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ABSTRACT

A distributed coherent transmission scheme in which a cluster
of cooperative transmitters form a beam toward an intended receiver
while directing nulls at a number of other “protected” receivers is
considered. The receivers coordinate the transmissions by estimat-
ing the channels and providing feedback to the transmit cluster to
facilitate coherent transmission. Since the effective channels includ-
ing carrier phase and frequency offsets are time-varying, two track-
ing schemes are compared: (i) “local tracking” where each receiver
independently tracks its own channels from the transmit cluster and
(ii) “unified tracking” where one receiver (or transmitter) tracks all
of the channels in the system. The results show that, while beam-
forming performance is effectively unchanged, nullforming perfor-
mance can be improved with unified tracking, especially over short
prediction intervals and for larger networks.

Index Terms— cooperative communication, distributed trans-
mission, feedback systems, oscillator dynamics, tracking

1. INTRODUCTION

We consider the scenario in Fig. 1 where a distributed transmission
cluster with Nt transmitters cooperate to form a virtual antenna ar-
ray. The goal is to simultaneously steer a beam toward one intended
receiver while also steering nulls toward Nr− 1 protected receivers.
The receivers coordinate the transmissions by estimating the forward
link channels and providing feedback to the transmit cluster to facil-
itate the calculation of appropriate linear precoding vectors.
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Fig. 1. Distributed transmission scenario.

The idea of distributed transmit beamforming has been well-
studied in the last decade, e.g., [1–5], but the idea of distributed
transmit nullforming has only recently been considered [6–8]. In
particular, in [8], the approach was for each receiver to track a
time-varying state of “effective” channel phase and frequency off-
sets which included the effect of stochastic clock drifts. Explicit
state feedback from the Nr receivers was then used by the transmit
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cluster to predict the Nt × Nr channel matrix and compute a zero-
forcing precoding vector for distributed transmission. A simplifying
assumption in [8] was that each receiver individually tracked its
Nt effective channel phase and frequency offsets. This approach is
suboptimal since it does not exploit the statistical coupling of the
pairwise phase and frequency offsets across all of the receive nodes.

In this paper, we study the performance of a distributed null-
forming system with optimal, i.e., “unified”, phase and frequency
tracking at the receivers to determine the potential gains with respect
to suboptimal local tracking. In practice, unified tracking could be
achieved by having the receive nodes forward their observations to
a master receive node and having this master receive node apply the
overall observation vector to a unified Kalman filter. Alternatively,
the receive nodes could provide their observations to the transmit
cluster via the feedback link and one or more transmit nodes could
implement a unified Kalman filter. In either case, rather than us-
ing Nr separate small Kalman filters to track the effective channel
phase and frequency offsets as in [8], a system with unified tracking
uses one large Kalman filter and achieves optimal performance by
exploiting the correlations in the offset states across receive nodes.

This paper develops a model for unified tracking and compares
the performance of this approach with respect to local tracking. Our
results show that, while beamforming performance is effectively
unchanged, nullforming performance can be significantly improved
with unified tracking. In particular, unified tracking tends to provide
the largest nullforming gains over short prediction intervals and
for larger networks, e.g., distributed implementations of massive
MIMO [9, 10]. The results also show that local tracking tends to
provide near-optimal performance in systems with high feedback
latency. We provide numerical results that confirm the analysis and
compare the performance of local and unified tracking with varying
prediction intervals and network sizes.

2. SYSTEM MODEL

Each node in the system shown in Fig. 1 is assumed to possess a
single antenna. The nominal transmit frequency in the forward link
from the distributed transmit cluster to the receivers is at ωc. All
forward link channels are modeled as narrowband, linear, and time
invariant (LTI). Enumerating the transmitters as n = 1, . . . , Nt the
receivers as m = 1, . . . , Nr and adopting the convention that the
intended receiver is node 1, we denote the channel from transmit
node n to receive node m at carrier frequency ωc as g(n,m) ∈ C for
n = 1, . . . , Nt and m = 1, . . . , Nr .

As in [8], all of the receivers in the system measure and track
the channels from the transmit cluster and to provide feedback to the
transmit cluster to facilitate distributed transmission. Fig. 2 shows
the effective narrowband channel model from transmit node n to
receive node m which includes the effects of propagation and car-
rier offset. Transmissions n → m are conveyed on a carrier nom-



inally at ωc generated at transmit node n, incur a phase shift of
ψ(n,m) = ∠g(n,m) over the wireless channel, and are then down-
mixed by receive node m using its local carrier nominally at ωc. At
time t, the effective narrowband channel from transmit node n to
receive node m is modeled as

h(n,m)(τ)=g(n,m)e
j
(
φ
(n)
t (τ)−φ(m)

r (τ)
)
= |g(n,m)|ejφ

(n,m)(τ) (1)

where φ(n)

t (τ) and φ(m)
r (τ) are the local carrier phase offsets at

transmit node n and receive node m, respectively, at time τ with
respect to an ideal carrier reference, and φ(n,m)(τ) = φ(n)

t (τ) −
φ(m)

t (τ) + ψ(n,m) is the pairwise phase offset after propagation be-
tween transmit node n and receive node m at time τ .
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Fig. 2. Effective narrowband channel model including the effects of
propagation, transmit and receive gains, and carrier offset.

2.1. Oscillator Dynamics

Each transmit and receive node in the system is assumed to have
an independent local oscillator. These local oscillators have inher-
ent frequency offsets and behave stochastically, causing phase offset
variations in each effective channel from transmit node n to receive
node m even when the propagation channels g(n,m) are otherwise
time invariant. This section describes a discrete-time dynamic model
to characterize the dynamics of the phase variations in h(n,m)(τ).

Based on the two-state models in [11,12], we define the discrete-
time state of the nth transmit node’s carrier as x(n)

t [k] = [φ(n)

t [k],

φ̇(n)

t [k]]> where φ(n)

t [k] corresponds to the carrier phase offset in
radians at transmit node n with respect to an ideal carrier phase ref-
erence. The state update of the nth transmit node’s carrier is then

x(n)

t [k + 1] = f(T )x(n)

t [k] + u(n)

t [k] with f(T ) =
[
1 T
0 1

]
(2)

where T is an arbitrary sampling period selected to be small enough
to avoid phase aliasing at the largest expected frequency offsets. The
process noise vectoru(n)

t [k]
i.i.d.∼ N

(
0,Q(n)

t (T )
)

causes the carrier
derived from the local oscillator at transmit node n to deviate from
an ideal linear phase trajectory. The covariance of the discrete-time
process noise is derived from a continuous-time model in [11] and is

Q(n)

t (T ) = ω2
cT

[
p(n)

t + q(n)

t
T2

3
q(n)

t
T
2

q(n)

t
T
2

q(n)

t

]
(3)

where ωc is the nominal common carrier frequency in radians per
second and p(n)

t (units of seconds) and q(n)

t (units of Hertz) are the
process noise parameters corresponding to white frequency noise
and random walk frequency noise, respectively.

The receive nodes in the system also have independent local
oscillators used to generate carriers for downmixing that are gov-
erned by the same dynamics as (2) with state x(m)

r [k], process noise

u(m)
r [k]

i.i.d.∼ N (0,Q(m)
r (T )), and process noise parameters p(m)

r

and q(m)
r as in (3) for m = 1, . . . , Nr .

Since receive nodes can only measure the relative phase and fre-
quency of the transmit nodes after propagation, we define the pair-
wise offset after propagation as

δ(n,m)[k] =

[
φ(n,m)[k]

φ̇(n,m)[k]

]
= x(n)

t [k] +

[
ψ(n,m)

0

]
− x(m)

r [k].

Note that δ(n,m)[k] is governed by the state update

δ(n,m)[k + 1] = f(T )δ(n,m)[k] + u(n)

t [k]− u(m)
r [k]. (4)

We assume that observations are so short as to only provide useful
phase estimates. An observation of the n→ m channel is then

y(n,m)[k] = hδ(n,m)[k] + v(n,m)[k]

where h = [1, 0] and v(n,m)[k]
i.i.d.∼ N (0, R) is the measurement

noise which is assumed to be spatially and temporally i.i.d.

2.2. Local Tracking Model

In the case of local tracking, each receiver uses only its local ob-
servations to track the pairwise offset states with respect to the re-
ceiver’s local oscillator. At receiver m, the 2Nt-dimensional vector
state of pairwise offsets is defined as δ(m)[k] = [(δ(1,m)[k])>, . . . ,
(δ(Nt,m)[k])>]> and has the state update

δ(m)[k + 1] =

f(T ) . . .
f(T )

δ(m)[k]+

 u
(1)

t [k]−u(m)
r [k]

...
u(Nt)

t [k]−u(m)
r [k]


= F loc(T )δ

(m)[k] +Glocu
(m)[k]. (5)

where

Gloc =

I2 −I2
. . .

...
I2 −I2

 and u(m)[k] =


u(1)

t [k]
...

u(Nt)

t [k]
u(m)
r [k]

 (6)

and where I2 is the 2× 2 identity matrix. We assume

cov{u(m)[k]} = blockdiag
{
Q(1)

t (T ), . . . ,Q(Nt)

t (T ),Q(m)

r (T )
}

= Q(m)(T )

hence Glocu
(m)[k] ∼ N

(
0,GlocQ

(m)(T )G>loc
)
. The vector ob-

servation for the local Kalman filter is then y(m)[k] = [y(1,m)[k],
. . . , y(Nt,m)[k]]> and related to the local state as

y(m)[k] = hlocδ
(m)[k] + v(m)[k]

where hloc = blockdiag(h, . . . ,h) ∈ RNt×2Nt and v(m)[k] =
[v(1,m)[k], . . . , v(Nt,m)[k]]> ∈ RNt is the measurement noise.

2.3. Unified Tracking Model

In the case of unified tracking, there is a master receiver or trans-
mitter that aggregates all of the observations and tracks all of the
pairwise offset states in the system. The 2NtNr-dimensional vec-
tor state of pairwise offsets is defined as δ[k] = [(δ(1)[k])>, . . . ,
(δ(Nr)[k])>]> and has the state update

δ[k + 1] =

f(T ) . . .
f(T )

δ[k]+
 u(1)

t [k]−u(1)
r [k]

...
u(Nt)

t [k]−u(Nr)
r [k]


= F uni(T )δ[k] +Guniu[k] (7)



where the process noise vectoru[k] = [(u(1)

t [k])>, . . . , (u(Nt)

t [k])>,

(u(1)
r [k])>, . . . , (u(Nr)

r [k])>]> ∈ R2(Nt+Nr) and

Guni=

I2Nt J2Nt

...
. . .

I2Nt J2Nt

∈ R2NtNr×2(Nt+Nr) (8)

with J2Nt = −[I2, . . . , I2]> ∈ R2Nt×2. The NtNr-dimensional
vector observation for the unified Kalman filter is then

y[k] = huniδ[k] + v[k]

where huni = blockdiag(h, . . . ,h) ∈ RNtNr×2NtNr and v[k] =
[v(1,1)[k], . . . , v(Nt,Nr)[k]]> ∈ RNtNr is the measurement noise.

2.4. Discussion

Note that the state update equations (5) and (7) specify dynamic sys-
tems where the states are coupled only through the correlated pro-
cess noise. In the local tracking model, the process noise is corre-
lated only through receive node m’s oscillator as shown in (6). In
the unified tracking model, the process noise is correlated through
all of the receive oscillators as shown in (8). While the number of
states grows according to the product NtNr , the number of inde-
pendent oscillators grows according to the sum Nt + Nr . Hence,
since the unified tracker exploits all of the process noise correlations
in the system, we can expect the unified tracker to provide the most
significant performance gains with respect to local tracking in large
networks.

3. RECEIVER-COORDINATED PROTOCOL

We assume the receiver-coordinated protocol described in [7, 8].
Forward link transmissions are divided into measurement and dis-
tributed transmission epochs, repeating periodically with period Tm.
Reverse link transmissions provide feedback from the receive nodes
to the transmit nodes to facilitate linear precoding vector calculation.

Given a measurement at time k and denoting the Kalman filter’s
MMSE phase prediction at time ` > k as φ̂(n,m)[` | k], we can write
the effective channel prediction for h(n,m)(τ) at time τ = `T as

ĥ(n,m)[` | k] = |g(n,m)|ejφ̂
(n,m)[` | k] (9)

since the channel amplitudes |g(n,m)| are assumed to be known. We
denote the vector of channel predictions from all transmit nodes to
receive node m as ĥ

(m)
[` | k] ∈ CNt and the protected receiver pre-

dicted channel matrix as Ĥ[`|k] =
[
ĥ

(2)
[`|k], . . . , ĥ

(Nr)
[`|k]

]
∈

CNt×Nr for ` > k.
The MMSE channel predictions are used to calculate the pre-

coding vector w[`] ∈ CNt for all ` in the distributed transmission
epoch. Under our assumption that the number of protected receivers
is less than Nt, we can select the transmit vector w[`] ∈ CNt to
be orthogonal to ĥ

(m)
[` | k] for all m = 2, . . . , Nr and then use

the remaining degrees of freedom in the transmit vector to maxi-
mize the received power at the intended receiver. Defining D̂[`|k] =
I − Ĥ[`|k]

(
Ĥ
H
[`|k]Ĥ[`|k]

)−1

Ĥ
H
[`|k], the zero-forcing trans-

mit vector can then be computed as

w[`] = α[`]D̂[`|k]ĥ
(1)

[`|k] (10)

where α[`] is selected to satisfy a per-node or total power constraint.

4. PERFORMANCE ANALYSIS
This section analyzes the steady-state performance of local and uni-
fied tracking. Our analysis assumes unit channel magnitudes such
that |g(n,m)| = 1, i.i.d. measurement noise with v[k] ∼ N (0,R)
andR = σ2

vI , and identical process noise statistics at each node.
To compute the steady-state prediction covariance of the Kalman

filter with measurement period Tm, it can be straightforwardly veri-
fied that both the local and unified tracking systems satisfy the con-
trollability and observability conditions so that the steady-state pre-
diction covariance is a unique positive definite matrix specified as
the solution to the discrete-time algebraic Riccati equation [13]. De-
noting the prediction covariance as P (corresponding to either local
or unified tracking), the steady-state estimation covariance (imme-
diately after an observation) is then S = P − Ph>(hPh> +
R)−1hP . The prediction covariance at a prediction time tp af-
ter the most recent measurement (during a distributed transmission
epoch) is then P (tp) = F (tp)SF

>(tp) + Q(tp). The (1,1) el-
ement of P (tp) is the variance of the phase prediction, which we
denote as σ2

φ(tp). The (1,3) element of P (tp) is the covariance of
the phase predictions between two transmitters as observed at one
receiver, which we denote as ρ2σ2

φ(tp).
To quantify the performance of distributed beamforming in

terms of the prediction covariance, suppose that the signal re-
ceived from the ith transmitter at the intended receiver is given
by ri = αej(φ+φ̃i) where α2 = N−1

t is the individual transmit
power selected to satisfy a unit total power constraint, φ is the nom-
inal beamforming phase, and φ̃i is the phase error at transmitter i.
The mean beamforming power is then

J=E


∣∣∣∣∣
Nt∑
i=1

ri

∣∣∣∣∣
2
=

1

Nt

Nt∑
i=1

E
{
c2i+s

2
i

}
+

1

Nt

Nt∑
i=1

∑
j 6=i

E {cicj+sisj}

where ci = cos(φ̃i) and si = sin(φ̃i). Since c2i + s2i = 1 and
cicj + sisj = cos(φ̃i − φ̃j), we have

J = 1 +
1

Nt

Nt∑
i=1

∑
j 6=i

E
{
cos
(
φ̃i − φ̃j

)}
Under our assumptions, φ̃i are identically distributed (but not in-
dependent) zero-mean Gaussian random variables with variance
is σ2

φ(tp) and covariance E
{
φ̃iφ̃j

}
= ρ2σ2

φ(tp) at prediction
time tp. It can then be shown via straightforward integration that
E
{
cos
(
φ̃i − φ̃j

)}
= e−(1−ρ2)σ2

φ(tp), hence

J = Nte
−(1−ρ2)σ2

φ(tp) +
(
1− e−(1−ρ2)σ2

φ(tp)
)
. (11)

Note that (11) is the mean beamforming power for a system with a
single intended receiver and no nulls. If the system also steers nulls
toward Nr − 1 receivers and the channel phases are random and
independent, we can estimate the beamforming loss due to nulling
as 1− Nr−1

Nt
[8]. Hence, it follows that

J ≈
[
1−Nr − 1

Nt

]
Nte

−(1−ρ2)σ2
φ(tp)+1−e−(1−ρ2)σ2

φ(tp). (12)

To quantify the performance of distributed nullforming at the
protected receivers in terms of the prediction covariance, the signal
from the ith transmitter at a protected receiver is assumed to be given
by ri = αej(φi+φ̃i) where φi is the nominal received phase from the



ith transmitter chosen so that
∑Nt
i=1 e

jφi = 0, and φ̃i is the phase
error at transmitter i. The mean received power in a null is then

K=E


∣∣∣∣∣
Nt∑
i=1

ri

∣∣∣∣∣
2
=

1

Nt

Nt∑
i=1

E
{
p2i+q

2
i

}
+

1

Nt

Nt∑
i=1

∑
j 6=i

E {pipj+qiqj}

where pi = cos(φi) cos(φ̃i)−sin(φi) sin(φ̃i) and qi = cos(φi) sin(φ̃i)+

sin(φi) cos(φ̃i). Since p2i + q2i = 1 and pipj + qiqj = cos(φi −
φj) cos(φ̃i − φ̃j) + sin(φi − φj) sin(φ̃i − φ̃j), we can write

K = 1 +
1

Nt

Nt∑
i=1

∑
j 6=i

cos(φi − φj)E
{
cos(φ̃i − φ̃j)

}

+
1

Nt

Nt∑
i=1

∑
j 6=i

sin(φi − φj)E
{
sin(φ̃i − φ̃j)

}
.

Straightforward integration yields E
{
cos(φ̃i − φ̃j)

}
= e−(1−ρ2)σ2

φ(tp)

and E
{
sin(φ̃i − φ̃j)

}
= 0, hence

K = 1 +
1

Nt
e−(1−ρ2)σ2

φ(tp)
Nt∑
i=1

∑
j 6=i

cos(φi − φj)

It can be shown that, since φi satisfy
∑Nt
i=1 e

jφi = 0, the sum∑Nt
i=1

∑
j 6=i cos(φi−φj) = −Nt. Hence, the mean received power

in a null is

K = 1− e−(1−ρ2)σ2
φ(tp). (13)

5. NUMERICAL RESULTS
This section presents numerical performance comparisons of dis-
tributed beamforming and nullforming with local and unified track-
ing. All of the results assume a forward link carrier frequency
of 900 MHz and a measurement period of Tm = 500 ms. Based
on the Allan variance specifications of the Rakon RFPO45 oscilla-
tor [14], the process noise parameters were set to p(n)

t = p(m)
r =

2.31 · 10−21 and q(n)

t = q(m)
r = 6.80 · 10−23 for all n = 1, . . . ,

Nt and all m = 1, . . . , Nr . The standard deviation of the phase
measurement error at the receive nodes was set to 10 degrees. All
channels were assumed to have unit magnitude and the transmitter
was assumed to have a unit total transmit power constraint.

Fig. 3 shows a full simulation of a “small” system withNt = 10
transmitters and Nr = 5 receivers. Since the nullforming perfor-
mance is identical at all of the protected receivers, the performance
of only one null is shown here. The results were averaged over 3000
realizations of the random initial frequency offsets, clock process
noises, and measurement noises. Measurements occur at t = kTm
for k = 0, 1, . . . . After the initial incoherent period where the
Kalman filter has poor estimates with both local and unified tracking,
the effect of the oscillator dynamics and periodic measurements can
be seen in the beamforming and nullforming performance where the
performance is relatively good immediately after a measurement but
then degrades as the prediction time becomes longer. These results
show that unified tracking provides a negligible advantage in beam-
forming gain but a potentially significant advantage in nullforming
gain, especially as the Kalman filter converges to steady-state.

Figure 4 shows the steady-state performance of distributed
beamforming and nullforming with local and unified tracking for
the small system in Fig. 3 and a “massive MIMO” system with
Nt = 100 transmitters and Nr = 50 receivers. These results were
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Fig. 3. Full Kalman filter simulation of a “small” system.

generated following the approach in Section 4. The small system
results are consistent with Fig. 3. The massive MIMO system ex-
hibits increased beamforming gain, as is expected, but also shows
that beamforming performance is essentially the same with local
or unified tracking. The nullforming performance of the massive
MIMO system benefits more from unified tracking, especially over
short prediction intervals. The nullforming performance of both
systems becomes similar over longer prediction intervals.
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Fig. 4. Steady-state beamforming and nullforming performance re-
sults with “small” and “massive MIMO” systems.

6. CONCLUSIONS
This paper compares the performance of distributed transmission
with local and unified tracking and shows that, while beamforming
performance is effectively unchanged between local and unified
tracking, nullforming performance can be significantly improved
with unified tracking, especially over short prediction intervals and
with larger networks. The results also show that local tracking tends
to provide near-optimal performance in systems with high feedback
latency. While unified tracking provides optimal performance, the
additional complexity of unified tracking may cause local tracking
to be more appealing in systems with high feedback latency.
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