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Abstract—This paper considers the problem of tracking carrier
phase offsets in distributed multi-input multi-output (DMIMO)
systems. Unlike conventional MIMO systems, each antenna in
a DMIMO system is driven by an independent oscillator. To
achieve coherent communication, e.g., distributed beamforming
and/or nullforming, the time-varying offsets of these oscillators
must be accurately tracked and compensated. While Kalman
filtering has been used to optimally track phase and frequency
offsets, it is well-known that the Kalman filter requires exact
knowledge of the process and measurement noise parameters.
This paper presents a general method for computing oscillator
process and measurement noise parameters from an Allan vari-
ance characterization of the carrier phase offset measurements.
Numerical results are presented using measured data from sev-
eral N210 Universal Software Radio Peripherals (USRPs) at
two different carrier frequencies. Using the estimated process
and measurement noise parameters, the tracking performance
is also evaluated on measured data from the USRPs and com-
pared to theoretical predictions. Distributed beamforming and
nullforming performance is also characterized using empirical
phase prediction error statistics from the measured data.
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1. INTRODUCTION
The last two decades have witnessed a fundamental shift in
wireless communication systems away from single-antenna
transceivers and toward Multi-Input Multi-Output (MIMO)
communication. MIMO techniques have resulted in sev-
eral important breakthroughs for wireless devices including
increased range, increased spectral efficiency, reduced in-
terference, and improved security. The theory and prac-
tice of MIMO communication has matured to the point
where MIMO is now in several recent WiFi and cellular
standards including 802.11n, 802.11ac, long-term evolution
(LTE), WiMAX, and International Mobile Telecommunica-
tions (IMT)-Advanced. The applicability of MIMO tech-
niques is often limited, however, by physical and economic
constraints. For example, the form factor of handheld de-
vices typically limits the number of antennas to only one
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or two. Consequently, the significant advantages of MIMO
communication are simply not available to antenna- and/or
cost-constrained devices.

While it is true that single-antenna devices are precluded from
using MIMO communication techniques, it is also the case
that these devices typically do not exist in isolation. Rather,
single-antenna devices are often members of a network with
many other single-antenna devices. If multiple devices in
the network can coordinate their communication and pool
their antenna resources, they can form a virtual antenna
array and emulate a MIMO transceiver. This technique is
called “distributed”-MIMO (DMIMO) or virtual-MIMO in
the literature [1].

One well-studied example of DMIMO is distributed beam-
forming [2–6]. The goal in a distributed beamforming system
is to control the phases and frequencies of the carriers at
each transmit node so that the passband signals combine
constructively at an intended receiver. Similarly, distributed
nullforming systems use the degrees of freedom available
from many transmit antennas to combine destructively in
order to protect a receiver from interference [7–9]. Even
in systems with time-invariant channels, the independent
oscillators at each node in the distributed transmission system
cause the effective channels between each transmitter and
receiver to become time-varying.

It has been shown that tracking methods, e.g., Kalman fil-
tering, can be quite effective at estimating and predicting the
time-varying phase and frequency offsets in each independent
transmit/receive oscillator pair and, consequently, in enabling
distributed beamforming with devices using low-cost oscilla-
tors [10,11]. It is well-known, however, that the Kalman filter
requires exact knowledge of the process and measurement
noise parameters. In the context of tracking carrier phase
offsets, the Kalman filter must have exact knowledge of the
short-term and long-term stability parameters of the oscilla-
tors in the system as well exact knowledge of the statistics
of the phase measurement error. While other methods for
identifying the Kalman filter parameters for general systems
have been proposed in literature [12], the method proposed
here is specific to oscillator characterization.

In this paper, we present a general method for computing
oscillator process and measurement noise parameters from
an Allan variance characterization of the carrier phase off-
set measurements. We provide specific results for oscilla-
tors used in the N210 Universal Software Radio Peripheral
(USRP) manufactured by Ettus research, as these devices are
often used in experimental studies of DMIMO systems [13].
We also provide numerical results showing precise tracking
of clock phase and frequency offsets between two USRP
devices with a Kalman filter. In a system with periodic
channel phase measurements, our results with a 15 MHz
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carrier frequency show that the RMS phase prediction error
is less than 25 degrees at a observation period of 2 seconds.
At a 900 MHz carrier frequency, the RMS phase prediction
error is less than 25 degrees at a observation period of 50 ms.
In both cases, the actual tracking performance is close to
the performance predicted by the Kalman filter error covari-
ance matrices. In addition, we provide beamforming and
nullforming performance results using the empirical phase
prediction error statistics from the measured data using the
method described in [14]. We demonstrate a scenario with
beamforming power towards an intended receiver within 1 dB
of ideal while nulls of -5 dB to -30 dB are also steered towards
protected receivers.

The remaining of this paper is organized as follows. In
Section 2 we introduce the system model for oscillator dy-
namics and describe the Allan variance used for parameter
estimation. In Section 3, our experimental setup and data
analysis methodology are explained. Section 4 provides the
results of our experiments and analysis. We conclude the
paper with Section 5.

2. SYSTEM MODEL
Oscillator Dynamics

The transmit and receive nodes in the system are assumed
to have independent local oscillators. These local oscillators
have inherent frequency offsets and behave stochastically,
causing phase offset variations in the effective channel from
the transmit node to the receive node even when the prop-
agation channels are otherwise time invariant. This section
describes a discrete-time dynamic model to characterize the
dynamics of the carrier phase and frequency variations be-
tween a transmitter and receiver in the DMIMO system.

Based on the two-state models in [15, 16], we define the
discrete-time state of the transmit node’s carrier as xt[k] =
[φt[k], ωt[k]]

> where φt[k] and ωt[k] correspond to the car-
rier phase and frequency offsets in radians and radians per
second, respectively, at the transmit node with respect to an
ideal carrier phase reference. The state update of the transmit
node’s carrier is then

xt[k + 1] = F (T )xt[k] + ut[k] (1)

with

F (T ) =

[
1 T
0 1

]
(2)

where T is an arbitrary sampling period selected to be small
enough to avoid phase aliasing at the largest expected fre-
quency offsets.
The process noise vector ut[k]

i.i.d.∼ N (0,Q(T )) causes
the carrier derived from the local oscillator at the transmit
node to deviate from an ideal linear phase trajectory. The
covariance of the discrete-time process noise is derived from
a continuous-time model in [15]:

Q(T ) = ω2
cT

[
q1 + q2

T 2

3 q2
T
2

q2
T
2 q2

]
(3)

where ωc is the nominal common carrier frequency in radians
per second and q1 (units of seconds) and q2 (units of Hertz)
are the process noise parameters corresponding to white fre-
quency noise and random walk frequency noise, respectively.

The receive node in the system also has an independent local
oscillator used to generate the carrier for down-mixing and
is governed by the same dynamics as (1) with state xr[k],
process noise ur[k]

i.i.d.∼ N (0,Q(T )), and process noise
parameters q1 and q2 as in (3).

Since the receive node can only measure the relative phase
and frequency of the transmit node after propagation, we
define the pairwise offset after propagation as

δ[k] =

[
φ[k]
ω[k]

]
= xt[k] +

[
ψ
0

]
− xr[k].

Note that δ[k] is governed by the state update

δ[k + 1] = f(T )δ[k] + ut[k]− ur[k]. (4)

where f(T ) is given in (2).

We assume observations are received with an observation
period T0 = MT where M is a positive integer. We further
assume that the observations are so short as to only provide
useful phase estimates. The observations can be expressed as

y[k] =H[k]δ[k] + v[k] (5)

where

H[k] =

{
[1, 0] k = 0,M, 2M, . . .
[0, 0] otherwise (6)

and v[k]
i.i.d.∼ N (0, r) is the measurement noise which is

assumed to be independent of the process noise. The problem
then is to accurately estimate the parameters {q1, q2, r} to
facilitate tracking of the pairwise phase and frequency offsets
in each channel. The following section introduces the concept
of Allan variance, a method for characterizing oscillator
stability that can be used to estimate the relevant parameters.

Allan Variance

The Allan variance characterizes the short-term and long-
term behavior of the frequency offset of an oscillator [17].
The Allan variance is defined using the expectation formula:

σ2
y(τ) =

1

2
< (φ̇avg(t+ τ)− φ̇avg(t))2 > (7)

where

φ̇avg =
1

τ

∫ t

t−τ
φ̇(t′) dt′ =

1

τ
[φ(t)− φ(t− τ)] (8)

with φ̇(t) as the instantaneous frequency offset and φ(t) as
the phase offset. This represents a measure of the frequency
stability of an oscillator over a given averaging interval τ . In
[18], it is shown that the Allan variance as a function of the
averaging time τ follows σ2

y(τ) =
q1
τ + q2τ

3 , where q1 and q2
are the respective short term and long term frequency stability
parameters used in (3).

In addition to these two parameters, the measurement noise
variance r is also required for the two-state model. This can
also be estimated from the Allan variance, as it has an effect
on the short term measurements. Fig. 1 shows an example of
the impact of measurement noise on the Allan deviation plot.
The measurement noise acts as white phase noise rather than
white frequency noise and its effect scales proportionally to
τ−2 in the Allan variance measurement [19].
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Figure 1. The effect of white phase noise on Allan variance.

Hence, to jointly estimate the process and measurement noise
parameters (q1, q2, r), we can perform a least-squares fit the
empirically-estimated Allan variance to the equation

σ2
y(τ) =

3r

τ2
+
q1
τ

+
q2τ

3
. (9)

As can be seen in Fig. 1, the measurement noise can have
a significant impact on the Allan variance measurements, to
the point where the short term stability parameter q1 is com-
pletely obscured by the measurement noise. Nevertheless, a
least squares fit can still provide an upper bound on the q1
parameter.

3. METHODOLOGY
The results in this paper are based on experimental data
gathered with the USRP N210 software defined radio plat-
form. These devices are designed for RF communications
and are commonly used in research and academic settings
as well as for rapid development in industrial and defense
applications [20]. The platform contains an FPGA used to
stream data between the device and a host computer and it has
the ability to operate from DC to 6 GHz via interchangeable
daughterboards. The intended use is for the host computer
to handle the baseband processing and to configure the RF
parameters, while the upconversion/downconversion and the
filters required to bring the signals to RF frequencies are
performed by the device.

Data Acquisition

The USRPs used in the experiments had the FPGA configured
to upconvert/downconvert I/Q data and to interface with the
host computer. The interchangeable daughterboards that
are used to reach different carrier frequency bands have a
frequency range of 1MHz−250MHz. Fig. 2 shows the main
components of the experimental setup. All the experiments
in this paper were performed with the USRPs connected by
a coaxial cable to eliminate any effects such as multipath
and time-varying channel dynamics and to focus only on the
carrier phase and frequency dynamics of the USRPs.

Rather than using a separate sampler to record the signals
generated by the USRP hardware, our system uses two US-
RPs with separate but otherwise identical oscillators. By
using identical oscillators, the combined effect of the two

independent but otherwise identical oscillators is statistically
twice the effect of just one oscillator, i.e., the effective
process noise covariance is twice that of a single oscillator.
This allows us to statistically characterize the process noise
parameters of an individual USRP oscillator.

Figure 2. Experimental setup for data acquisition.

The ethernet port allows for gigabit ethernet data transfer
between the USRP and the host computer. This connection
allows for real time data gathering and analysis even at high
sampling rates. The USRP internal clock is a single 10MHz
oscillator that is converted to the desired carrier frequencies
using PLLs.

The transmit power of the USRP was measured to be approx-
imately −2 dBm and an attenuator of 36 dB was placed on
the wired communication link to achieve−38 dBm of receive
power. The main steps of the experiment are shown below,
together with the description of the waveforms at each of the
steps.

1. Generate a complex tone at a baseband frequency f so that
the baseband signal is

st[k] = Ate
j2πfk (10)

where At is the transmitter gain.
2. The transmit USRP modulates the tone with the specified
carrier frequency and transmits it over the wire. The trans-
mitted signal is given as

w[k] = At cos((2π(f + fc)k + φt[k])) (11)

where φt[k] represents the time-varying phase offset intro-
duced by the transmitter.
3. The receive USRP demodulates the received tone, samples
it and sends it to the host computer. The resulting baseband
signal is given as

sr[k] = AtgAre
j(2π((f+fc)−fc)k+φt[k]−φr[k]+ψ)

= Aej(2πfk+φ[k]) (12)

where g is the channel gain, Ar is the receiver gain, and
φ[k] = φt[k] − φr[k] + ψ represents the total transmitter-
receiver phase offset, including the channel propagation
phase ψ. In practice, this measurement will be corrupted by
noise which is modeled as the observation in (5). Thus, our
observation will be y[k] = φ[k] + v[k].
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4. The received complex data is stored on the host computer
in double precision floating point format for further analysis.

We performed experiments at two nominal carrier frequen-
cies: 15 MHz and 900 MHz. In both cases, the baseband
tone frequency was set to f = 2000 Hz and the base-
band sampling frequency at the receiver was set to fs =
100× 106/512 MHz = 195, 312.5 Hz. In the 15 MHz
experiments, the Basic TX and Basic RX USRP daughter
boards were used and in the 900 MHz experiments, the SBX
USRP daughter boards were used [21].

The baseband sampling frequency at the receiver was selected
to avoid aliasing. Based on earlier experiments, the largest
recorded frequency offset on the USRP N210s we observed
was approximately 45 kHz at a 900 MHz carrier frequency,
and less than 1 kHz for a carrier frequency of 15 MHz. The
USRP hardware uses a 12-bit ADC with a nominal sampling
frequency of 100 MHz that can be later decimated by any
value between 4 and 512 leading to the minimum sampling
frequency of 100 MHz/512 = 195, 312.5 Hz. This sampling
frequency was used for all of our experiments.

All data processing is done on the host computer connected to
the N210 USRPs via gigabit ethernet cables. Transmitter and
receiver objects are instantiated in MATLAB on two separate
USRPs. The transmit radio is configured to transmit the
2000Hz complex tone and the receive radio is configured to
demodulate the data and save it as a complex variable. The
duration of each experiment was approximately ten minutes.

Data Analysis

By taking the unwrapped phase from the complex baseband
signal in (12) and removing the linear frequency trend, we
obtain the zero mean phase offset progression. This is the
φ[k] term that we use in our Allan variance characterization
of the oscillators, and subsequent evaluation of the tracking
performance.

Kalman Filter Tracking

Based on the 2-state model described in Section 2, we can
implement a Kalman filter to track and predict the phase
offset given periodic observations. Note that the Kalman filter
specified below is updated at the sampling period T while
observations are received with period T0 = MT . The one-
step state prediction δ̂[k + 1|k] is given as

δ̂[k + 1|k] = F (T )δ̂[k|k] (13)

with state estimate

δ̂[k|k] = δ̂[k|k−1]+K[k](y[k]−H[k]δ̂[k|k−M ]). (14)

The Kalman gain is given as

K[k] = Σ[k|k − 1]H>[k](H[k]Σ[k|k − 1]H>[k] + r)−1.

The quantity Σ[k|k−1] denotes the one-step prediction error
covariance matrix (ECM) which is used in the computation
of the estimation error covariance matrix as

Σ[k|k] = Σ[k|k − 1]−K[k]H[k]Σ[k|k − 1] (15)

with the Kalman filter recursion

Σ[k + 1|k] = F (T )Σ[k|k]F (T )> +Q(T ) (16)

Note that the process noise covariance Q(T ) accounts for
the effect of the process noise at both the transmitter and at
the receiver. Given measurements at sample instants k =
0,M, 2M, . . . , we denote the Kalman filter’s MMSE phase
prediction at sample instant ` > k as φ̂[` | k].

Finally, to evaluate the performance of our tracking mecha-
nism, we compare the error between the actual phase mea-
surements y[`] and the predictions φ̂[` | k] with the ECM
result Σ[k + `|k]. The squared phase measurement errors
are averaged over multiple runs of the Kalman filter to obtain
an empirical estimate of the steady-state behavior.

4. NUMERICAL RESULTS
This section presents the numerical results outlining the pro-
cess of obtaining accurate Kalman Filter parameters and the
performance evaluation of our implementation. All the anal-
ysis is performed on real data obtained from the USRP N210
platform and prediction errors are computed with respect
to the measurements. The empirically-estimated prediction
variances are also compared to the variances provided by the
Kalman filter’s error covariance matrices.

Fig. 3 shows examples of unwrapped phase offset realizations
for multiple experiments. This data was detrended and
decimated by a factor of 125. As expected, these results
show the significant phase variations caused by the stochastic
behavior of the independent oscillators in the system.
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Figure 3. Experimental unwrapped phase offsets between
two USRP N210 nodes at 15 MHz.

The phase offset data is then used in the calculation of Allan
deviation and subsequent parameter estimation. Fig. ?? illus-
trates the individual effect of measurement noise and short
and long term stability parameters on the Allan deviation
result. It can be seen that the measurement noise has a
large impact on the short term measurements, making the q1
parameter difficult to estimate.

Table 1 shows the range of parameters that were determined
over five separate experiments. The q1 and q2 parameters in
the table are divided by 2 in order to account for the effect
of both the transmitter and receiver clocks. This is due to the
combining of the noise process of the two nodes, as shown
in (4).
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Parameter units min value max value
r rad2 1.6× 10−8 3.3× 10−8

q1 sec 1.4× 10−22 3.02× 10−21

q2 Hz 2.62× 10−18 6.31× 10−18

Table 1. Parameter ranges estimated over five separate
experiments.

15 MHz Phase Tracking and Prediction Experiments

Figure 5 shows the RMS phase prediction error of a Kalman
filter tracker compared to the RMS prediction error from the
Kalman filter’s error covariance matrix. This result shows
that at a observation period of T0 = 2 seconds, the maximum
RMS phase prediction error is less than 25 degrees after
the Kalman filter achieves steady-state. In addition, the
plot shows that the phase prediction error is consistent with
the performance predictions from the Kalman filter error
covariance matrix.

By varying the observation period T0, it is possible to get
an idea of the expected phase offset error and to choose the
value that meets the phase offset requirements of a given
system. The Kalman filter phase prediction performance is
plotted with respect to the observation period T0 in Fig. ??.
These results show that the RMS phase prediction error with
measured data is quite close to the error covariance matrix
predictions.

To better understand the meaning of these results in the
context of distributed transmission systems, we show the per-
formance of a hypothetical distributed transmission system
with Nt = 10 transmitters and Nr = 1 receiver. In [14],
theoretical beamforming and nullforming power gains are
derived and shown to only depend on the phase variance.

Fig. 7 shows the expected beamforming power of the system
given the phase error of the empirically estimated phase
offset predictions. The figure shows a loss of less than
1 dB in beamforming power when T0 = 2 seconds. In
Fig. 8, it is shown that the nullforming power has a steeper
drop as expected from the theoretical steady-state results. In
practice, observation periods on the order of of milliseconds
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Figure 5. Kalman filter RMS phase error at 15 MHz with
observation period T0 = 2 seconds.
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Figure 6. RMS phase error: experimental data and ECM
predictions versus observation period T0 at 15 MHz.

are feasible, leading to very good performance at a carrier
frequency of 15 MHz, but also leading to increased feedback
overhead.

900 MHz Phase Tracking and Prediction Experiments

In this section, we provide experimental tracking results for
phase tracking between two USRP N210s at a 900 MHz
carrier frequency. The increase in carrier frequency from
15 MHz to 900 MHz leads to a much larger process noise
covariance matrix and, consequently, requires a smaller ob-
servation period T0 to provide satisfactory performance. The
Kalman filter phase tracking and prediction performance
assuming an observation period of T0 = 50 ms is shown in
Fig. 9 below. The corresponding beamforming and nullform-
ing expected power is shown in Figs. 10 and 11.
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Figure 7. Expected beamforming power at 15 MHz with
observation period T0 = 2 seconds..
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Figure 8. Expected nullforming power at 15 MHz with
observation period T0 = 2 seconds..

5. CONCLUSIONS
In this paper we showed a method for extracting measurement
and process noise parameters to facilitate oscillator tracking
in a Kalman filtering framework. We tested our method on
experimental data obtained from phase offset measurements
between two USRP N210 devices. By closely matching
the Kalman Filter parameters to the experimental data, we
show that we can achieve very good tracking performance.
Our results show that parameter estimation is not straight-
forward since the Allan deviation results are influenced by
measurement noise. Nevertheless, the results show that the
phase error of the Kalman filter output translates into very
good beamforming and nullforming performance, even for
practical observation periods. Moreover, the experimental
results agree closely with the Kalman filter error covariance
matrices.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

time (sec)

p
h
a
s
e
 e

rr
o
r 

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

d
e
g
re

e
s
)

 

 

experimental data

ECM prediction

Figure 9. Kalman filter RMS phase error at 900 MHz with
observation period T0 = 50 ms.
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Figure 10. Expected beamforming power at 900MHz with
observation period T0 = 50 ms.
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