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Abstract— Some important textbooks on Kalman Filters
suggest that positive semidefinite solutions to the filtering Al-
gebraic Riccati Equation (ARE) cannot be stabilizing should
the underlying state variable realization be unstabilizable.
We show that this is false. Questions of uniqueness of positive
semidefinite solutions of the ARE are also unresolved in
the absence of stabilizability. Yet fundamental performance
issues in modern communications systems hinge on Kalman
Filter performance absent stabilizability. In this paper we
provide a positive semidefinite solution to the ARE for
detectable systems that are not stabilizabile and show that
it is unique if the only unreachable modes are on the unit
circle.

Index Terms— Riccati Equation, Kalman Filter, Stability,
Uniqueness.

I. INTRODUCTION

This paper concerns the steady state behavior of the
Kalman Filter for the system described by the discrete
time state variable realization

x[k + 1] = Fx[k] +Gw[k] (1)

y[k] = Hx[k] + v[k], (2)

where F ∈ Rn×n, G ∈ Rn×q , H ∈ Rp×n, and x[0] ∼
N(x̄0, P0) and the white Gaussian random processes
w[k] ∼ N(0, Q) and v[k] ∼ N(0, R) are mutually
uncorrelated.

Even though the Kalman Filter is itself time varying,
its asymptotic behavior is gauged by its steady state ver-
sion. Thus for example, the steady state one-step-ahead
error covariance matrix P that satisfies the Algebraic
Riccati Equation (ARE), [1]

P = F
(
P − PH>

(
HPH> +R

)−1
HP

)
F>

+GQG> (3)
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provides asymptotic performance bounds. Furthermore,
a central question relates to steady state filter stability.
Specifically with K the steady state Kalman Gain obey-
ing,

K = FPH>
(
HPH> +R

)−1

(4)

this is related to whether or not F−KH is Schur, i.e. has
all eigenvalues in the open unit disc. This question and
the existence and uniqueness of a positive semidefinite
solution to (3) have been extensively studied, [1]-[4],
sometimes through the dual Riccati equation featuring
in Linear Quadratic Regulator (LQR) theory, [5]. In the
sequel a positive semidefinite solution to (3) will be
called stabilizing if under (4) F −KH is Schur.

Most studies, see e.g. [1], assume that [F,H] is
detectable and [F,GQ1/2] is stabilizable. Under these
conditions it is known that the ARE has a uinque positive
semidefinite stabilizing solution. The detectability condi-
tion is cleary necessary. In fact without it the Kalman
Filter is not even meaningful as unstable modes are just
not observable from the measurements.

This paper revisits this generations old question, by
asking if the stabilizability condition is indeed necessary
for the steady state Kalman filter to be stable? For that
matter does its relaxation necessarily render the solu-
tion(s) of (3) meaningless? After all mere detectability
ensures the existence of an observer gain L such that
F − LH is Schur, thereby ensuring the existence of
a stable linear observer, [3]. And Kalman filter is the
linear minimum variance filter, even without the Gaussian
assumption, [1].

We note that [15] addreses the Kalman Filter, as
opposed to the steady state Kalman Filter, behavior when
the stabilizability assumption is violated. It shows that
lack of stabilizability may preclude the noise free Kalman
filter, from being exponentially stable. As described in
Section II, it proceeds to provide sufficient conditions
under which the Kalman filter, again in the noise free
case, is asymptotically stable.

There are some misconceptions regarding the behavior
of the steady state Kalman filter, absent stabilizabilty. The
following, line in an influential textbook, is illustrative:
“A more complicated argument can be used to conclude



that if P exists with F −KH asymptotically stable, one
must have complete stabilizability of [F,GQ1/2]." This
same textbook has many exercises that implicitly assume
this statement to be true. It is also noteworthy that,
MATLAB dismisses requests to solve the control ARE
arising in LQR theory, by providing an error message
in the absence of detectability. For the filtering ARE
of interest here, stabilizability has the same role as
detectability in the control ARE.

Beyond the intellectual curiosity of answering a ques-
tion that remains open after the five plus decades that
have elapsed since the Kalman filter was derived, this
question has implications that go beyond just grappling
with a pathology. Consider in particular, Distributed Mul-
tiple Input Multiput Output (DMIMO) communications.
Multiple Input Multiput Output (MIMO) communica-
tions, refering to receiver and transmitters with multiple
antennae, promise to revolutionize contemporary and
emerging communications systems, [6], [7].

The theory and practice of MIMO communication has
matured to the point where MIMO is now an integral
component of several recent WiFi and cellular standards,
such as 802.11n, 802.11ac, long-term evolution (LTE),
WiMAX, and International Mobile Telecommunications
(IMT)-Advanced. While the advantages of MIMO are
significant, the applicability of MIMO is often limited by
physical and economic constraints. For example, the form
factor of handheld devices typically limits the number
of antennas to only one or two. Even for infrastructure
nodes such as access points and base stations, multiple
antennas may be too bulky at large carrier wavelengths,
e.g., “white space” frequencies with carrier wavelengths
as large as 6 meters.

transmit
nodes

receive
nodesh

Fig. 1. Distributed MIMO system model with Nt transmit
nodes and Nr receive nodes. Each node possesses a single
antenna and an independent oscillator.

To overcome these limitations, information theorists
proposed more than three decades ago, the concept of

DMIMO, where transmitters and receivers cooperatively
form virtual antenna arrays, [8]. The basic concept is
depicted in Figure 1. The key practical impediment to
realizing this concept is the fact, that unlike a central-
ized array system, in a virtual array, as also depicted
in this figure, each node operates its own oscillator.
Coherent communications require that these oscillators,
whose frequency and phase undergo Brownian motion
drift, be tightly synchronized, [10]. More precisely, the
unwrapped phase of these oscillators can be modeled
as the output of a double integrator excited in each
dimension by white noise, [13], [14]. As a result these
oscillators quickly, in a matter of milliseconds, drift out
of synchrony, [9], [10]. In the long term, they can be
modelled as

ẋ(t) =

[
0 1
0 0

]
x(t) + w(t)

y(t) =
[
0 1

]
x(t) + v(t).

It turns out, that in time spans over which synchronization
is lost the second element of w(t) has too small a
variance to have a significant impact. Theoretical unde-
standing of fundamental performance bounds, thus calls
for its variance to be treated as being zero.

If one treats this second element to be zero, the
resulting discrete time system over sampling intervals of
T , is as in (1), (2) with

F =

[
1 T
0 1

]
, G =

[
T
0

]
, H =

[
1 0

]
. (5)

This is not a stabilizable system. The synchronization
problem has been addressed, successfully by us, [11], [9],
[10] by using a Kalman Filter to track the states of the
various oscillators. The resulting performance bounds,
and indeed how frequently one must resynchronize, di-
rectly relate to the questions we pose here.

Since the submission of this paper, we have recently
discovered an excellent paper by Chan et. al.,[12] that
removes the misconceptions manifest in the quoted state-
ment, and shows that positive semidefinite solutions of
the ARE do exist despite lack of stabilizability, and may
even be stabilizing. In light of the results of [12], we
focus here on the following things: (A) In the absence of
stabilizability Chan et. al. show that a positive semidef-
inite solution to the ARE exists, though the solution
may not be positive definite. They do not show how to
construct this solution. We provide a construction. This
is particularly important as MATLAB cannot provide a
solution. (B) Since our interest is primrily on settings of
[11] where the unstabilizable modes are on the unit circle,



we focus on that case and resolve an uniqueness issue
left open in [12]. We show that if all unreachable modes
are in the closed unit disc then the positive semidefinite
solution is unique. (C) We consider a special case with
a totally unstable F and zero process noise that yields a
very interesting solution to the ARE.

A first order analysis is in Section III. Section IV pro-
vides the construction of a postive semidefinite solution
of the ARE under detectability. Section V considers a
special case where the process noise is zero and F−1

is Schur. It is shown that at least one positive definite
solution generates an F −KH that is similar to F−>,
directly generalizing the scalar example in an appealing
way. Section VI proves that the solution in Section IV is
unique when the unstabilizable modes are on or inside the
unit circle. Section II provides prelminaries and Section
VII the conclusion.

II. PRELIMINARIES

This Section provides some preliminary results includ-
ing recounting the main results of [15] and [12]. First
observe that the one step ahead optimal state estimate x̂
provided by Kalman Filter equations are: With x̂[0] = x̄0
and P [0] = P0,

x̂[k+1] = (F−K[k]H)x̂[k]+K[k](y[k]−Hx̂[k]) (6)

K[k] = FP [k]H>
(
HP [k]H> +R

)−1

(7)

P [k + 1] = FP [k]F> +GQG> − FP [k]H>

(HP [k]H> +R)−1HP [k]F>. (8)

By the stability of the Kalman Filter we refer to the
stability of

z[k + 1] = (F −K[k]H)z[k]. (9)

The following is a standing assumption of this paper:
Assumption 1: The pair [F,H] is completely de-

tectable and R = R> > 0..
In addition to Assumption 1, if the pair [F,GQ1/2] is

completely stabilizable, then (9) is exponentially asymp-
totically stable (eas), [15]. Lack of stabilizability in gen-
eral precludes (9) from being eas. However, [15] provides
milder conditions for asymptotic stability through the
following theorem.

Theorem 1: Consider (1), (2) under (7), (8) and As-
sumption 1. Define:

W [k] = F kP0F
>k +

k∑
i=1

F k−iGQG>F>(k−i). (10)

Then (9) is asymptotically stable if there exists a k ≥ 0
such that W [k] is nonsingular.

Thus a positive definite P0 for instance, suffices for the
asymptotic stability of (9). The positive definite nature of
the summation in (10) is equivalent to [F,GQ1/2] being
completely reachable.

Finally we recount the main pertinent result of [12],
which refers to a so called strong solution of the ARE:
Specifically a positive semidefinte P = P> that satisfies
(3) is called a strong solution of the ARE if under
(4) F − KH has all eigenvalues in the closed unit
disc. Observe that a strong solution is not necessarily
a stabilizing solution. Then [12] proves the following
assuming that [F,H] is detectable.
(i) The strong solution exists and is unique.

(ii) If [F,GQ1/2] has no unreachable modes on the unit
circle then the strong solution is also a stabilizing
solution.

(iii) If [F,GQ1/2] has unreachable modes on the unit
circle then there is no stabilizing solution.

(iv) If [F,GQ1/2] has unreachable modes on or inside
the unit circle then there is the strong solution is
positive semidefinite.

(iv) If [F,GQ1/2] has unreachable modes outside the
unit circle then there are at least two positive
semidefinite solutions to the ARE.

III. SCALAR SYSTEMS

In this section we conduct a complete analysis of the
scalar case in the absence of stabilizability and illustrate
the results of [12]. In this case all system and covariance
matrices are scalar, and GQ1/2 = 0 and H 6= 0. Then
the ARE becomes:

(1− F 2)P = − F
2P 2H2

R+ PH2
. (11)

If |F | ≤ 1 then the only positive semidefinite solution
to (11) is P = 0 and the resulting Kalman gain is zero,
and F −KH = F is a pole of the filter.

What are the implications of this? First if |F | < 1, then
F −KH = F is automatically Schur and filter stability
follows. The fact that P = 0 also accords with intuition.
In the absence of process noise w[k], one expects the
error covariance to converge to zero because of the law
of large numbers.

The more intriguing case is when F = 1. In this
case F − KH = F implies the steady state Kalman
Filter is not stable. However, Theorem 1 indicates that
the Kalman filter is still asymptoically stable though not
eas. But how to interpret the fact that P = 0? Recall that
the Kalman filter is linear minimum variance optimal. If



F = 1 then there is an L such that |F −LH| < 1. Thus
the linear filter,

x̂[k + 1] = (F − LH)x̂[k] + L(y[k]−Hx̂[k]) (12)

is expontially stable. Consequently zero process noise
will lead to a steady state error covariance that is zero.
The Kalman filter must match this steady state perfor-
mance. Thus, even though the steady state Kalman filter
is not stable, the solution of the ARE still correctly
predicts the asymptotic performance.

Now suppose |F | > 1. While P = 0 remains a
solution, there is potentially one more. In particular when
P 6= 0, (11) reduces to:

(1− F 2)(R+ PH2) = −F 2H2P

⇔ R+ PH2 − F 2R = 0

⇔ P =
(F 2 − 1)R

H2
> 0. (13)

Using (4) with P 6= 0, we find that the corresponding
Kalman Gain K satisfies:

K =
FPH

R+ PH2

=
F 2 − 1

FH
(14)

F −KH = F − F 2 − 1

F

=
1

F
(15)

which is stable iff |F | > 1.
This directly shows that stabilizability is not necessary

for the steady state filter to be stable. It is instructive
that P = 0 also solves (11). This is unsurprising as if
the Kalman Filter is initialized with P0 = 0 then the
lack of process noise ensures that the steady state error
covariance must be zero.

IV. A CONSTRUCTION

Recall that Matlab cannot solve the ARE without sta-
bilizability. In this section we provide an algorithm that
provides a positive semidefinite solution. First we provide
a few facts. Consider two equivalent SVRs specifically,

A = TFT−1, B = TGQ1/2, C = HT−1. (16)

It is readily verified, and indeed well known, that if P
solves the ARE (3) then Π that solves the following ARE

Π = A

(
Π−ΠC>

(
CΠC> +R

)−1

CΠ

)
A>

+ BB>, (17)

obeys
Π = TPT>. (18)

Further, F −KH is Schur iff A− K̄C is Schur, where

K̄ = AΠC>
(
CΠC> +R

)−1

(19)

is the steady state Kalman gain of the transformed SVR.
Next suppose, [F,GQ1/2] is not completely stabliz-

able. Then, [3], there exists a T such that in (16)

A =

[
A1 A2

0 A3

]
, B =

[
B1

0

]
, C =

[
C1 C2

]
, (20)

where the matrices appearing in the partitioning, here
and in the sequel, are compatibly dimensioned, the pair
[A1, C1] is completely detectable and [A1, B] is com-
pletely reachable. Lack of stabilizability means that A3

has eigenvalues in the complement of the open unit disc.
As [A1, C1] is completely detectable and [A1, B1]

completely reachable there is a unique Π1 = Π>1 > 0
such that,

Π1 = A1

(
Π1 −Π1C

>
1

(
C1Π1C

>
1 +R

)−1

CΠ1

)
A>1 +B1B

>
1 . (21)

Then because of (20),

Π = diag {Π1, 0}, (22)

solves (17) as

Adiag
{

Π1 −Π1C
>
1

(
C1Π1C

>
1 +R

)−1

C1Π1, 0

}
A>

(23)
equals[
A1

(
Π1 −Π1C

>
1

(
C1Π1C

>
1 +R

)−1
C1Π1

)
A>1 0

0 0

]
Thus Π in (22) solves (17). As Π1 is positive semidefinite
so is Π. And P obtained from (18) solves (3).

V. A SPECIAL CASE

We now consider a special case that is a direct general-
ization of the scalar example in the sense that it involves
zero process noise i.e. Q = 0 and all eigenvalues of F
have magnitude greater than 1.

Theorem 2: Consider (1) and (2), with F−1 Schur,
Q = 0 and Assumption 1 in force. Then with Ψ =
Ψ> > 0 the unique symmetric solution of

F>ΨF −Ψ = H>R−1H, (24)

P = Ψ−1 (25)



solves (3). For this P , K in (4) obeys F −KH ∼ F−>.
Proof: As all eigenvalues of F have magnitude greater
than one, [F,H] is completely observable. As R > 0 so
is [F,HR−1/2]. Thus, [1], (24) has a unique positive
definite symmetric solution. Now under (25) and the
matrix inversion lemma, [16], there holds:

F>ΨF −Ψ = H>R−1H

⇔ F>P−1F − P−1 = H>R−1H

⇔ F>P−1F = P−1 +H>R−1H

⇔
(
F>P−1F

)−1

=
(
P−1 +H>R−1H

)−1

⇔ F−1PF−> = P − PH>
(
HPH> +R

)−1

HP

⇔ P = F

(
P − PH>

(
HPH> +R

)−1

HP

)
F>.

This is indeed (3) with Q = 0.
Now observe under (25) and (4)

F −KH = F − FPH>
(
HPH> +R

)−1

H

= F

(
I − PH>

(
HPH> +R

)−1

H)

)
= F

(
I + PH>R−1H

)−1

= F
(
I + P

(
F>P−1F − P−1

))−1

= PF−>P−1.

This is clearly a direct and aesthetically appealing
generalization of the scalar case when |F | > 1. In
particular F−KH has the same eigenvalues as F−> and
hence F−1. Consequently F −KH is Schur. Observe as
in the scalar case when Q = 0, P = 0 also solves (3).
Indeed as the process noise is zero, should one initialize
(8) with P [0] = 0 then one is assuming that one knows
the state trajectory, and P = 0 is the logical solution.

VI. SOME UNIQUENESS ISSUES

Recall that [12] shows that should [F,GQ1/2] have
an unreachable modes outside unit circle then the ARE
has at least two positive semidefinite solutions. It also
states that the strong solution is unique. What it does not
answer is what happens if the only unreachable modes
are in the closed unit disc? Specifically, can the ARE
have multiple positive semidefinite solutions? Recall this
is particularly important in the setting of [11] where all
the unreachable modes are on the unit circle. Would in
such a case the solution offered in Section IV be the only
solution? In this section we answer this question in the
affirmative.

With Ḡ = GQ1/2, define the controllability matrix:

C(F, Ḡ) = [Ḡ, F Ḡ, · · · , Fn−1Ḡ], (26)

and call N (C>(F, Ḡ)), the null space of C>(F, Ḡ).
Make the following assumption that holds true of all
discrete time systems obtained by sampling a continuous
time system.

Assumption 2: The matrix F ∈ Rn×n is nonsingular.
In the sequel we will first characterize the null space of
positive semidefinite solutions of (3). Recall that if an
eigenvalue of F is unreachable then eigenvectors and/or
generalized eigenvectors associated with it must lie in
N (C>(F, Ḡ)). We will first show that all eigenvectors
and/or generalized eigenvectors associated with unreach-
able eigenvalues of F> in the open unit disc are in the
null space of P .

Lemma 1: Consider a positive semidefinite P = P>

that satisfies (3). Suppose the sequence,

lim
k→∞

z>F k = 0.

and for all k ∈ Z+, F>kz ∈ N (C>(F, Ḡ)). Then Pz =
0.
Proof:

From (3) and the Lemma hypothesis there holds:

z>F kPF>kz ≤ z>F k+1PF>(k+1)z

+ z>F kḠḠ>F>kz

= z>F k+1PF>(k+1)z.

In particular, this implies that for all k ∈ Z+,

z>Pz ≤ z>F kPF>kz.

The result follows from the fact that the right hand side
goes to zero as k tends to ∞.

The next lemma shows that under Assumption 1 eigen-
vectors associated with unreachable modes of F> on the
unit circle are also in the null space of P .

Lemma 2: Suppose, R > 0, z ∈ N (C>(F, Ḡ)), for
some |λ| = 1, F>z = λz and [F,H] is completely
detectable. Then Pz = 0.
Proof: From (3), and the hypothesis of the lemma:

z>PH
(
HPH> +R

)−1

HPz = 0⇔ HPz = 0.

Further Pz = FPF>z = λFPz. Then,[
F − λ∗I

H

]
λPz =

[
λFPz − Pz

0

]
= 0.

Thus, unless Pz = 0, [F,H] is not detectable.
The next lemma whose proof is omitted due to space

restrictions shows that under Assumption 1 generalized



eigenvectors associated with unreachable modes on the
unit circle are also in the null space of P .

Recall that a matrix Φ has a chain of generalized
eigenvectors zi, i ∈ {0, 1, . . . , g}, corresponding to the
eigenvalue λ, if Φz0 = λz0, and for all i ∈ {1, · · · , g},
Φzi = λzi + zi−1.

Lemma 3: Suppose, R > 0, zi ∈ N (C>(F, Ḡ)), i ∈
{0, 1, . . . , g} are a chain of generalized eigenvectors of
F> corresponding to the eigenvalue λ. Suppose |λ| = 1,
[F,H] is completely detectable, and P = P> ≥ 0 solves
(3). Then for all i ∈ {0, 1, . . . , g}

Pzi = 0. (27)
Lemmas 1- 3 help prove (proof omitted) the following.
Lemma 4: Suppose all unreachable poles of the SVR
{F, Ḡ,H} are in the closed unit disc, and P = P> ≥ 0
solves (3). Then there holds:

N (C>(F, Ḡ)) ⊂ N (P ). (28)
This result shows that the dimension of the null space

of P is no smaller than the number of unreachable
modes in the closed unit disc. If these are the only
unreachable modes, then as the nonnegative definite Π1

solving (21) is unique and positive definite, the only
positive semidefinite solution of (17) under (20) and (16)
is the Π in (22). Thus in view of (18) we have the
following uniqueness result.

Theorem 3: Suppose assumptions 1 and 2 hold, [F, Ḡ]
is not completely reachable but all modes outside the
unit circle are reachable. Then the positive semidefinite
solution of (3) is unique.

VII. CONCLUSION

We have considered the solution of the filtering ARE
in the absence of a stabilizability condition assumed in
most references and have provided a constructive positive
semidefinite solution in the absence of stabilizability. We
have shown that this solution is unique if the unreachable
modes are in the closed unit disc. Though our results
are derived in discrete time, we believe they extend to
continuous time with the unit circle obviously replaced
by the imaginary axis.
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