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Abstract—This paper considers the problem of estimating
and tracking channels in a distributed transmission system with

transmit nodes and receive nodes. Since each node in
the distributed transmission system has an independent local
oscillator, the effective channel between each transmit node and
each receive node has time-varying phase and frequency offsets
which must be tracked and predicted to facilitate coherent trans-
mission. A linear time-invariant state-space model is developed
and is shown to be observable but nonstabilizable. To quantify
the steady-state performance of a Kalman filter channel tracker,
two methods are developed to efficiently compute the steady-state
prediction covariance. The first method requires the solution of
a -dimensional discrete-time algebraic Riccati
equation, but allows for nonhomogenous oscillator parameters.
The second method requires the solution of four two-dimensional
discrete-time algebraic Riccati equations but requires homogenous
oscillator parameters for all nodes in the system. An asymptotic
analysis is also presented for the homogenous oscillator case for
systems with a large number of transmit and receive nodes with
closed-form results for all of the elements in the asymptotic pre-
diction covariance as a function of the carrier frequency, oscillator
parameters, and channel measurement period. Numeric results
confirm the analysis and demonstrate the effect of the oscillator
parameters on the ability of the distributed transmission system
to achieve coherent transmission.
Index Terms—Asymptotic analysis, channel prediction, coherent

transmission, discrete-time algebraic Riccati equation, distributed
communication systems, oscillator dynamics.

I. INTRODUCTION

W E consider the distributed multi-input multi-output
(MIMO) communication scenario in Fig. 1 where a

transmit cluster with transmit nodes communicates with
a receive cluster with receive nodes. The transmit cluster
is assumed to use coherent transmission techniques, e.g., dis-
tributed beamforming [1], distributed nullforming [2], and/or
distributed zero-forcing beamforming [3]. It is well known that
coherent transmission techniques require channel state infor-
mation at the transmitters (CSIT). Several techniques have been
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Fig. 1. Distributed MIMO system model with transmit nodes and re-
ceive nodes. Each node possesses a single antenna and an independent oscillator.

proposed to address this issue for distributed MIMO systems,
with the goal of providing CSIT either implicitly or explic-
itly. These include receiver-coordinated explicit feedback [2],
[4]–[9], receiver-coordinated summarized feedback [10]–[12],
master-slave synchronization with retrodirective transmis-
sion [1], round-trip retrodirective transmission [13]–[15], and
two-way synchronization with retrodirective transmission [16],
[17]. Each of these techniques has advantages and disadvan-
tages in particular applications, as discussed in the survey
article [18].
In this paper, we focus on the receiver-coordinated explicit

feedback scenario in which the receive cluster measures the
channels and provides explicit feedback to the transmit cluster
to facilitate coherent transmission. This approach can be used
in time-division-duplex (TDD) and frequency-division-duplex
(FDD) systems. We assume no external source of synchroniza-
tion in the system, hence the time-varying phase and frequency
offsets in each effective channel (which includes propagation as
well as oscillator offsets) much be tracked and predicted to fa-
cilitate coherent transmission. We consider a scenario in which
the effective channels are tracked by one or more Kalman fil-
ters.
Kalman filters have been used extensively in clock tracking

and synchronization, e.g., [19]–[22], including global posi-
tioning systems (GPS) [23], the network time protocol (NTP)
[24], and the precision time protocol (PTP) [25]. The focus of
this prior work, however, is on tracking and correcting clock
offsets between a single pair of nodes (typically a master node
such as a satellite and a slave node such as a GPS receiver).
The distributed MIMO setting of Fig. 1 generalizes this idea to
tracking a matrix of clock offsets corresponding to the collec-
tion of effective channels between all of the transmitters and
receivers. Since the dynamics of these channels are correlated,
tracking channels individually is suboptimum.
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A few recent papers have analyzed the performance of dis-
tributed beamforming and distributed nullforming in the dis-
tributed MIMO setting [6]–[9] and have shown that the per-
formance of these coherent transmission techniques can be ex-
pressed as simple functions of the channel phase prediction vari-
ance [26]. The early papers in this area made the simplifying
assumption that each channel was tracked individually or each
receiver tracked only its own channels. While the latter ap-
proach is an improvement on tracking channels individually, it
does not exploit correlations across receivers. More recently, the
idea of “unified” tracking has been studied in which all of
channels in the system are jointly tracked [9]. A system with
unified tracking achieves optimal performance by exploiting
the correlations across all of the effective channels. As verified
in the numerical results of Section VI and elaborated upon in
Section III-C, unified tracking can significantly outperform ap-
proaches which separately track each effective channel.
The main contribution of this paper is a formal analysis

of the stability and steady-state behavior of a Kalman filter
tracker for the effective channel states of an unsynchronized
distributed MIMO communication system in the case where the
magnitudes of the propagation channels are sepa-
rately tracked and are slowly-varying. In particular, although
the state-space model for the effective channel states developed
in Section II is completely observable but not stabilizable, we
show that the Kalman filter is asymptotically stable subject
to a properly chosen initial prediction covariance. We then
analyze the steady-state prediction covariance of the Kalman
filter tracker, establishing existence and uniqueness of a par-
ticular positive semidefinite “strong” solution, and develop
two methods to efficiently solve the resulting discrete-time
algebraic Riccati equation (DARE) for this strong solution.
The first method uses a similarity transformation to cast the
system in a controllable staircase form and reduces the original

-dimensional DARE to a -dimensional
DARE. This method is also general in that it allows for non-
homogeneous oscillator and measurement noise parameters.
The second method exploits the particular structure of the
state-space model and uses a similarity transform to cast the
system in a block diagonal form. When the oscillator parame-
ters and measurement noise variance are homogenous across
all nodes in the system, this method reduces to simply solving
four 2-dimensional DAREs. This second method is particularly
useful for large-scale systems, e.g., distributed massive MIMO
systems [27], [28], since the dimension of the DAREs is not
a function of the transmit or receive cluster sizes. To fully
characterize the behavior of the prediction covariance for large
systems, we present an asymptotic analysis for the case when

and , and develop closed-form results
for all of the elements in the asymptotic prediction covariance
as a function of the carrier frequency, oscillator parameters,
and channel measurement period. Numeric results confirm the
analysis and demonstrate the effect of the oscillator parameters
on the ability of the distributed transmission system to achieve
coherent transmission.
The rest of the paper is organized as follows. We first

develop the system model, local oscillator model, and the
unified state space model for tracking all of the effective chan-
nels in the system in Section II. We then discuss the optimal

channel tracker in Section III and establish its asymptotic
stability. The steady-state prediction covariance is analyzed
in Section IV where two reduced-dimensional methods are
developed to facilitate efficient calculation of the positive
semidefinite steady-state prediction covariance matrix. An
asymptotic analysis of the steady-state prediction covariance
is presented in Section V. Numerical results are given in
Section VI, followed by conclusions in Section VII. Proofs of
the main theorems are provided in the Appendices.
Notation: The identity matrix is denoted and

denotes a length vector of all ones. We use , , and
for expectation, transposition, and inverse transposition,

respectively. We use to denote the Kronecker product. For
any matrices and with the same dimension and integer

, we define

...
. . .

(1)

II. SYSTEM MODEL

Each node in the system shown in Fig. 1 is assumed to possess
a single antenna. The nodes in the system are not assumed to be
synchronized. The nominal transmit frequency in the forward
link from the distributed transmit cluster to the receivers is at
. All forward link channels are modeled as narrowband and

linear. We denote the channel from transmit node to receive
node at carrier frequency as for transmit
node and receive node . These
propagation channels, in contrast to the time-varying “effective”
channels described below, do not include the effect of carrier
phase and/or frequency offsets between transmit node and
receive node .
Fig. 2 shows the effective narrowband channel model from

transmit node to receive node including the effects of prop-
agation and carrier offset. Transmissions are conveyed
on a carrier nominally at generated at transmit node , incur
a phase shift of over the wireless
channel, and are then downmixed by receive node using its
local carrier nominally at . At time , the effective narrow-
band channel from transmit node to receive node is mod-
eled as

(2)

where and are the local carrier phase offsets
at transmit node and receive node , respectively, at time
with respect to an ideal carrier reference, and

is the pairwise phase offset after propagation between transmit
node and receive node at time .
We consider an approach in which the effective channels

are measured at the receive nodes and feedback is provided by
the receive nodes to the transmit nodes to facilitate coherent
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Fig. 2. Effective narrowband channel model including the effects of propaga-
tion, transmit and receive gains, and carrier offset.

transmission. Note that there are two sources of independent
dynamics in each effective channel: (i) propagation dynamics
and (ii) oscillator dynamics. Since the oscillator dynamics do
not affect the channel magnitudes, we assume that the channel
magnitudes are tracked separately using methods
as in [29] and are slowly-varying such that they are known
perfectly. The problem of estimating and tracking the effective
channels then reduces to estimating and tracking
the pairwise phase offsets . The following sections
provide an overview of basic oscillator dynamics and then
develop a unified dynamic model for the phase and frequency
offsets of the effective channels.

A. Oscillator Dynamics
Each local oscillator in the system has inherent frequency and

phase offsets with respect to some nominal reference and also
behaves stochastically, causing phase offset variations in each
effective channel from transmit node to receive node even
when the propagation channels are otherwise time in-
variant. This section describes a discrete-time dynamic model
for the local oscillator dynamics at each transmit and receive
node.
Based on the two-state oscillator models in [30], [31], we

define the discrete-time state of the transmit node's carrier
as

where and corre-
spond to the carrier phase offset in radians and frequency offset
in radians per second, respectively, at transmit node with re-
spect to an ideal carrier phase reference and where is the
state update period. The state update of the transmit node's
carrier follows

(3)

with

(4)

The local process noise vector causes
the carrier derived from the local oscillator at transmit node
to deviate from an ideal affine phase trajectory. The covariance
of the discrete-time process noise is derived from a continuous-
time model in [30] and can be written as

(5)

where is the nominal common carrier frequency in radians
per second and (units of seconds) and (units of Hertz)

are the process noise parameters corresponding to white fre-
quency noise and random walk frequency noise, respectively.
The process noise parameters and can be estimated by
fitting the theoretical Allan variance to
experimental measurements of the Allan variance over a range
of values. For example, a least squares fit to the Allan vari-
ance specifications for a Rakon RPFO45 oven-controlled oscil-
lator [32] yields and .
Typical Allan variance values for various types of oscillators are
tabulated in [33].
The receive nodes in the system also have independent local

oscillators used to generate carriers for downmixing that are
governed by the same dynamics as (3) with state ,
process noise , and process noise pa-
rameters and as in (5) for .

B. Pairwise Offset States and Observations
To facilitate coherent transmission, the receivers in the

system periodically measure the effective channels from the
transmit cluster and feed back their measurements to facilitate
channel tracking at the transmitters as in [2], [6]–[9]. Since the
receive nodes can only observe the relative phase and frequency
of the transmit nodes after propagation, we define the pairwise
offset after propagation as

where is the propagation phase1. Note that is
governed by the state update

(6)

We assume that observations are so short as to only provide
useful phase estimates. An observation of the channel
at receive node is then modeled as

where
(7)

and is scalar measurement noise with
variance assumed to be spatially and temporally i.i.d.,
and independent of the process noise. The measurement
noise variance depends on the several factors including the
signal-to-noise ratio of the channel and the duration of the mea-
surement signal. Bounds on the measurement noise variance
for maximum likelihood phase estimators are given in [34].
The use of a pairwise offset state is important in our tracking

scenario since it provides states which are physically mean-
ingful as well as observable. It is straightforward to confirm
the observability of as defined in (4) and (7) for any

. The following section develops a unified dynamic
model comprising all of the pairwise offset states in the system.

1For clarity of exposition and consistent with previous assumptions, the prop-
agation phase is assumed here to be slowly-varying with respect to the oscillator
dynamics. If the propagation phase is not slowly varying, its dy-
namics can also be incorporated in the pairwise offset state .
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We prove that this unified model is also completely observable
in Section II-D.

C. Unified Dynamic Model

While it is possible to track each of the pairwise offset states
in (6) individually, it is straightforward to see that the

pairwise offset states do not have independent dynamics. For
example, and are correlated since they share
a common process noise term . This section develops
a unified dynamic model for all of the pairwise offsets in the
system to facilitate optimal unified tracking. As shown in [9] in a
zero-forcing distributed beamforming scenario, unified tracking
can provide significant gains in the depth of the nulls with re-
spect to individual channel tracking.
We define the vector of unified pairwise offsets as

...

with

...

From (6), the unified state dynamics follow as

. . . ...

(8)

with defined in (4), the process noise vector

...

...

with , covariance matrix
, and

...
. . . (9)

where . The -dimen-
sional vector observation is then

. . .

(10)

with defined in (7), , and

...

denoting the i.i.d. measurement noise with and
.

D. Model Properties

This section analyzes qualitative properties of the state vari-
able realization (SVR) specified in (8) and (10) as these proper-
ties are critical to the behavior and performance of state tracking
as well as the existence and uniqueness of steady-state predic-
tion covariances as analyzed in Section IV.
Two key properties in analyzing the behavior of the steady

state Kalman Filter are controllability and stabilizability. We
first define the notion of complete controllability below.
Definition 1: A discrete-time system is completely control-

lable if, given an arbitrary destination point in the state space,
there is an input sequence that will bring the system from any
initial state to this point in a finite number of steps [35].
The concept of stabilizability is closely related to controlla-

bility. Recall that an unstable mode of a linear time-invariant
discrete-time system is an eigenvector associated with an eigen-
value of the state transition matrix with magnitude greater
than or equal to one. Stabilizability is defined below.
Definition 2: A system is stabilizable if all its unstable modes

are controllable [36].
Since all modes of the SVR specified in (8) and (10) are un-

stable, such an SVR is stabilizable if and only if it is completely
controllable.
Denote and the Cholesky factorization

of as such that . A common test
for complete controllability [35] is to compute the rank of the
“controllability matrix” of the pair , i.e.,

(11)

where . The SVR specified in
(8) and (10) is completely controllable if and only if

.
It can be shown that the rank of is
. Intuitively, this is a consequence of the fact that, while the

number of states in the unified dynamic model grows according
to the product , the number of independent oscillators
grows according to the sum . In fact

state elements can be determined from
state elements, to up to unknown, but deterministic, bias

terms, representing differences of the channel phases .
This causes the process noise to span only a subspace of
the -dimensional state space. Hence,

where the second inequality is strict if
and . In other words, the SVR specified in (8) and (10)
is not stabilizable unless or . As discussed in
Section III, this lack of stabilizability results in additional con-
ditions that must be satisfied for a Kalman filter tracker to be
asymptotically stable.
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We now consider the observability of the SVR specified in
(8) and (10).
Definition 3: A system is completely observable if its initial

state can be fully and uniquely recovered from a finite number of
observations of its output (in the absence of noise) and knowl-
edge of its input [35].
A common test to check complete observability for linear

time-invariant systems is to compute the rank of the “observ-
ability matrix” of the pair , given as

...
(12)

where . The system is completely
observable if and only if . The following
lemma establishes that the SVR specified in (8) and (10) is com-
pletely observable, an important property that will be used in
several later results.
Lemma 1: Given , as specified in (8) and (10)

is completely observable.
Proof: Observe that and

with

Since , we can write

It is straightforward to see that the observability matrix in (12)
has row rank for any since the square matrix

is full rank when . Hence as specified in (8) and
(10) is completely observable.
A condition necessary for the Kalman Filter to converge to a

well-defined steady-state solution is that the SVR in (8) and (10)
is detectable. We conclude this section by defining detectability
below.
Definition 4: A system is detectable if all its unstable modes

are observable [36].
Since complete observability suffices for detectability, the

SVR specified in (8) and (10) is indeed detectable.

III. OPTIMAL CHANNEL ESTIMATION AND TRACKING

It is straightforward to see that the dynamic model and obser-
vations specified in (8) and (10) comprise a standard linear time-
invariant (LTI) Gauss-Markov model with zero-mean tempo-
rally i.i.d. Gaussian mutually independent process and measure-
ment noises with process noise covariance and measurement
noise covariance . Further assuming an independent Gaussian
initial state , it follows that a standard Kalman filter [36]
can be used to generate optimal (both minimum variance and
maximum likelihood) estimates and one-step predictions of the
unified pairwise offset state .

A. Asymptotic Stability of the Kalman Filter
Wedenote as theMMSE estimate of the state given

observations and as the
estimation error. As part of the Kalman filter recursion, the (one-
step) prediction covariance at time , defined as

is updated via the Riccati difference equation

(13)

given an initial prediction covariance .
Although the system specified in (8) and (10) is not stabi-

lizable, the following theorem (adapted from [37, Theorem
4.1]) establishes conditions sufficient for the Kalman filter to
be asymptotically stable.
Theorem 1: If , , , and are all bounded,

is completely observable, and

is nonsingular for some where is the initial prediction
covariance, then the Kalman filter is asymptotically stable.
The boundedness conditions are satisfied for the system spec-

ified in (8) and (10) under the usual assumptions that ,
, and the oscillator parameters are finite. Lemma 1 es-

tablishes complete observability. The final condition, is
non-singular for some , can be thought of as an interaction
between the initial prediction covariance and the control-
lability Gramian. The singularity of the summation in the ex-
pression for represents a lack of reachability of .
Suppose is singular for all and consider its nontrivial
null space. Then this null space represents a linear combination
of states that are perfectly known at , and are not affected
by the process noise. Thus the Kalman filter does not update
these modes. Should they be on or outside the unit circle, then
the resulting filter cannot be stable. Observe that it is sufficient
(but not necessary) to select to be any positive definite ma-
trix to satisfy the condition given in the theorem for the system
specified in (8) and (10).
The prediction covariance is particularly important for dis-

tributed coherent transmission systems since the achievable per-
formance of distributed beamforming and nullforming is a di-
rect function of the phase prediction variance [9], [26]. The
phase prediction variances correspond to the elements
of for odd values of .

B. Unified Tracking Example
As an example of typical tracking behavior, we demonstrate

a Kalman filter tracker for the unified model specified in (8)
and (10) for a system with transmitters and

receivers. The state update interval was set to
seconds and the carrier frequency was set to

. All oscillators were assumed to have the same
process noise parameters with
seconds and Hertz for all and
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Fig. 3. Phase and frequency prediction variances for a Kalman filter tracker of
the unified state-space model with , , and .

according to the Rakon RPFO45 oven-controlled oscillator
parameters as discussed in Section II-A. Themeasurement noise
variance was set to .
Fig. 3 plots the (1,1) and (2,2) elements of the prediction

covariance matrix , corresponding to the phase predic-
tion variance and frequency prediction variance, respectively,
versus the experimentally determined prediction variances
obtained via Monte-Carlo simulation of the Kalman filter over
500 independent realizations of the initial states, process noises,
and measurement noises. This example shows that the actual
prediction variances of the Kalman filter agree with the cor-
responding elements of the prediction covariance matrix
and that the prediction variances converge toward steady-state
values. These values were obtained by solving a discrete-time
algebraic Riccati equation. The following section formalizes
the existence of the steady-state prediction covariance in the
unified dynamic model and develops closed-form expressions
for the asymptotic prediction covariance as with

.

C. Example Tracking and Feedback Implementation Strategies
In the context of coherent distributed MIMO communication

systems, the purpose of channel tracking is to produce optimal
channel predictions and to facilitate computation of precoding
vectors for coherent distributed communication techniques,
e.g., distributed beamforming and/or distributed nullforming.
In the absence of channel reciprocity, some form of feedback
from the receive nodes to the transmit nodes is required to
facilitate coherent transmission. There are several ways in
which the tracking system and feedback can be implemented.
This section discusses two possible implementation strategies
and their tradeoffs.
One possible implementation strategy is for the tracking and

precoding vector calculations to be performed by a designated
master receive node and for this receive node to feed back one
or more precoding vectors to the transmit nodes. By exchanging
messages among the receive nodes, the master receive node
receives channel measurements from the other receive nodes,
forms a complete copy of the observation vector containing

all noisy channel phase measurements, generates channel
predictions, computes the desired precoding vectors, and pro-
vides these precoding vectors to the transmit nodes via the feed-
back channel.
A second possible implementation strategy is for the re-

ceivers to feed back their observations and for one or more
transmitters to perform the tracking. Since the observations
at the receivers are broadcast back to the transmitters, each
transmitter in the system will receive a complete copy of the ob-
servation vector containing all noisy channel phase
measurements. Each transmitter can then track the unified state

, generate channel predictions, and compute precoding vec-
tors individually without any additional information exchange
between the transmitters. Alternatively, to avoid redundant
computation, a master transmitter could be selected to perform
the tracking and distribute precoding vector coefficients to the
slave transmitters.
The first strategy has lower feedback requirements but re-

quires centralized processing by a designated master receive
node. The second strategy can be implementedwithout anymes-
saging among the receive nodes or among the transmit nodes but
has higher feedback requirements. While other implementation
strategies are also possible, the particular choice of implemen-
tation strategy depends on the constraints and desired tradeoffs
of the specific application. The analysis and numerical results in
this paper do not depended on the particular tracking and feed-
back implementation strategy.

D. A Remark on Phase Unwrapping
While we have assumed the observations in (10) to be un-

wrapped phase measurements, it is usually the case in prac-
tical systems that only wrapped phase measurements are avail-
able. Additional considerations are often necessary in this case
to avoid phase aliasing, incorrect phase unwrapping, and poor
tracking performance.
The problem of tracking phases and frequencies in systems

with wrapped phase measurements is well-known and results
in an integer ambiguity in the noisy phase observations [35].
Several solutions have been proposed to work around this
ambiguity, e.g., [38]–[41]. In practice, the effect of wrapped
phase measurements is negligible if the standard deviation of
the Kalman filter phase prediction error is small with respect
to . Since this is typically not be the case during startup, one
possible solution is to obtain accurate phase and frequency
estimates [34] prior to tracking and to initialize the Kalman
filter with predictions from these estimates. During steady-state
operation, this also sets an upper limit on the observation
interval since the steady-state phase prediction variance is
an increasing function of .

IV. STEADY-STATE PREDICTION COVARIANCE ANALYSIS

In this section, we analyze the steady-state behavior of a
Kalman filter tracker for the unified state . It is known
that completely observable is sufficient for (13) to con-
verge to a finite symmetric positive semidefinite steady-state
covariance as [35]. This steady-state covariance
is not necessarily unique, however, and may depend on the
initial covariance . If, in addition, the system is such
that is completely controllable, it is known that
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the steady-state prediction covariance is unique and positive
definite. As discussed in Section II-D, the system specified in
(8) and (10) does not satisfy this condition due to its lack of
stabilizability.
In this section, we analyze the steady-state prediction covari-

ance of the system specified in (8) and (10) assuming that the
initial prediction covariance is selected such that (13) con-
verges to a strong solution. From [42], a real symmetric posi-
tive semidefinite solution of the discrete-time algebraic Riccati
equation (DARE)

(14)

is said to be a strong solution if the corresponding filter state
transition matrix

(15)

has all of its eigenvalues inside or on the unit circle. Note that
a strong solution is not necessarily a stabilizing solution since
a stabilizing solution requires all of the eigenvalues of to be
strictly inside the unit circle. As shown in [42, Theorem 3.1],
detectability is sufficient to establish the existence and unique-
ness of a strong solution. The following theorem [42, Theorem
4.3] further establishes that observability along with an appro-
priately chosen initial prediction covariance is sufficient to
ensure that (13) converges to the unique strong solution of (14).
Theorem 2: Subject to observable and

or , then

where follows (13) with initial condition and where
is the unique positive semidefinite strong solution of (14).
From a practical standpoint, we are interested characterizing

the unique strong solution to (14) since any other solution to
(14) will result in a filter state transition matrix with poles out-
side of the unit circle. Hence, we will assume hereafter that the
initial prediction covariance is selected so that the conditions of
Theorem 2 are satisfied. One difficulty in calculating the strong
solution is that the strong solution is not positive definite since
the system specified in (8) and (10) has one or more uncontrol-
lable modes on the unit circle. This precludes direct calculation
with standard numerical solvers such as MATLAB's func-
tion. To overcome this difficulty, the following section describes
a procedure for computing the strong solution to (14) for the
system specified in (8) and (10) that has the additional benefit
of reducing the dimension of the associated discrete-time alge-
braic Riccati equation.

A. Computing the Unique Strong Solution
Since is not stabilizable, there exists such that

(16)

with

(17)

such that is completely controllable. Such a decompo-
sition is known as a Kalman decomposition [43, pp. 159–163]
and can also be used to separate observable and unobservable
states. For the system specified by (8) and (10), we have

. The following theorem establishes
that the unique strong solution to (14) can be found through
solving a reduced dimensional DARE for .
Theorem 3: The unique strong solution to (14) is

with defined in (16) and with positive semidefinite
defined as

(18)

with the unique positive defi-
nite solution to

(19)

A proof of this theorem is provided in Appendix A. While
this result was developed here in the context of the unified dy-
namic model as specified in (8) and (10), it is worth pointing
out this result is general in that it only requires com-
pletely observable and the eigenvalues of to be on or inside
the unit circle. One consequence of this result is that the re-
sulting discrete-time algebraic Riccati equation for is of di-
mension , which is considerably
smaller than the dimensions of when
and/or is large. Nevertheless, it can still be computationally
difficult to solve (14) for large and/or large since the di-
mensions of the similarity transform in (16) become large and
the dimensions of the resulting reduced-dimensional DARE in
(19) still grow without bound as and/or . In
the particular case when the oscillator parameters are identical
for all of the nodes in the system, the repetitive structure of the
system matrices allows for an even more efficient solution of
(14), as discussed in the following section.

B. Strong Solution With i.i.d. Process and Measurement Noise
In this section we assume that the transmit and receive

nodes have identical and independent process noise statistics
with . In this case, we have

and process noise covari-
ance can be written as

...
...

. . . . . .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. . .
...

...
. . .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

...
...

. . .

(20)
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with and and where the final
equality uses the -notation established in (1).
If the measurement noise covariance also satisfies

, it is straightforward to see that every matrix
in the system as specified in (8) and (10) can be

written in this -notation. The following Theorem establishes
that, when can be expressed in this form (subject
to observability), (14) can be efficiently solved by solving only
two smaller DAREs.
Theorem 4: Given is completely observable and

with and
with and
with and and
with and

then the unique strong solution to (14) is given as
with the unique strong solution of

and the unique strong solution of

(21)

with , , , and
.

A proof of Theorem 4 is provided in Appendix B. Observe
that the system specified in (8) and (10) satisfies the require-
ments of Theorem 4 with . The utility of this theorem
is that the DARE in (14) can be solved by
computing two smaller DAREs, each of which is of
lower dimension than the method described in Section IV-A.
While the dimension of these smaller DAREs also grows
without bound as , it turns out that we can further
simplify the solution of (14) by observing that the system
specified in (8) and (10) has the additional structure

with , , , and all defined
in Section II-C. Hence, Theorem 4 can be recursively applied in
the context of the oscillator tracking problem to say that

with

(22)
(23)

where , , , and are all 2 2 matrices. This result
implies that, irrespective of the number of transmit and receive
nodes, the prediction covariance in (14) can be
efficiently computed for the unified oscillator tracking problem
by solving four 2 2 DAREs.

We can show that one of these 2 2 DAREs is trivial to solve
in our unified oscillator tracking scenario. Recursively applying
Theorem 4, we can write

The unique solution to this DARE is , which implies
that . The remaining 2 2
constituent matrices , , and can be easily solved with
numeric DARE solvers and then recombined to determine ,

, and .

V. ASYMPTOTIC PREDICTION COVARIANCE ANALYSIS

In this section, under the assumption that all nodes in the
system have i.i.d. process and measurement noises, we develop
closed-form expressions for the 2 2 constituent matrices ,

, and defined in (22) and (23) in the asymptotic regime
where and . This analysis leads to simple
expressions for the elements in the steady-state prediction co-
variance matrix that, as shown in Section VI, can be good
approximations of the actual steady-state prediction covariance
even for modest values of and .
In the system defined in (8) and (10), we have ,
, and . We can define and ,

and substitute to rewrite (21) as

(24)
As , we have and . Hence, (24)
becomes

Since , , and are
all block diagonal matrices, it is straightforward to see that the
asymptotic value of is also block diagonal. In other words,

and . Hence, to determine for
large , it is only necessary to solve the 2 2 DARE

(25)

Now consider . Defining
, we have that since, as shown previ-

ously, for any and . Theorem 4 implies that
satisfies

which, in the limit as , is identical in form to (25).
Hence, in the asymptotic regime where and

, we have with satisfying the 2 2 DARE

(26)

In other words, it is only necessary to solve a single 2 2 DARE
to fully characterize the asymptotic prediction
covariance matrix .
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Summarizing these results, we have , ,
, and as with . Hence,

(27)
(28)

with satisfying (26) and the asymptotic prediction covariance
taking the same form as (20) with replaced

by .
To compute closed-form expressions for the elements of ,

we denote

and, from (5) under the assumption of identical process noise
statistics at each receive node, set

Some straightforward algebra on (26) yields

with . The remaining elements of follow as

Note that the asymptotic prediction covariance is not a function
of or the measurement noise variance . The asymp-
totic prediction covariance is only a function of the i.i.d. process
noise parameters and as well as the carrier frequency
and the update period . The parameter only affects the rate
at which the elements of the prediction covariance matrix ap-
proach their asymptotic values, as shown in Section VI.

VI. NUMERICAL RESULTS

This section presents numerical results confirming the
asymptotic analysis in Section V and also demonstrating the
advantages of unified tracking in a scenario with simultaneous
beamforming and nullforming. All of the results in this section
assume a measurement noise standard deviation of 10 degrees,
corresponding to . Since there are
only 12 unique elements in the prediction covariance matrix

irrespective of the number of transmit and receive nodes,
Table I lists the 12 relevant elements of , their meanings, and
their asymptotic values.
Fig. 4 plots elements of the prediction covariance matrix

versus the number of transmit nodes with and
. The simulation parameters are otherwise identical to

those in Section III ( ,
, , and

Hertz for all and ). These
results confirm the asymptotic analysis in Section V and show
that asymptotic results can be accurate predictions of many of

TABLE I
UNIQUE ELEMENTS OF THE PREDICTION COVARIANCE MATRIX WITH

AND .

Fig. 4. Relevant elements of the prediction covariance matrix versus the
number of transmit nodes with and .

the elements of the prediction covariance matrix even for small
values of and .
Fig. 5 repeats the results in Fig. 4 with . As predicted

in Section V, the asymptotic results are unaffected by . The
main difference in these results with respect to those in Fig. 4 are
that the elements of the prediction covariance matrix converge
more quickly to their asymptotic values since is larger for
each value of . Also note that the covariances ,

, and converge at the same rate as
, , and in this example. This is a conse-

quence of the fact that in this system.
In both Figs. 4 and 5, observe that the steady-state phase pre-

diction variance in all of the cases con-
sidered. This corresponds to a phase prediction standard devia-
tion of less than , implying that the probability of phase
aliasing (cycle slips) from wrapped phase measurements during
steady-state operation of the Kalman filter is small in these ex-
amples.
Fig. 6 plots the asymptotic phase standard deviation

(in degrees) versus oscillator parameters and for
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Fig. 5. Relevant elements of the covariance matrix versus the number of
transmit nodes with and .

Fig. 6. Asymptotic phase standard deviation (in degrees) versus oscil-
lator parameters and for and

.

and .
Specifically, this plot shows over a range of
typical oscillator parameters with “good XO” and “poor XO”
oscillator parameters fitted to a table of typical Allan variances
from [33]. These results show that a system using the Rakon
oven-controlled oscillators with and

will have an asymptotic
phase prediction standard deviation of less than 10 degrees,
which is more than adequate to achieve good coherent beam-
forming gains but may be insufficient to achieve deep nulls [9].
The “poor XO” has an asymptotic phase prediction standard
deviation so large that coherent distributed transmission is
impossible. To achieve coherent transmission with the “poor
XO”, the carrier frequency and/or the measurement interval

must be reduced.

Fig. 7. Beamforming (subfigure (a)) and nullforming (subfigures (b) and (c))
performance for a distributed MIMO system with transmitters and

receivers. Nulls are steered toward four receivers and a beam is steered
toward the fifth receiver.

To demonstrate the performance of unified tracking in a
communications setting, we consider a scenario where the dis-
tributed transmit array forms nulls toward “protected”
receivers and uses the remaining degrees of freedom to form a
beam and maximize the power at the remaining “intended” re-
ceiver. The phase predictions from the Kalman filter are used in
conjunction with the known channel amplitudes to calculate a
time-varying zero-forcing linear precoding vector as described
in [9]. All channels are assumed to have unit magnitude and the
transmit array is assumed to have a unit total power constraint.
Fig. 7 shows the distributed beamforming and nullforming

performance of a system with transmitters,
receivers, and a measurement interval . Results are
shown for “individual tracking” in which each pairwise channel
is tracked in a separate two-state Kalman filter versus “unified
tracking” as described in Section II-C. The results were aver-
aged over 2000 realizations of the random initial frequency off-
sets, clock process noises, and measurement noises. Measure-
ments occur at for .
Subfigure (a) of Fig. 7 shows the beamforming performance.

Due to the relatively poor frequency estimates of the Kalman
filters after the first measurement at , the beam is effec-
tively incoherent on . After the second mea-
surement at , the Kalman filter state estimates and
the resulting beam power improves and approaches the theoret-
ical maximum . As
increases in the beamforming interval , the

channel predictions become increasingly stale and the resulting
beamforming performance degrades slightly by the end of the
beamforming interval. In this example, the beamforming per-
formance approaches its steady-state behavior after only a few
measurement intervals and the performance of individual and
unified channel tracking is effectively identical.
Subfigures (b) and (c) of Fig. 7 show the nullforming per-

formance with subfigure (b) showing the transient behavior on
and subfigure (c) showing the steady-state behavior
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on . As with beamforming, the nulls are effectively
incoherent after one measurement on the interval .
The null powers improve with subsequent measurements and
the effect of stale channel predictions is more pronounced than
with beamforming. Subfigure (c) shows that unified tracking can
provide a potentially significant advantage in nullforming gain
with nulls 3–4 dB deeper than with individual channel tracking
in this example.

VII. CONCLUSION
This paper presented a formal analysis of the stability and

steady-state behavior of a Kalman filter tracker for the effective
channel states in an unsynchronized distributed MIMO system.
While the state-space system was shown to be nonstabilizable,
the Kalman filter tracker was shown to be asymptotically stable
subject to a properly chosen initial prediction covariance. A
unique “strong” solution to the steady-state prediction covari-
ance was also shown to exist and two methods were devel-
oped to efficiently solve for this unique strong solution. An
asymptotic analysis was also presented for large networks with
closed-form results for all of the elements in the asymptotic pre-
diction covariance matrix. Numeric results confirmed the anal-
ysis and demonstrated the effect of the oscillator parameters on
the ability of the system to achieve coherent transmission.

APPENDIX A
PROOF OF THEOREM 3

We first establish the existence and uniqueness of a posi-
tive definite satisfying (19) by showing that is com-
pletely controllable and is completely observable. The
former result follows directly from the construction of the con-
trollable staircase form. The latter result is shown below.
From Lemma 1, we know is completely observable.

Moreover, since complete observability is invariant to a simi-
larity transform, completely observable implies
is also completely observable. The Popov-Belevitch-Hautus
(PBH) test for observability [44] then implies that

(29)

To establish a contradiction, suppose is not completely
observable. The PBH test then implies that there exists a scalar
and a nonzero vector such that

It follows that

Thus

which contradicts (29). Hence, is completely observ-
able and, in light of the complete controllability of ,
there exists a unique positive definite satisfying (19). More-
over, this unique positive definite satisfying (19) is stabilizing
for [42].

Observe that positive definite implies as defined in (18)
is positive semidefinite. We now show that as defined in
(18) satisfies the DARE for . This can be seen by
writing

Thus, by construction, is a symmetric positive semidefinite
matrix that satisfies the DARE for . Consequently,

is a symmetric positive semidefinite matrix
that satisfies (14).
Finally, we will show that is a strong solu-

tion, and hence is the unique strong solution to (14). The eigen-
values of in (15) are invariant to similarity transformation,
hence we can write

where is inconsequential to the eigenvalues of . Since
is stabilizing for , the eigenvalues of

must all have magnitude in the
open unit disk. The matrix has eigenvalues all equal to one.
Hence and is the unique
strong solution to (14).

APPENDIX B
PROOF OF THEOREM 4

Consider the matrix . This matrix has an
eigenvalue at zero with algebraic multiplicity and an eigen-
value at corresponding to the eigenvector . Since
is real and symmetric, it is diagonalizable and there exists
such that

(30)

Now let and . For general and ,
both matrices, we can write
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where the second to last equality used (30).
When , the matrices and are square and

is a similarity transfor-
mation. Now defining,

we can apply this similarity transformation to rewrite (14) as

(31)

Since is completely observable, it is also detectable.
Moreover, since detectability is invariant to a similarity trans-
form, detectable implies is detectable. Hence
there exists a unique strong solution to (31) as shown in [42,
Theorem 3.1].
Due to the block diagonal nature all of thematrices in (31), the

transformed system can be viewed as uncoupled systems, each
with states. Observe that of these systems have identical
dynamics. Hence, there are only two distinct DAREs to
solve. The first DARE is given as

Denoting and using similar notation for the
other relevant matrices, the second DARE can be written as

Finally, note that both and must be strong since
is strong if and only if and are

both strong.
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