L + 1)-vector of matched filter outputs
for the pilot portion of the received signal, and R = [, ¢*(t)c'(t)dt represents
the K (2L + 1) x K(2L + 1) dimensional user signature correlation matrix. The
brute-force solution to this problem requires the evaluation of 26€2L+D (different
hypotheses to find the maximum. Several authors have noted that R exhibits a
banded structure and have used this fact to achieve complexity reduction using
Viterbi-style dynamic programming algorithms [Ver98|. Although a good idea in
practice, we will not consider Viterbi-style dynamic programming algorithms in
this chapter in order to clarify the development of the IS-95 structure based com-
plexity reduction. The reduced complexity optimum detector developed in the next
section does not prevent the use of Viterbi-style dynamic programming algorithms

and both ideas can be combined to achieve even greater complexity reduction.

5.4 Reduced Complexity Optimum Detector

In this section we exploit the structure of the IS-95 downlink in order to propose
an optimum detector requiring significantly less complexity than the brute-force
approach. The intuitive idea behind the reduced complexity optimum detector is
to use the fact that the K, 4+ 1 synchronous user plus pilot transmissions from
base station b are mutually orthogonal at every symbol index if the propagation
channel from the b base station to the receiver is single-path. This will allow
us to “decouple” the decisions of one base station’s users to achieve the desired
complexity reduction while retaining optimality. Note that this technique can also

be applied in the multi-path channel case but since users within a cell are no longer
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orthogonal there will be some loss of optimality.
The signature correlation matrix R has dimensions K (2L+1) x K(2L+1) and
exhibits the structure
(1) R"Y .. RM
R = / : { T(t) oo BT() | dt=
) cP*(t) R¥Y . R"”

where R has dimension /(2L + 1) x Ky (2L +1). The submatrices R™*! have
the structure
[6,b'] [6,b']
R, ... RUG
R —
[6,6'] [6,0']
R, ... R;p

where

n

R = / & (1) (1) dt = RUMH.
A

At this point we require the propagation channels to be single-path in order to
proceed with the complexity reduction. This assumption, combined with the facts

that

1. the IS-95 pulse shaping filters approximately satisfy the Nyquist pulse crite-

rion and

2. each user in a given cell is assigned a unique Walsh code orthogonal to all

other users in the same cell,

implies that the downlink transmissions in each cell do not interfere with the other
downlink transmissions in the same cell and that the downlink transmissions in

each cell are received without any intersymbol interference. In this case, the IS-95



141

downlink signature correlation matrix exhibits two special properties that lead to

the reduced complexity optimum detector:

e The group-orthonormality of the signature sequences of each base-station at

symbol index n implies that R{7! = I.
e The lack of intersymbol interference implies that R, = 0 for n # n'.

The combination of these two properties implies that R*" = I for b = 1,..., B.
Let X = A®T"R®A and note that since R is a Hermitian matrix then X is
also Hermitian. Moreover, since ® and A are diagonal, X shares the same IS—
95 structure properties as R except that X = (A®*)? It turns out that this
difference will not matter in the maximization of Q(w). Using our previously

developed notation, we can write
Qu) = 2Re[u' A®"(y —p)] —u' Xu. (5.2)

First, since A and ® are diagonal, we can isolate the symbols from the first® base

station to write
2Re[u” A8 (y — p)] = ulT2Re[AVBMH (y — p)] + a 2Re[AB" (5 —(B))

where vectors with an overbar are (K — K;)(2L+1) x 1 dimensional with elements
from all base stations except b = 1 and matrices with an overbar are (K —K;)(2L+
1) x (K — K;)(2L + 1) dimensional with corresponding elements.

The quadratic term in (5.2) may be rewritten as

B B
/ !
u' Xu = E E w? T X g,

b=1 =1

3In order to achieve the maximum complexity reduction we assume without
loss of generality that K; = max, K.
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The binary nature of u and the fact that X" is diagonal implies that

u[b]TX[b,b]u[b] — 1T(A[b,b])21

where qy is a real positive constant that does not depend on u. Denoting @ =

S0, ap then

B
! /
u' Xu=aoa-+ E E w7 X T
b=1 b'£b

Again, we isolate the symbols from the first base station to write

B B B
/ !
uTX'u, = o+ E u[b]Tx[b,llu[l] + E u[l]Tx[l,b]u[b] + E E ,u/[b]Tx[b,b ]u[b]_
b=2 b=2 b=2 p' £p
b #£1

- -’
'

G(a)

Since X is a Hermitian matrix then X" = X% and we can write

B
u' Xu=a+ Z ul2Re (XM u) + G(u). (5.4)
b=2

Finally, we plug (5.3) and (5.4) back into (5.2) and collect terms to write

Q(u) = w7 2Re

B
ABGUHH (g0 piy Z X[l,blum]
b=2

N ~ — - 5.5
F(a) ( )

+u'2Re[A®" (y — p)] — a — G(a).

Observe that (5.5) is maximized when u = [sgn(v) ", TJ]T where

v =arg max () ([SgH(F(ﬂ))Ta aT]T>

aeBK—K1
The key difference between the reduced complexity and brute-force optimum detec-

tors is that the reduced complexity algorithm requires the evaluation of
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2(K=K1)(2L+1) hypotheses in order to maximize Q(u) whereas the brute-force opti-

2L+1) hypotheses. For an eavesdropper

mum detector requires the evaluation of 2
in a cell system with two or three significant base stations, this complexity reduc-
tion can be significant.

This prior analysis can also be easily applied to the synchronous CDMA case
where sequence detection is not necessary and the brute-force optimum detector

requires the evaluation of € for 2% hypotheses. In this case, the reduced complexity

optimum detector requires the evaluation of Q for 25=%1 hypotheses.

5.5 Group Parallel Interference Cancellation De-
tector

Although the IS-95 downlink has a structure which lends itself to reduced complex-
ity optimum detection, it is often the case that the reduced complexity optimum
detector is too computationally expensive to implement even with Viterbi-style
dynamic programming algorithms. In this section we pose a suboptimum detector
called the Group Parallel Interference Cancellation detector (GPIC) that also takes
advantage of the orthogonality between user transmissions from the same base sta-
tion in the IS-95 downlink. Two observations regarding (5.5) will be useful in the

development of the GPIC detector:

e Suppose the receiver has perfect knowledge of 5, the symbols transmitted
from base stations 2,...,B. Then, as we showed, 8" = sgn(F(s)) is the
optimum estimate for the symbols from base station 1. The orthogonality of
the users in base station 1 results in single user error probability with low

computational complexity.
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e Denote the joint maximum likelihood (JML) estimate of s as

~ AT AT T
SjML = [SJMLa 8L

and suppose the receiver has perfect knowledge of syy.. In this case, we
showed that 8" = sgn(F(8;m)) is the JML estimate for the symbols from
base station 1. The orthogonality of the users in base station 1 results in

JML error probability with low computational complexity.

Unfortunately, realistic receivers do not have access to the actual symbols or
JML estimates in general, but we are compelled to ask the following question:
What if the receiver formed some low-complexity estimate s of 3 and we let
Al _

3" = sgn(F(s))? In fact, consider the lowest complexity estimate of 8: con-

ventional matched filter estimates where Syp = sgn(Re(@H@)). Then

S = Sgn(F(éMF))
B

= sgn <Re A[l](I)[llH(,y[l] _ p[ll) _ ZX[Lb]éEVIb]F])
b=2

but since XM = AUPMH RIIGH AL thep

B
i ((y[” . p[l]) B Z R[l’b]q)[b]A[blémF)] } (5.6)

b=2

s = sgn{Re

where we have factored out the common A™ term since it does not affect the
sign operation. It is evident from this last expression that a receiver using (5.6)
forms decisions by subtracting the estimated cochannel interference b # 1 from the
matched filter inputs (minus the known pilot terms) corresponding to the users in
cell 1. When this operation is performed on all of the base stations it is called par-
allel interference cancellation and since the interference cancellation is performed

over groups of users we coin the name Group Parallel Interference Cancellation
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for this receiver. If the receiver forms a bank of matched filter estimates for all
base stations then we can extend this idea to write the following expression for the

GPIC detector of base station b as

3" = sgn {Re P ((ym —p") — Z R[b,b’]q)[b’]A[b’]éK;;JF>] }
b #b
where "1 = sgn(Re(‘i)[b/]Hy“"])). Some algebraic manipulation yields a simple

expression for the GPIC receiver for all base stations as
scpic = sgn [Re (2" (y — p) + (I — @ R®) Asur)] .

We note that although it is certainly possible to perform GPIC detection in batch
where all K(2L + 1) symbols are first estimated with the conventional matched
filter detector and stored prior to calculation of the GPIC symbol estimates, it is
also possible to implement the GPIC receiver with detection delay proportional
to K. This feature is in contrast to the previously considered optimum detectors
where detection cannot occur until all of r(¢) is observed.

In the following sections we examine the performance of the GPIC detector
using simulated data and actual on-air data gathered with an omnidirectional

antenna in an active IS-95 system.

5.6 Simulation Results

In this section we compare the performance of the GPIC detector to the optimum
detector and conventional matched filter detector via simulation. We examine an
eavesdropping scenario where the receiver is positioned on the dashed line in the
simple cellular system shown in Figure 5.2 with B = 2 base stations, K; = 2 and

K, = 2 users in each cell, and 5 bits in each user’s transmission (L = 2). The users



146

are represented by small circles and the eavesdropping receiver is represented by a
small square with an antenna symbol. We evaluate the quality of reception from
both base stations as the receiver moves on the dashed line from point ¢ to point

b.

Figure 5.2: Simple two base station IS-95 cellular system with circular cells of

radius R and centered base stations.

The propagation channels between the base stations and the eavesdropping
receiver are assumed to be single path with random received phases uniformly
distributed in [0, 27). Asynchronism offsets are also assumed to be uniformly dis-
tributed. User powers, phases and delays are assumed to be time invariant over
the 5-bit transmissions. We assume the user positions to be uniformly distributed
within the cell. This assumption combined with IS-95 downlink power control
implies that the user amplitudes observed at the eavesdropper are also random
with the distribution derived in Section 5.9 under similar path-loss modeling as-
sumptions as the uplink study in [MV98c¢|.

Figure 5.3 shows the bit error rate of the conventional matched filter (denoted
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by “MF”), optimum (denoted by “OPT”), and GPIC (denoted by “GPIC”) for a
user in the first cell, averaged over the user positions, delays, phases, amplitudes,
and PN-codes. Note that in this simulation, the distance to the desired base station
is fixed and the cochannel interference is decreasing as we move the eavesdropper
away from base station 2. Figure 5.4 shows the results of the same simulation for
a user in the second cell. In this case the eavesdropper is moving away from the
desired base station and remaining at a fixed distance from the interfering base

station.

10°

Averaged BER for users in base station 1

Il Il
1 1.2 14 1.6 1.8 2 2.2 24 2.6 2.8 3
Distance from base station 2

10"

Figure 5.3: Averaged eavesdropping bit error rate for a user in cell 1. Single user

error probability is 1073 irrespective of distance to base station 2.

As expected, Figure 5.3 shows that the conventional matched filter detector per-
forms well when the eavesdropper is listening to base station 1 in a position distant

from base station 2. However, because of its near-far susceptibility, the matched
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Figure 5.4: Averaged eavesdropping bit error rates for users in cell 2. Single user

error probability is denoted by “SU” and is indistinguishable from the optimum

and GPIC detectors.
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filter detector performs poorly when the eavesdropper is positioned close to strong
interference. The GPIC detector does not suffer from this problem and actually
exhibits performance indistinguishable from the optimum detector in these exam-
ples. This simulation suggests that the GPIC detector may offer near-optimum
eavesdropping performance over a wide range of cochannel interference powers

with the most benefit in operating scenarios with severe cochannel interference.

5.7 On-Air Data

This section tests the performance of the GPIC eavesdropper on one snapshot of
actual on-air measured data from an IS-95 cellular system. One 45.6ms snapshot
of measured data was gathered from an IS-95 downlink system with an omnidi-
rectional antenna. The received waveform was sampled at twice the chip rate to
yield a data file with 112000 samples corresponding to 875 (coded) symbol periods.
The results of a base station pilot survey are shown in Figure 5.5. Note that phase
offset does not affect this plot since all correlations are displayed in magnitude.
The correlations were taken over an entire period of the PN-sequence.
Throughout this section, base station 1 denotes the base station with the
strongest pilot as seen at PN-offset 20000 in Figure 5.5. Base station 2 denotes the
second strongest base station at PN-offset 62500. The power of the pilot from base
station 1 is approximately 11dB higher than the pilot from base station 2 hence
the eavesdropper is probably positioned very close to base station 1 and relatively
distant from base station 2. The remaining base stations seen in Figure 5.5 are

ignored in the following development for clarity.



Base station survey, pn—period 1, correlator length 512 bits
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Figure 5.5: Base station pilot survey for IS-95 on-air data.
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5.7.1 Conventional Matched Filter Detection

In this section we qualitatively examine the soft outputs of conventional matched
filter detection for base stations 1 and 2. The matched filters are obtained by
estimating the impulse response of the combined propagation channel and pulse
shaping filters via pilot correlation and convolving this impulse response with the
appropriate combined Walsh and PN-codes for each active user in the system.
Although Rake detection is not used, the matched filter receiver considered in this
section automatically includes coherent multipath combining since it incorporates
the estimated impulse response of the propagation channel.

Suppressing the soft outputs of the inactive channels for clarity, Figure 5.6
shows the histogram frequency of the matched filter outputs for the active Walsh
channels of base station 1. Figure 5.6 clearly shows that the eye is open for all of
the active channels and implies that one could expect that hard decisions on the
coded symbols of these channels would have low probability of error. In addition
to the strong pilot channel at Walsh code 0, there is a strong paging channel at
Walsh code 1, a relatively weak sync channel at Walsh code 32, and two traffic
channels of disparate power at Walsh codes 12 and 63. Matched filter detection
appears to be adequate for downlink reception of this base station.

Figure 5.7 shows the histogram frequency of the matched filter outputs for
the active Walsh channels of base station 2. Figure 5.7 clearly shows that, unlike
the transmissions from base station 1, all of the channels from base station 2
are highly corrupted by interference (including cochannel interference from base
station 1, other base stations, and “unstructured” noise sources). The eye is closed
for all Walsh channels, implying that hard decisions on these coded symbols are

likely to have very high error rates.
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5.7.2 GPIC Detection

In this section we qualitatively examine the soft outputs of the GPIC detector for
base stations 1 and 2. The matched filter outputs generated in the prior subsection
are passed through a hard decision device and then respread by the combined
impulse response of the appropriate Walsh codes, PN-codes, and estimated pulse-
shaping and propagation channel impulse responses. The waveforms are then
scaled and rotated according to each user’s estimated amplitude and phase.

Figure 5.8 shows the histogram of the matched filter outputs by Walsh channel
of base station 1 after subtraction of the estimated interference from base station 2.
There is little noticeable change from the results in Figure 5.6 since the cochannel
interference from base station 2 is very small with respect to the transmission of
base station 1 and interference cancellation has little effect.

Figure 5.9 shows the histogram of the matched filter outputs by Walsh chan-
nel of base station 2 after subtraction of the estimated interference from base
station 1. The performance improvement is significant with respect to the con-
ventional matched filter results in Figure 5.7. The error probability in channels 1
and 20 appears to be much lower and channels 32 and 34 are beginning to exhibit
troughs in the middle of the pdf indicating improved error rates. The pilot channel
is also significantly cleaner.

The results in this section agree with the simulation results in Section 5.6 and
imply that the GPIC detector may not offer much performance improvement for
strong signals received in low levels of cochannel interference. On the other hand,
comparison of Figures 5.7 and 5.9 show that significant performance improvements
are possible for an eavesdropping receiver attempting to extract weak transmissions

from high levels of cochannel interference.
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The performance adaptive techniques developed in Chapter 4 could also be ap-
plied here but little difference is anticipated in this case due to the widely disparate
powers observed in the measured data. The performance adaptive PIC detectors
all specify nearly full cancellation of base station one’s signal and little or no can-
cellation of base station two’s signal. The results here suggest that there is little
or no tangible performance improvement observed in base station one’s outputs
regardless of whether we cancel base station two or not due to the fact the base
station two’s received power is very small in this snapshot. Full cancellation of base
station one’s transmissions does indeed yield large performance improvements in

the detection of the users of base station two in this case.

5.8 Conclusions

In this chapter we considered the application of nonlinear multiuser detection tech-
niques for improving the performance of IS-95 downlink reception. We used the
orthogonality of the in-cell users of the IS-95 downlink to develop a reduced com-
plexity optimum detector with exponentially lower complexity than the brute-force
optimum detector under the assumption that propagation channels between the
base stations and the receiver were all well modeled as single path channels. Ex-
amination of the properties of the reduced complexity optimum detector led to
the development of the suboptimum GPIC detector. The GPIC detector has very
low complexity and does not require any form of subspace tracking, matrix in-
versions, or exhaustive searches for global maxima. Simulations and experiments
with on-air IS-95 downlink data suggest that the GPIC detector offers the great-

est performance improvements in severe cochannel interference environments but
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may also offer near-optimum performance for IS-95 downlink eavesdropping over

a wide range of cochannel interference powers.

5.9 Appendix: IS-95 Received Power Distribu-
tion

In this appendix, we derive the received user power distribution for transmissions to
users in the b cell observed by a receiver (eavesdropping or authorized) positioned

at a deterministic distance d®* € (0, 00) from the b base station. We assume:
e FEach base station is located in the center of its circular cell of radius R.

e Each user’s position is uniformly distributed in the cell and is independent of
other user positions. The k¥ user’s distance from base station b is denoted

by d® ¢ (0, R).

e Each base station maintains perfect power control with its users such that
the power received by each user from its base station is identical for all users

within the cell.

e The ratio of received to transmitted power may be approximated with a sim-
ple path loss model 1/d* where d is the distance separating the transmitter

and receiver, and A is the path loss exponent.

The circular shape of each cell and the users’ uniformly random positions imply

that the cumulative distribution function of the (b, k) user’s distance from base
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station b, denoted as d®*, is equal to the ratio of the area of 2 circles,

(z/R)? z€[0,R],
Fyom(z) = P(d®? < z) =

0 otherwise.
The pdf of d** follows directly as
P 2¢/R? x €0, R],
fd(b,k)(:E) = %Fd(b,k)(:v) =
0 otherwise.

IS-95 downlink power control leads to random realizations for the user ampli-
tudes observed at the deterministically positioned receiver. The received power
ratio (deterministically positioned receiver to randomly positioned user) may be

expressed as

- P B P(b,*)/Pt B (d(b,k))?)\
T Pk P(b,k)/Pt - (d(b,*))Z)\

where P®*  P®% and P, denote the power observed at the receiver, the power
received at the user, and the power transmitted, respectively. To find the cumula-
tive distribution of ¥, we note that Fy(z) = P(¥ < z) = P((d®")?}/(d®")* <
x) = Fyom (d®”z'/?)) hence

(@ REEP € [0, (d0/R) )

0 otherwise

and the pdf of U follows directly as

)\—l(d(b,*)/R)Zx(l—)\)/)\ T € [0’ (d(b,*)/R)—Q)\],
fu(z) =

0 otherwise.

This pdf is used to generate the random amplitude realizations used for the simu-

lation results in Section 5.6.



CHAPTER 6
APPLICATIONS OF MULTIUSER DETECTION: CROSSTALK

MITIGATION FOR DIGITAL SUBSCRIBER LOOPS

This chapter of the dissertation considers the application of multiuser detection
techniques for crosstalk mitigation in digital subscriber loops (DSLs). Good intro-
ductions to this topic can be found in [CKB"99] where the crosstalk environment
is discussed for ADSL and VDSL systems and [GHW99] where crosstalk mitigation
is considered. In general, DSLs are subject to two forms of crosstalk interference
that result from electromagnetic coupling between twisted pairs of unshielded cop-
per wires in close proximity — near-end crosstalk (NEXT) and far-end crosstalk
(FEXT). Figure 6.1 illustrates these forms of crosstalk observed by a DSL modem
at the customer premises. Although not shown in the figure, NEXT and FEXT

may also be observed by the data switch (ATU-C) as well.

modem (ATU-R)

[ data switch (ATU-C)
NEXT | | | FEXT

modem (ATU-R)

Figure 6.1: Near-end crosstalk (NEXT) and far-end crosstalk (FEXT).

Typically, NEXT and FEXT are modeled as colored Gaussian noise. This is

a worst-case assumption that prevents the use of known structure inherent to the

158
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interference. This section discards the Gaussian assumption and exploits the struc-
ture of the crosstalk in order to cancel it from the received signal. The techniques
developed in this section could lead to more sophisticated DSL receivers that are
resistant to crosstalk or could be used for DSL eavesdropping.

In general, the twisted pair cables from several customers are bundled in a
single multi-pair cable called a “binder group”. The twisted pair cable of a user
subscribing to one particular broadband access service is bundled with twisted
pair cables of other users also subscribing to broadband access services. The term
crosstalk is general and includes interference from disparate services (e.g., an ADSL
modem observing crosstalk from another line using ISDN modulation) and identical
services (e.g., an ADSL modem observing crosstalk from another line using ADSL
modulation). In the latter case, this form of crosstalk has a special name — self-
NEXT or self-FEXT. It is this form of crosstalk that is considered in this chapter.

The balance of this chapter considers crosstalk mitigation at the ATU-R mo-
dem. Crosstalk cancellation at the ATU-C data switch was considered in [IW95]
and [IS98] where the input data sequences generating the NEXT interference are
known and canceled via a cross-channel data-driven echo canceler. The problem
of crosstalk mitigation at the ATU-R modem is more difficult since the ATU-R
modem does not know the input data sequences generating the NEX'T. Moreover,
unlike the CDMA problem where it is commonly assumed that the receiver has ac-
cess to a bank of matched filter outputs generating a vector observation, the ATU-R
modem in a DSL system has access to only a single matched filter (matched to
the transmitter pulse shape in this case) output generating a scalar observation.
Hence, crosstalk mitigation at the ATU-R modem will in general be more difficult

than interference cancellation in a CDMA receiver since the ATU-R modem does
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not have access to the sources of diversity available in CDMA systems enabling

improved estimation of the interfering input sequences.

6.1 Near-End Crosstalk Power

To study the feasibility of crosstalk mitigation for DSL loops, this section examines
the power of NEXT interference using empirical models from the literature and
standards body. This analysis is important since, if the NEXT interference power is
typically much smaller than the received signal power, crosstalk mitigation would
likely yield only modest improvements in performance. On the other hand, if
NEXT interference power is large then there is at least hope that a clever crosstalk
mitigation scheme could dramatically improve performance.

This section focuses on the echo-canceled discrete multitone asymmetric DSL
(EC-DMT-ADSL) as described in [Rau99] and [Int99a, Annex B]. EC-DMT-ADSL
is sometimes called “overlapped spectrum operation” DMT-ADSL where “over-
lapped spectrum” specifies that the upstream and downstream data are sent in
overlapping frequency bands. Classic echo cancellation (not the cross-channel
echo cancellation described in [IW95]) is necessary to demodulate the received
data. Moreover, EC-DMT-ADSL exhibits self-NEXT since upstream transmissions
from neighboring ATU-R transceivers interfere with the desired downstream down-
stream transmission through near end cross talk coupling in the binder group. The
literature clearly states that self-NEXT is the most deleterious form of crosstalk
and is often several orders of magnitude stronger than self-FEX'T. Most manu-
factures of DSL equipment prefer a version of ADSL called frequency division

multiplexed (FDM) DMT-DSL which uses a non-overlapping spectrum to avoid
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self-NEXT [Rau99, pp. 225]. In the following, the we present an analysis of the
relative powers of the received signal and self-NEXT under some nominal assump-
tions.

According to the specifications in [Int99a, Annex B], the nominal ATU-C down-
stream transmit power is given as -40dBm/Hz over the overlapping frequency
range. The nominal ATU-R upstream transmit power is specified as -38dBm/Hz.
Each tone in DMT-ADSL uses a 4.3125MHz frequency interval, hence the nom-
inal power in each tone is -3.65dBm for the downstream and -1.65dBm for the
upstream.

Picking a standard test loop of 13.5k feet of 26AWG wire (denoted as “T Loop
# 77 in [Int99b]) the insertion loss data provided in [Int99b, Table 2] leads to an

empirically determined expression for insertion loss in this loop as

L(f) = 25log,,(f) — 75.5dB  25.875kHz < f < 138kHz

where insertion loss is a function of frequency f. The NEXT insertion loss is also
a function of frequency and is modeled with the expression from [Int99b, Section

7.1] as

Lnext(f) = —151og,(f) — 61ogy(n) + 140.7dB 0< f<oo, n<50

where n is the number of crosstalkers. Note that this expression differs slightly

from the expression for NEXT given in [Ung85] where n = 49 and

LNEXT(f) =-14 lOglO(f) + 126.2dB f > 20kHz

but both expressions are similar and the remainder of this analysis will use the

former since it allows specification of the number of crosstalkers. The ratio of
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desired signal power to NEXT power then follows directly as

SIR(dB) = (—3.64dBm — 25 log,,(f) + 75.5)
— (—=1.65dBm + 15log,(f) + 6log,,(n) — 140.7)  (6.1)
= —401log,o(f) — 6logo(n) + 214.2dB

and is plotted in Figure 6.2.

40

35

30

25

20

SIR (dB)

151

101

_5 ! ! ! ! !
20 40 60 80 100 120 140

Frequency (kHz)

Figure 6.2: Signal to NEXT power ratio from (6.1) for n near-end crosstalkers.

These results show that:

1. NEXT is more severe at the higher frequencies in the upstream transmission
band and is less severe at the lower frequencies. This is intuitively satistying
since attenuation in the desired signal increases with frequency and NEX'T

attenuation (the inverse of NEXT coupling) decreases with frequency.
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2. Each additional user adds less interference than the prior user.

3. A single NEXT interferer could be received with power equal to approxi-

mately one eighth of the desired signal’s power.

The conclusion suggested by this rough analysis is that there exist tones in the
upstream frequency band where the observed NEXT power can be on the same
order of magnitude as the desired signal. This implies that NEXT cancellation, if
successful, might significantly improve the fidelity of EC-DMT-ADSL communica-

tions.

6.2 Analytical Model and Assumptions

Counsider the simplified DMT-ADSL model shown in Figure 6.3. This model ignores
the details of scrambling, encoding, and interleaving present in actual DMT-ADSL
transceivers and focuses on a single DMT-ADSL transmitter-receiver pair “inside
the coders”. This model also assumes that the cyclic prefix and time domain
equalizer operations (see [Rau99, pp. 208] for descriptions of these elements) found
in actual DMT-ADSL systems are ideal and can be ignored. This last assumption,
although not valid in the case when the the time-domain equalizer (TEQ) is unable
to remove all of the intersymbol interference, is imposed in this case in order to
isolate and understand the crosstalk cancellation problem more clearly.

Assuming that the IDFT and DFT blocks are ideal, Figure 6.3 leads to an

expression for the N-vector output of the DFT block as
r(n) = Cs(n)+oFw(n) (6.2)

where C represents an N-dimensional diagonal matrix of channel gains for each
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ow(t)
Complex
frso):;nt)l'cc))l:e To
: |IDFT| : |P/S— Channel S/P| : |DFT| = Constellation
Orderer and . . . .
. Decoder

Constellation

Encoder N complex 9N real 2N real N complex

Figure 6.3: Simplified single transmitter-receiver pair for DMT-ADSL where ow(t)
represents the additive white Gaussian channel noise, P/S denotes parallel to serial

conversion, and S/P denotes serial to parallel conversion.

tone, s(n) represents the N-vector of complex symbols' from the constellation
encoder with each symbol corresponding to a distinct tone, F € CNV*2V is the
upper half of the standard 2N-dimensional DFT matrix, and ow(n) represents the
2N-vector of real valued AWGN channel noise with variance 0. The assumption
that C' is diagonal implies that there is no intermodulation noise in the sense that
each DMT tone is received free of interference from other DMT tones. We have also
used the assumption that all DMT tones are received uncorrupted by intersymbol

interference. The following proposition further simplifies (6.2).

Proposition 10. If w is real, white, and Gaussian with variance o? then the
elements of y = Fw, except for the first element corresponding to the DC term,
are complex, white, and Gaussian with real and imaginary variances equal to o*/2

and independent real and imaginary terms.

Proof. 1t is clear that y is Gaussian since linear transformations of joint Gaussian

random variables result in joint Gaussian random variables and F' is linear. Let ffl

'n contrast to Chapters 2-4 where the symbol b was used to represent binary
user symbols, the DSL systems considered in this chapter do not use binary signal-
ing in general. As a consequence, we use the symbol s to denote the user symbols
in this chapter.
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represent the t" row of F for t € {1,..., N} such that y, = ffw and fZf, = 1.

Note that ¢t denotes a “tone” in the DMT system. Then

E[Re(y)Re(ye)] = Re(f')Elww'|Re(f,)
o? "= 2ml(t — 1) 2l — 1)
= — cos | ———=)cos | ——=
2N — 2N 2N
o? "1 s [2TLE—1) 2ml(t +t' — 2)
= — — _— cos
2N p 2 2N 2N
f ,
0  t#t
= 0?2 t=t#1
o t=t=1
since 235071005(22”—]?) = 0 when ¢ is an integer not evenly divisible by 2N and
P cos(Z2) = 2N when ¢ is evenly divisible by 2NV (including ¢ = 0). In both
cosine terms, since t and t' are both constrained to the set {1,..., N}, ¢t =0 is the
only admissible value of ¢ evenly divisible by 2/N. Similarly,
E[lm(y)Im(ys)] = Im(f}")Elww |m(f,)
o2 2 i 21l(t — 1) s 2rl(t' — 1)
= — n|————=|sin| ——-+=
2N — 2N 2N
! o (2T =) 2ml(t + 1 — 2)
T AN £ ON co8 ON
(
0 tAY

= 40?2 t=t#1

0 t=t' =1

\
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and finally
ERe(u)m(u)] = Re(£2)Elww'lm(f,)

o2 2rl(t — 1)\ . [2nwl(t' —1)

= — cos | ———=|sin | ——~
2N = 2N 2N
o "1 [2ml(t+t —2) . [ 2ml(t — 1)

= — — [sin —sin | ———=
2N pn 2 2N 2N

= 0.

These expressions show that y; is complex, white, and Gaussian with real and
imaginary variances equal to 0?/2 and independent real and imaginary terms in

the case when t # 1. O

Assuming that the first tone is not used (this is the case in all DSLs since they
must not interfere with voice service), this last result implies that (6.2) can be

rewritten as

where w(n) is an N-vector with independent complex Gaussian elements, where
each element has independent real and imaginary parts each with variance 1/2.
This expression implies that crosstalk cancellation can be considered on a tone-by-

tone basis where
ri(n) = ¢s(n) + owy(n) + x(n) (6.3)

N——
NEXT in the tt" tone

Under the assumption that s;(n) is independent of sy (n) for all ¢t # t' then this
formulation shows that there is no benefit to performing crosstalk cancellation
jointly on all of the tones and that crosstalk cancellation can be considered on

a tone-by-tone basis. The crosstalk cancellation schemes we will consider in the
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sequel will perform cancellation on a single tone hence we will suppress the tone
index t. Assuming for clarity in the analytical development that carrier and phase
recovery are ideal for the desired user and that the NEX'T term is synchronous,
the symbol index n can also be eliminated and an expression for the crosstalk

corrupted scalar observation can be written as

K
r=s"+ Z ps® + ow (6.4)

k=2
where s is the desired user’s symbol scaled such that E[|sV[?] = 1, s® k =
2,..., K are the symbols from the interfering NEXT transmissions also scaled to

unit power, and p® is the (possibly complex) NEXT coupling factor from the k%
user’s transmission into the desired user’s signal. The noise standard deviation o
has been scaled from (6.3) without loss of generality in order to retain the correct

ratio with the unit power desired signal.

6.3 Multiuser Detection for DMT-ADSL

6.3.1 Single-User Detector

Assuming that all elements of the desired user’s symbol alphabet are equiprobable
then the single-user detector simply takes the sampled matched filter output r
from (6.3) and finds the constellation element of the desired user closest to it.
The single-user detector does not exploit any of the known information about the

crosstalk environment and forms symbol estimates by the expression

35y = arg min |r — s/

seS)
where S is the desired user’s symbol alphabet. Single-user detection can be

shown to be optimum when the desired signal is corrupted by zero-mean AWGN
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but is, in general, suboptimum when the interference is non-Gaussian.

6.3.2 Joint Maximum Likelihood

Under the assumptions that the desired and interfering symbol alphabets are
equiprobable (but not necessarily identical) and that the symbols are indepen-
dent, and that the receiver has perfect knowledge of the NEXT coupling factors
p* and interfering user alphabets S®, k =2, ..., K for k = 1,..., K, then the

joint maximum likelihood detector is defined as

S = <arg f?gg exp <_%|7“ - PT3|2>>
= <arg Isnelél |r — st|2>
where p = [1,p®,...,p"]T and § = [SD,...,8%]T. Note that 8y is an es-
timate of all users’ symbols. We denote the first element of s,y corresponding
to the JML estimate of the desired user as §*. The JML detector for DMT-
ADSL is similar to the JML detector for CDMA with one critical difference: the
DMT-ADSL observation is scalar as opposed to the wvector observation available
in CDMA. This is a consequence of the assumption that the DMT-ADSL receiver
(the ATU-R modem) generally does not have access to the observations of other

receivers in the system.

6.3.3 Linear Detection

Under the assumptions imposed, the DSL receiver’s observation is assumed scalar
which implies that all linear detectors would only consist of a scalar (possibly com-
plex) gain. We have assumed that the DMT-DSL receiver has already corrected

the phase and gain of the received signal prior to the multiuser detection opera-
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tion, hence linear detection does not provide any benefit in this scenario. Linear

detection will not be considered further in this chapter.

6.3.4 Parallel Interference Cancellation
The parallel interference cancellation (PIC) detector is defined as

~(1) . . AN a2
Shpic = argslerl;g)|(r z) — s

where 7 is the estimated aggregate NEXT interference. LPIC detection, as de-
scribed in Chapter 3 where it was shown that the LPIC detector is a linear detec-
tor, is not examined here for reasons discussed in the prior section. A two-stage
HPIC detector with single-user detector first stage forms the NEXT interference

estimate as

K
A (k) a(k)
L= E:P Ssy
k=2
where

840 = arg min |r — s|*.

s€Sk)

In the context of a scalar observable, PIC is not an intuitively satisfying tech-
nique for crosstalk mitigation in DSL systems. To see why, consider the case of a
desired user transmitting 4-QAM with a single NEXT interferer also transmitting
4-QAM with coupling factor p® = 0.6 and no noise. The single user decision for
the desired user 85 will always be correct in this scenario since the interference is
not large enough to cause the received signal to cross a decision boundary and there

is no noise. On the other hand, the single user decision for the NEXT interferer
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will be correct only with probability 1/4 since

~(2) : 2
S¢y = arg min |r — s
s€S®)
_ - 2
= arg min |r — s
ses™)
—
= Ssu

N

assuming that the desired and NEXT users symbols are independent and equiprob-
able. In this case, this means that the hard PIC symbol estimate for the desired
user can be written as

~(1) _ . AN a2
Supic al"gslensl(lll)|(7“ z) — s

= arg min |(r — 0.65") — s
ses™)

= arg min [0.45" + 0.65? — s|?
ses)

— 5@

which is correct with probability 1/4. Hence, because the NEXT interference esti-
mates are unreliable in this case, attempting to cancel them causes the performance
to be worse than the single user detector in this example. It can be shown that
additional stages do not rectify this problem. In CDMA systems, the matched
filter bank provides a vector observable that often allows reasonably accurate es-
timation of the interference. In DSL crosstalk mitigation, the scalar observable
does not provide any means for accurate interference estimation and leads to poor
interference estimates in many cases. These poor interference estimates often lead
to reduced performance with respect to the single user detector. The reasoning be-
hind the example presented here suggests that PIC may not be directly applicable
to the crosstalk mitigation problem but, on the other hand, this example suggests

that PIC may have potential in a DSL eavesdropping scenario.
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6.3.5 Successive Interference Cancellation

The successive interference cancellation (SIC) detector for user £ is defined as

(k)
§ = arg min |[(r — Zx_1) — s
e 8 sy ( ) 2.
where Z;_; is the estimated aggregate interference of users 1,...,k — 1 defined as

k—1
b1 =Y PV
=1
It is common (although not always optimal [Ver98, pp. 387]) to order the users in
terms of decreasing amplitude so that the most powerful user is canceled first and
the least powerful user is canceled last. Since the desired user is typically the most
powerful user in the received signal, the desired user’s performance is equivalent

to the single user detector since no interference cancellation has occurred prior to

their decision. The more interesting case is a two-stage SIC detector where

S(S|)C2 = arg min |(r — Tx_1) —s|

seS(k)

where Tj,_q is the estimated aggregate interference of all interfering users defined

as

Z pa) m oy + Z p(n (a

{=k+1

In this case, the desired user’s symbol estimate can be written as

(T_Zp(k) (k)) —s

The two-stage SIC detector is justified intuitively under the same noiseless, 2-user

2

a1 —
S¢jcp = arg min

seS(k)

scenario described in Section 6.3.4. As was seen for the PIC detector, 5§ = s@
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since 8¢ = 5. The second user’s symbol estimate is then

@ _ . AWy g2
Ssic argg;gﬂ(r Sgic) — s

= arg min |s® — s|%.
s€S(3)

)

which differs from the results seen for the hard PIC detector. Finally,

e = arg min |(r - 55¢) — P

sesc

= arg min |s® — s|%.
seSM

—

which shows that the two-stage SIC detector does not experience the same dif-
ficulties as the hard PIC detector in this example. However, although the SIC
and two-stage SIC detectors yield a symbol error rate of zero for the NEXT user
in this example, the desired user’s symbol error rate has not been improved with
respect to single user detection (an impossibility in this case). The question then
is, “Does SIC outperform the single-user detector in terms of bit error rate for the
desired user in the presence of AWGN?” A somewhat surprising result developed
in Section 6.4 states that, even in the presence of AWGN, there is no benefit in
using any method of crosstalk mitigation to estimate the desired user’s symbol
in a class of operating conditions that includes this particular example. In other
words, in this class of operating conditions, the best detectors perform equivalently
to the single-user detector. Hence, in this example, even in the presence of noise,
the two-stage SIC detector can not outperform the single-user detector and may
in fact perform worse. Examples of crosstalk mitigation for operating scenarios

outside of this class are presented in Section 6.5.
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6.4 Analytical Results

An implication of the scalar observable inherent to the crosstalk mitigation problem
at the ATU-R modem is that there exists a class of operating conditions where
the single-user and JML detectors yield exactly the same symbol estimates. This

claim is made more precise in the following proposition.

Proposition 11. Suppose that the desired user’s signal constellation is 2M-QAM,
with M even, placed on a square grid with spacing 2d, with equiprobable elements

in the set A. Under the following assumptions:

(A1) The set A" denotes the set of all possible NEXT interference terms generated
by all equiprobable possibilities of the expression 21522 p*s® . The set A" is

symmetric in the sense that if z € A’ then so is —z, 2%, and —z*.

(A2) The NEXT interference is bounded in the sense that |Re(z)| < d and

|[Im(z)] < d forall z € A'.
Then 85, = 8\,

Proof. Consider the scenario posed in Figure 6.4.
The single-user decision boundary between desired user constellation points a;

and ay is denoted as Lsy(aq, az) and defined as
Ley(ay,a) 2 {z € C : |z —a1]? = |z — as]?}

for ay,ay € A. The JML decision boundary between any two JML constellation

points a; + z1 and as + 29 is defined similarly as
LJML(al + 21, a9 + ZQ) = {33 € C : |33 — (a1 + Zl)|2 = |£E — (az + 252)|2}

for a;,a0 € A and 21,2, € A'.
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o (1

Lsy(a1,az)

e (19

Figure 6.4: Desired user constellation elements a;, as € A separated by 2d, single-

user decision boundary denoted by Lsy(a,az) and a point on the decision bound-

ary denoted by /.
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Suppose that §(51& = a; which implies that the received sample 7 is in the

single-user decision region of constellation point a;. Set

—_ ; _ 2
29 —arggrelgﬂr (ag + 2)|°.

By assumption (Al), if zo € A’ then so is —z; hence the point a; — 25 is a valid
point in the JML constellation. The JML decision boundary between a; — 23 and

as + 7o can be written as
Lywi(ay —25,a0+2z) ={x €C : |v —ay + 25|* = |1 — ag — 2|*}. (6.5)
Choose any point ¢ € Lsy(ay, az). Then

I —as — 2] = [Re(f —as — z)* + [Im(f — ag — 23))?
= [Re(—d — 23)* + [Im(€ — a1 + 23)?
= [Re(d+ )] + [Im({ — a; + 23)]°
= [Re(l —ay + 23)]* + [Im(¢ — a; + z3)J°
= |0 —a+ 2
using the facts that Re(¢ — ay) = —d, Re(¢ — a;) = d, Re(22) = Re(23), Im(as) =
Im(ay), and Im(zy) = —Im(23). This last equality combined with (6.5) implies

that Lsy(ai, as) C Lyw(a; — 25, as + 22). The opposite containment can be shown

similarly which implies that
Lyw (a1 — 25, a9 + 2z3) = Lsy(az, as). (6.6)

Since §(Sld = a; then 7 is left of the L(a,ay) decision boundary in Figure 6.4.
This fact combined with assumption (A2) and (6.6) then implies that r is left of
the Lyw (a1, —25, as + 25) decision boundary and closer to the JML constellation

element a; — 25 than ay + 29. Finally, since ag + 29 is the closest JML constellation
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element to r under the constraint that the desired user’s symbol is set to ay, then
this implies that 5, # as.

The remaining desired user constellation points in A are eliminated as follows.
Let A C A be the subset of all desired user constellation points a; satisfying
la; — a1| = 2d or |a; — a;| = 2v/2d. Using the implied symmetry of the desired
user’s square QAM constellation, the same argument developed in this proof can be
applied to eliminate any JML constellation point a; + 2; where a; € A and z; € A’
since there exists z € A’ such that Ly (a1+2, a;+2;) = Lsy(a1, a;). The remaining
desired user constellation points in A\ A\ a; are eliminated by considering that r
is in the decision region for a; and that, given any JML constellation point a, + z,
with a, € A\ A \ a; and z, € A’, there must exist at least one JML constellation
point a; + z; with a; € A and z; € A’ such that |r —a; — z;|? < |r — a, — 20|*. This
implies that §31,\),”_ # a; for all 7 #£ 1. Hence §jl,\),”_ = a; and since §.(51& = a; and a;

o ) )
was chosen arbitrarily then 5}, = 5g- O

It turns out that the converse of Proposition 11 is not true and this is due to
the fact that assumption (A1) is stronger than necessary. To prove the converse,

assumption (A1) would have to be relaxed slightly to (A1)” and state that

(A1)’ ... is symmetric in the sense that if z € A’ then so is —z, 2*, and —z*.

where A’ 2 {ze A |ay—2—1] <|ay—2'—{| V2" € A" and at least one ¢ € L(ay)}

where L(ay) is the union of the (at most) four decision boundaries that enclose
the single-user decision region for a;. In words, this relaxed assumption (A1)’
only requires that the points on the “perimeter” of the NEXT constellation have
the symmetry property and that points on the “interior” of the next constellation

do not need to have any such symmetry. This is intuitive since the symmetry of
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only the “perimeter” points of the NEXT constellation is necessary in order to
establish the result in (6.6) and it can be shown conversely that if (6.6) then the
“perimeter” points of the NEX'T constellation must have the required symmetry
(assuming that A’ has a finite number of elements).

Assumption (A2) can be viewed as an implicit bound on the maximum con-
stellation order of the desired user given max,c 4 Re(z) and max,c 4 Im(z) since
increasing the desired user’s constellation order decreases d to a threshold where
d becomes too small to satisfy assumption (A2). Figure 6.5 plots this maximum
constellation order versus the real amplitude (i.e., no phase rotation) of a single
NEXT interferer transmitting 4-QAM or 256-QAM. All points to the “southwest”
of the appropriate line satisfy assumption (A2) and all points to the “northeast”
of the appropriate line violate assumption (A2).

This proposition implies, somewhat surprisingly, that in cases where the as-
sumptions of Proposition 11 are valid, crosstalk mitigation is not beneficial and
standard single-user detection is optimum. Hence, it can be inferred that knowl-
edge of the NEXT interference structure including coupling factors and interference
alphabets, both of which may be quite difficult to estimate in practice, as well as
the additional computation burden of crosstalk mitigation is not beneficial to the
receiver in these cases. It can also be inferred that crosstalk mitigation might be
beneficial in the cases where the assumptions of Proposition 11 are violated. These

cases are considered in the following section.
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Figure 6.5: Maximum constellation order (2*me=_(QAM) for the desired user to
satisfy assumption (A2) of Proposition 11 for a single NEXT interferer with 4-

QAM constellation (solid line) and 256-QAM constellation (dashed line).
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6.5 Numerical Examples

As a first step towards understanding the performance of multiuser detection for
DSL crosstalk mitigation, this section considers the scenario where the desired user
is observed at the receiver corrupted by a single, synchronous NEXT interferer and
AWGN. Two cases are shown that satisfy the assumptions of Proposition 11 and
two cases are shown that violate these assumptions. In the latter two cases, it is
shown via simulation that NEXT interference mitigation can improve the symbol
error rate of the desired user.

Figures 6.6 and 6.7 show the constellation diagrams and decision boundaries of
two cases where the assumptions of Proposition 11 are satisfied in a system with
one NEXT interferer. In each plot, the JML decision region for the desired user’s
symbol +1/4/2 + j/+/2 is the union of the regions labeled A, B, C, and D. These
figures show that the JML and single-user decision regions are identical and that
sophisticated crosstalk cancellation schemes provide no benefit to the detection of
the symbols the desired user.

Figure 6.8 shows a constellation diagram and decision boundaries of a case
where Assumption (Al) of Proposition 11 is violated. In this case the JML de-
cision region for the desired user’s symbol +1/v/2 + j/+/2 clearly differs from
the corresponding single-user decision region implying that JML detection will
improve the performance of symbol detection for the desired user in this case. Fig-
ure 6.9 verifies this claim and shows that JML detection does indeed outperform
the single-user detector in this case. Unfortunately, the two-stage SIC detector
yields performance identical to the single-user detector and two-stage hard PIC
detection performs dramatically worse than single-user detection, as predicted in

the prior analysis.
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Figure 6.6: JML decision boundaries for a signal with a 4-QAM desired user and

one 4-QAM NEXT interfering user with coupling factor p® = 0.6.
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Figure 6.7: JML decision boundaries for a signal with a 4-QAM desired user and

one 4-QAM NEXT interfering user with coupling factor p® = 0.6e/™/4.
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Imag

Figure 6.8: JML (solid) and single-user (dashed) decision boundaries for a signal

with a 4-QAM desired user and one 4-QAM NEXT interfering user with coupling

factor p® = 0.6e77/%.
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Figure 6.10 shows a constellation diagram and decision boundaries of a case
where Assumption (A2) of Proposition 11 is violated. Again, the JML decision
region for +1/v/24j/+/2 clearly differs from the corresponding single-user decision
region which implies that JML detection will improve the performance of symbol
detection for the desired user in this case. Figure 6.11 shows the symbol error rate

performance of the detectors considered in this case.
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Figure 6.10: JML (solid) and single-user (dashed) decision boundaries for a signal
with a 4-QAM desired user and one 4-QAM NEXT interfering user with coupling

factor p® = 0.8¢I7/4,
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6.6 Conclusions

In this chapter we considered the application of multiuser detection for crosstalk
mitigation at the ATU-R (customer premises) modem. We presented a first order
analysis of the near-end crosstalk powers received in an ADSL scenario and showed
that these powers can be significant. This result implied that crosstalk mitigation,
if successful, could yield significant performance benefits including increased trans-
mission rates and improved fidelity of reception. We considered several different
multiuser detectors for crosstalk mitigation and showed that, as a consequence of
the scalar observable at the ATU-R modem, there exist a class of operating con-
ditions where the single user detector is in fact the optimum detector. We also
showed that via simulations that, when operating outside of this class, crosstalk
mitigation via optimum multiuser detection may provide significant performance
improvements. The problem of canceling crosstalk in a computationally efficient

manner remains open for this application.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Summary

Multiuser detection shows promise as one of the core technologies that will en-
able cellular service providers to meet the future demands of their rapidly growing
and increasingly sophisticated subscriber base. Parallel interference cancellation
multiuser detectors have been shown to possess a unique combination of desirable
properties including near optimum performance, very low computational complex-
ity, and low decision latency. In this dissertation, we presented new analytical
results on the performance of two different types of PIC detection, we developed
and tested new approaches to improve the performance of PIC detection, and we
investigated two distinct applications for PIC detection.

The contributions of Chapters 2-3 of this dissertation present new analytical
results regarding the BER and SINR performance of HPIC and LPIC detection.
In Chapter 4, we proposed and tested the performance adaptive PC-HPIC and SC-
PIC detectors and showed that they improved the performance of PIC detection.
In Chapters 5-6 we considered application of PIC detection for eavesdropping in
digital cellular systems and for crosstalk cancellation in digital subscriber loops.

We summarize our results by chapter below.

Chapter 2. In this chapter, we presented an analysis of two performance mea-
sures for HPIC detection: bit error rate and SINR. The bit error rate analysis
showed that exact computation of the bit error rate for the HPIC detector
required evaluation of several K-dimensional integrals of the joint Gaussian

pdf over rectangular regions, where K is the number of users in the system.
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An approximate expression for the bit error rate of the HPIC detector was
posed that does not require integration. We also presented an exact SINR
analysis for the HPIC detector and showed that its computation, although
not as difficult as bit error rate, does require the evaluation of several two-
dimensional integrals. We suggested an approximation that holds when the
BER of the matched filter detector is reasonably low and presented an analyt-
ical comparison to the SIC and MF detectors suggesting that HPIC detection

offers superior performance under a large class of operating conditions.

Chapter 3. Unlike the majority of recent literature that suggests techniques to
improve the performance of the LPIC detector, this chapter analyzed the
performance of the unmodified LPIC detector. The results showed that the
two-stage HPIC detector tends to be a better estimator of multiuser interfer-
ence than the two-stage LPIC detector and that there exists several nontrivial
cases where the multistage LPIC detector’s BER is worse than the conven-
tional matched filter. We showed the somewhat surprising result that, in
the large-system CDMA case, the two-stage LPIC detector exhibits worse
asymptotic output SINR performance than the matched filter detector when
the number of users K exceeds 1/3 of the spreading gain N. We also showed
the asymptotic result that application of the multistage LPIC detector to
a CDMA system with K/N > 0.17 does not converge to the decorrelating
detector as the number of stages of interference cancellation M — oo and
that at least one user will exhibit an error probability worse than 0.5 in each

bit interval.

Chapter 4. In this chapter, we considered two different approaches to improve the
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performance of the two-stage HPIC detector. In the first approach, we sug-
gested that, when the multiuser interference estimates are unreliable, the in-
terference estimates should be scaled to avoid performance degradation from
interference doubling due to incorrect binary estimates. Since each user’s
interference estimate may have different levels of reliability, we proposed a
PC-HPIC detector that assigns an individual partial cancellation factor to
each user. We investigated optimum values for these partial cancellation fac-
tors under three different criteria including a maximum-SINR criterion that
can be computed with reasonable complexity in the K-user case. The sec-
ond approach considered the replacement of the sgn(-) nonlinearity with a
nonlinearity that minimizes the Bayesian MSE of the interference estimates
under the intuition that better multiuser interference estimates yield better
output BER or SINR performance for the HPIC detector. Analytical and
simulation results in this chapter showed that the proposed techniques did

indeed, in most cases, yield improved bit error rate performance with respect

to the HPIC, LPIC, and MF detectors.

Chapter 5. This chapter considered the application of nonlinear multiuser detec-
tion techniques for improving the performance of IS-95 downlink reception
in an eavesdropping scenario. We developed a reduced complexity optimum
detector that exploits the group-orthogonal structure of the [S-95 downlink
and also developed the suboptimum GPIC detector that has the features
of very low complexity and potentially near-optimum performance. Exper-
iments with on-air [S-95 downlink data suggested that the GPIC detector
offers the greatest performance improvement when demodulating weak sig-

nals in the presence of strong out-of-cell multiuser interference.
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Chapter 6. Although the earlier chapters of this dissertation focused on mul-
tiuser detection for wireless communication systems, Chapter 6 considered
the application of multiuser detection for crosstalk mitigation in wire-based
digital subscriber loops. We presented an analysis of the crosstalker powers
as a first step towards generating a mathematical system model that discards
the prevailing Gaussian assumption on the multiuser interference. The anal-
ysis showed that near end crosstalker powers could be on the same order of
magnitude as the desired signal implying that crosstalk mitigation, if suc-
cessful, could yield significant performance benefits. We considered several
different multiuser detectors for crosstalk mitigation and showed that, at the
customer’s modem, there exist a class of operating conditions where the sin-
gle user detector is in fact the optimum detector. We also showed that, when
operating outside of this class, crosstalk mitigation via optimum multiuser

detection may provide significant performance improvements.

7.2 Future Research Directions

The results in Chapters 2-4 of this dissertation pertained to the synchronous K-
user CDMA system model. Extensions to the asynchronous case or, even more
generally, to the multipath channel case with fixed or random spreading codes
would be valuable results. The evidence presented in Chapter 5 with on-air IS-95
downlink data suggests that PIC detection does offer the potential for significant
performance improvements in real-world scenarios.

In Chapter 2, we showed that computation of the exact bit error rate of the

two-stage HPIC detector was quite difficult, even in the two-user case. Although
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we posed one approximation in Chapter 2 and the literature also contains several
papers with bit error rate approximations, accurate bounds on the bit error rate
performance of the two-stage (or multistage) HPIC detector are currently unknown
and may be a more valuable tool. A bit error rate expression for the HPIC detector
in a large CDMA system with random spreading sequences is also an important
result that is currently unknown. Also in Chapter 2, we note that SINR in actually
not well defined for nonlinear detectors and that there are several definitions that
lead to identical results for linear detectors but lead to different results for nonlinear
detectors such as the HPIC detector. Omne such definition was posed in [Sme(0,
Appendix D| where SINR was defined as “the ratio of output power when the
noise and interference are set to zero to the output power when the desired signal
component is set to zero”. In this case, it is easy to verify that this definition leads
to significantly different expressions for SINR for the two-stage HPIC detector
than those posed in Chapter 2. The definition used in Chapter 2 appears to be
the most intuitive definition of SINR and is consistent with the other definitions
for linear detectors but the matter of defining SINR consistently for nonlinear
detectors remains open. A SINR expression for the HPIC detector in a large
CDMA system with random spreading sequences is also an important result that
is currently unknown.

In Chapter 3, we showed that if p(R) > 2, there exists at least one user whose
probability of error will exceed 0.5 at the output of the multistage LPIC detector
when the number of stages of interference cancellation (A/) is sufficiently large
and odd. We also showed by example that there exist a class of signature cross-
correlation matrices such that this proposition can not be extended to imply that

all users will have an error probability of greater than 0.5. Simulations suggest
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that this class of signature crosscorrelation matrices is very small and that this
proposition does extend to all users over a large class of signature crosscorrelation
matrices, including those covered by Perron’s Theorem and its extensions. Rigor-
ous characterization of these classes of signature crosscorrelation matrices remains
and open problem. Also in Chapter 3, we observed in a numerical example that the
LPIC detector’s error probabilities at odd and even stages appeared to converge
to respective fixed points symmetric around 0.5 as M — oo. Additional numerical
evidence suggests that this may be true in general at least for the class equicorre-
lated signature crosscorrelation matrices. A rigorous proof of this conjecture would
be useful in order to further our understanding of LPIC detection behavior for even
numbers of stages. Finally, in Chapter 3, we described several open problems in
the case where an multistage LPIC detector is operating in large CDMA system
with random spreading sequences. A proof that the multistage detector’s out-
put decision statistic is a Gaussian random variable in the large-system, random
spreading sequences scenario appears to be difficult and remains an open problem.
A proof of this property would be valuable since it would imply that the bit error
rate of the multistage LPIC detector could be expressed as a single Q)(-) function
in this case and it would facilitate comparisons to other detectors for which this
result is known. A key element that appears to be necessary for this proof is an
expression for the random eigenvalues (and eigenvectors) of R for arbitrary M.
This result would also then immediately yield expressions for the multistage LPIC
detector’s SINR in the large-system, random spreading sequences scenario.

In Chapter 4, we showed that bit error rate optimum partial cancellation factors
could yield significant performance improvements to the HPIC detector in the two

user case but that computation of these partial cancellation factors was quite dif-
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ficult in the two-user case and practically impossible in the K-user case. Although
we developed simple expressions for SINR maximizing partial cancellation factors
in this chapter, they were shown to only provide modest performance gains when
the user powers were equal and that the ad-hoc techniques developed in [DSR9S]
could actually outperform the PC-HPIC detector in terms of bit error rate. The
matter of finding low complexity expressions for partial cancellation factors that
yield good performance over a range of typical operating conditions remains open.

Perhaps an even more important result that would supersede the PC-HPIC
approach would be determination of optimum nonlinearities to replace the sgn(-)
nonlinearity in the HPIC detector. In Chapter 4, we showed that replacing the
sgn(-) nonlinearity with a tanh(-) function to propose the SC-PIC detector, under
the argument that the interference estimates would minimize the Bayesian MSE,
could yield large performance improvements. Derivation of a nonlinearity that
minimizes the output bit error rate or SINR would be an important result.

In Chapter 5 we developed the GPIC detector for eavesdropping in the IS—
95 downlink. We did not investigate application of the performance adaptive
techniques of Chapter 4 for GPIC detection but we postulate that these may yield
even greater performance gains in some cases.

In Chapter 6 we showed that for a particular DSL model, the single user detec-
tor was optimum under a particular class of operating conditions. We also showed
via simulation that conventional interference cancellation techniques such as HPIC
and SIC do not yield improved performance in many typical cases and that opti-
mum detection is required in order to realize any performance improvement. The
problem of developing algorithms for canceling crosstalk in a computationally ef-

ficient manner for DSL communication systems remains open.
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