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Abstract 

Speech enhancement in an automobile is a challenging problem because interference can 

come from engine noise, fans, music, wind, road noise, reverberation, echo, and 

passengers engaging in other conversations.  Hands-free microphones make the situation 

worse because the strength of the desired speech signal reduces with increased distance 

between the microphone and talker.  Automobile safety is improved when the driver can 

use a hands-free interface to phones and other devices instead of taking his eyes off the 

road.  The demand for high quality hands-free communication in the automobile requires 

the introduction of more powerful algorithms. 

  

This thesis shows that a unique combination of five algorithms can achieve superior 

speech enhancement for a hands-free system when compared to beamforming or spectral 

subtraction alone.  Several different designs were analyzed and tested before converging 

on the configuration that achieved the best results.  Beamforming, voice activity 

detection, spectral subtraction, perceptual nonlinear weighting, and talker isolation via 

pitch tracking all work together in a complementary iterative manner to create a speech 

enhancement system capable of significantly enhancing real world speech signals.   
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The following conclusions are supported by the simulation results using data recorded in 

a car and are in strong agreement with theory.  Adaptive beamforming, like the 

Generalized Side-lobe Canceller (GSC), can be effectively used if the filters only adapt 

during silent data frames because too much of the desired speech is cancelled otherwise.  

Spectral subtraction removes stationary noise while perceptual weighting prevents the 

introduction of offensive audible noise artifacts.  Talker isolation via pitch tracking can 

perform better when used after beamforming and spectral subtraction because of the 

higher accuracy obtained after initial noise removal.  Iterating the algorithm once 

increases the accuracy of the Voice Activity Detection (VAD), which improves the 

overall performance of the algorithm.  Placing the microphone(s) on the ceiling above the 

head and slightly forward of the desired talker appears to be the best location in an 

automobile based on the experiments performed in this thesis.  Objective speech quality 

measures show that the algorithm removes a majority of the stationary noise in a hands-

free environment of an automobile with relatively minimal speech distortion. 
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Chapter 1  

Introduction 

This thesis proposes a unique combination of algorithms aimed at suppressing noise in a 

hands-free phone of an automobile.  The demand for hands-free phones in the noisy 

automobile environment requires more powerful noise suppression algorithms than those 

used currently in cell phones and conference phones.  The availability of inexpensive 

processing power makes eventual implementation of more sophisticated noise 

suppression possible in an automobile.  The following sections in the introduction 

describe the hands-free phone challenges in the automobile, selected historical research 

on speech enhancement, and motivation for the algorithm proposed in this thesis.   

 

1.1 Hands-free in the car 

The use of hands-free phones in the automobile is motivated by consumer demand, 

safety, and legal mandate as underscored by the following quote.   

 
“Beginning December 1, 2001 New York’s six million cell phone users may no 
longer make quick calls home, check stock quotes, or reschedule tee times using a 
handheld cell phone while driving.  New York isn’t alone in this prohibition; 38 
other states have pending laws limiting handheld cell phone use in automobiles.  
Plus, England, Italy, Israel, Japan, and 20 other countries have already outlawed 
arm anchored cellular communication. 
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USA Today has estimated that cell phone use will grow from 105 billion minutes 
in 1998 to 554 billion minutes in 2004.  The Cellular Telecommunications and 
Internet Association estimate of U.S. wireless subscribers will undoubtedly grow 
greater than its present 117 million as more cars come with wireless equipment.  
An amazing 70 percent of all cell phone calls in North America originate from 
automobiles.”[1] 

 

The current hand-held phones pose a hazard in the car and the change to hands-free 

phones in automobiles is already well underway, but customers will demand the same 

clarity they currently enjoy with hand-held phones.  One solution is for people to wear 

headsets while talking in the car.  Problems with headsets include their inconvenience 

and the likelihood that people will put them on and take them off while driving.  

Microphones mounted in the automobile are easier to use and introduce less distraction 

than headsets.  A challenge presented with microphones installed in the car is that they 

are further away from the talker’s mouth, which decreases the desired signal strength 

relative to the surrounding noise.  There are many noise sources in the automobile that 

only exacerbate the problem including passing cars, rain, windshield wipers, engine 

noise, fans, music, horns, wind, road noise, reverberation, echo, and other talkers; these 

can all make it difficult to hear the desired speech.  Things are further complicated by the 

auto manufacturers’ desire to keep their costs down, thus limiting the amount of 

microphones and locations where they can be installed.  The speech acquired by the 

microphones mounted in an automobile requires post processing to improve quality and 

intelligibility to the level expected by consumers who are accustomed to using hand-held 

cellular phones. 
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1.2 Speech enhancement research 

There has been an abundance of research in the area of speech enhancement over the past 

40+ years, which has been applied to noise suppression, echo cancellation, talker 

isolation, and enhancement for perception or recognition.  Some of the successful 

methods used to meet the above challenges fit roughly into the categories listed below. 

 
• Adaptive filtering 

Wiener filtering and adaptive filtering assumes a desired response is available and 
minimizes the difference in a mean-square sense between the output of the filter and 
the desired output. [2] Wiener filtering is optimal for stationary signals and white 
noise.  Adaptive filters are necessary for the non-stationary signals and are commonly 
used for adaptive noise cancellation (ANC) [3] and echo cancellation (EC).   
 

• Spectral subtraction  
Spectral Subtraction [4] uses an estimate of the noise and short-time spectral analysis 
to subtract the spectral components of the noise from the received signal, thus 
improving the signal-to-noise-ratio (SNR).   
 

• Beamforming 
Beamforming [5] uses multiple microphones to keep a constant gain in a given 
direction while suppressing sounds from other directions.  Beamformers can also 
steer deep nulls to block interfering signals at known locations. [6]  
 

• Blind signal separation 
Blind signal separation (BSS) uses statistical measures with very little a priori 
information to separate a signal into its various components.  This is useful to remove 
other talkers, noise, or interference in order to better hear the desired speech.  BSS is 
also practical for implementation because of the relatively few assumptions required. 
 

• De-correlation 
De-correlation attempts to estimate the system’s transfer functions in order to 
separate the signals into separate channels or components. [7] 
 

• De-convolution 
De-convolution attempts to separate signals from their convolution mixture and 
accounts for multi-path effects from reverberation.  De-convolution requires a very 
good approximation of the channel effects, which ideally are accurately measured 
using known signals. [8] 
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• Parametric modeling 
Parametric modeling of the speech production system is a powerful way to 
characterize and enhance the speech signal.  “This technique (Linear Predictive 
Analysis) has been the basis for so many practical and theoretical results that it is 
difficult to conceive of modern speech technology without it.” [9] 
 

• Perceptual masking.   
Human auditory perception causes some noise to be masked by the desired speech.  
Noise suppression algorithms can use this information to only attenuate the audible 
noise. [10] 

 

There is still much room for improvement in speech enhancement despite the successful 

progress made using the algorithms mentioned above.  The following quotes call for 

continued research, especially in the automotive environment. 

 
“The problem of enhancing speech degraded by noise remains largely open, even 
though many significant techniques have been introduced over the past 
decades.”[11]   
 
“The majority of speech enhancement algorithms actually reduce intelligibility 
and those that do not generally degrade the quality.  This balance between quality 
and intelligibility suggests that considerable work remains to be done in speech 
enhancement.”[12]   
 
“The primary barrier to the proliferation and user acceptance of voice based 
command and communications technologies in vehicles has been noise.  The 
consequences of noise are poor voice signal quality in far field microphones and 
low speech recognition accuracy for in-vehicle speech command applications.  
The current commercial remedies, such as noise cancellation filters and noise 
canceling microphones have been inadequate to deal with the multitude of real 
world situations, at best providing limited improvement, and at times making 
matters worse.”[13] 

 

This thesis focuses on combinations of algorithms as a step towards improving speech 

enhancement beyond the current limitations.  Listed below is some of the research that 

has, in a similar fashion, investigated robust solutions by employing a combination of 

algorithms, which supports the thinking behind the proposed approach in this thesis.   
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• Using Wiener Filtering, Spectral Subtraction, and Beamforming simultaneously in 

a real car environment has produced noise reduction of almost 8 dB and 

significant increases in speech recognition rates.[14]  

• An adaptive microphone array and spectral subtraction has been used to produce 

20 dB of echo cancellation and 15 dB of noise suppression; this also had the 

advantage of self-calibration.[15]   

• The dual excitation speech model and spectral subtraction combination is another 

effective combination because of the distinction made between voiced and 

unvoiced portions of the signal.[16]   

• Yet another good mix is decomposition of the signal into eigen-spaces in the 

context of the Bark domain to take advantage of the masking properties of the 

human auditory system.[17]  

 

The key to successfully combining algorithms is to leverage the strengths of each 

approach in a way that still allows them to work together toward the end goal of 

enhancing the speech.  For instance, beamforming provides a gain based on direction, 

spectral subtraction is a good complementary process because it handles the difficult low 

frequency ranges where beamforming fails, and perceptual weighting can be used to 

mask artifacts introduced by spectral subtraction.  The following section outlines the 

proposed combination of algorithms in this thesis. 
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1.3 A multi-dimensional approach 

The real-world application of hands-free phones in automobiles occurs in a very noisy 

environment where the current one-dimensional algorithms do not offer improvement to 

the received speech signal.  Spatial, spectral, and nonlinear perceptual (SSPN) properties 

can theoretically be used in a complementary fashion to suppress noise more effectively 

than using any one dimension alone.  This thesis analyzes the interaction of 

beamforming, spectral subtraction, nonlinear perceptual weighting, talker isolation via 

pitch tracking, and voice activity detection.  Careful consideration must be made when 

designing the combination of these algorithms in order to achieve maximum noise 

suppression and minimal speech distortion. 

 
• Beamforming takes advantage of a known source location to coherently combine 

the desired speech from multiple microphones while canceling noise from other 

directions. 

• Noise estimation and spectral subtraction work together to remove stationary 

noise in the frequency domain. 

• Nonlinear weighting of critical frequency bands according to the human auditory 

perceptual masking characteristics minimizes the negative effects from spectral 

subtraction. 

• Talker isolation can be accomplished using pitch and amplitude tracking, which 

helps suppress unwanted speech and other periodic noise sources.  Talker 

isolation avoids falsely classifying data frames as voiced when interfering talkers 

are speaking while the desired talker is silent. 
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•  Voice activity detection is critical to characterize the noise and avoid distorting 

or attenuating the desired speech. 

 
The algorithms and considerations above were analyzed by running MATLAB 

simulations using data measured with a uniform linear array of 4 microphones clipped on 

the driver’s side visor of a 2001 Honda Odyssey mini-van.  From these recordings taken 

in the automobile, road noise, engine noise, interfering talkers, and fan noise were 

combined with female speech at SNRs of 0, 5, and 10 dB and then processed by the 

SSPN algorithm.  The objective speech quality measures used to analyze the results of 

the SSPN algorithm were Signal-to-Noise Ratio (SNR), Segmental Signal-to-Noise Ratio 

(SSNR), Articulation Index (AI), and Itakura-Saito distance (IS).[18]  

 

The MATLAB simulation results, as measured by the objective speech quality 

measures, prove that the SSPN algorithm attains better noise suppression and speech 

quality performance than either spectral subtraction or beamforming alone.  Several 

variations of the SSPN algorithm were attempted before converging on the current 

design, which produced the best noise suppression while maintaining high speech quality.   

 

The simulation results from several of these variations in the algorithm design suggest 

that the algorithm is very sensitive to how well the Voice Activity Detector (VAD) 

performs.  The accuracy of the VAD was crucial to the Generalized Side-lobe Canceller 

and noise estimation for spectral subtraction, so they would not attenuate the desired 

speech.  Spectral subtraction depends on the VAD to update its noise estimate.  The VAD 
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accuracy and overall algorithm performance was improved by limited iteration with 

spectral subtraction, even without the talker separation in the loop. 

 

The quality of the speech before processing the signal was improved when the location of 

the microphone relative to the desired talker and relative to the noise sources was taken 

into account because of its effect on desired signal strength versus the strength of the 

unwanted noise. 

 

Details of the algorithm, underlying theory, results, and conclusions are presented in the 

remainder of the thesis and are organized as follows.  Chapter 2 provides introductory 

background material for the read unfamiliar with speech modeling and auditory masking.  

Chapter 3 describes the proposed algorithm design, data flow, and control flow and 

Chapter 4 gives the details on the theory and algorithms used in noise suppression that 

serve as the foundation of the work presented here.  Chapter 5 reports on simulation 

results using real-world data and compares the new algorithm with beamforming and 

spectral subtraction.  Chapter 6 presents conclusions and suggestions for future research.  

Appendix A describes the psychoacoustics involved in determining human auditory 

perceptual masking and appendix B provides details on experiments related to 

microphone location and desired signal strength. 
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Chapter 2  

Background material 

This chapter contains background information for the reader unfamiliar with far field 

microphones, modeling speech, auditory masking and speech enhancement in general.  A 

basic understanding of signal processing concepts is assumed. 

 

2.1 Source to microphone distance 

Microphones that are part of a hand-held or headset communication system are typically 

on the order of 4 centimeters (cm) from the talker’s mouth.  Hands-free microphones are 

anywhere from 20 cm to several meters from the talker’s mouth, which degrades the 

quality of the received speech compared to handset microphones.  This thesis is focuses 

on the application of a hands-free phone in a car using microphones approximately 24 cm 

from the desired talker’s mouth. 

 

How the microphone receives the signal will be different based on whether it is 

considered in the near-field or far-field situation.  Near-field signal arrive at the 

microphone with spherical spreading while far field signals can be assumed to arrive as a 

planar wave-front, which is shown in Figure 2.1. 
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Source

Near field Far field

����������������
����������������
����������������

Microphone

 

Figure 2.1: Near field and far field wave propagation 

 

The near/far field transition is based upon signal wavelength, shape of the source, 

aperture of the receiving microphone elements, and source to microphone distance.  A 

source is said to be in the near field if equation (2.1) is true, [19] 

λ

22Lr <       (2.1) 

where r is the radial distance from the microphone, L is the aperture of the microphone 

array, and wavelength λ  is defined as the speed of sound, c=342 m/s, over frequency, f. 

f
c

=λ        (2.2) 

If the length of the receiving microphone array is equal to a wavelength then the near-

field assumption is valid for radial distances less than 2 wavelengths and the far-field 

assumption can be made for distances greater than 2 wavelengths.  Figure 2.2 shows the 
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relationship of frequency to log10 of the wavelength to give perspective of the near/far 

field requirements.  A signal with a frequency of 340 Hz will have a wavelength of 

roughly 1 meter, which requires a distance of 2 meters to assume a far-field. A 1kHz 

signal will have wavelength of 0.34 meters, which requires a distance of 0.64 meters to 

assume a far-field. 

 

Figure 2.2: Log10 of wavelength vs. frequency 

 

Inserting equation (2.2) into (2.1) yields the near field requirement of 

c
fLr

22
<       (2.3) 

or 

22L
rcf >       (2.4) 

 



 12 

 

 

 

Sound Pressure Level (SPL), shown in equation (2.5), is measured on a logarithmic scale 

of decibels because the human ear is sensitive to a wide range of pressure variations.  The 

threshold of audibility at 1 kHz is about 25
0 /102 meterNxp −=  (0 dB SPL) and the upper 

limit, called the threshold of pain, is approximately 20 N/meter2 (120 dB SPL), which 

represents a range of 106.  

( )dBppSPL 0/log20=      (2.5) 

SPL varies proportional to the inverse square of its distance from the microphone, 2/1 r , 

for the far field case, assuming an omni-directional source in a free field (no reflections).  

This decrease in signal strength of the source is 6 dB SPL in the far field decrease for 

each doubling of distance as shown in Table 2.1.  SPL measurements vary widely in the 

near field based on the microphone position and signal wavelength. Thus the inverse 

square law does not hold when a near field condition exists. 

 

Distance to  
talker in (cm) 

Equivalent SPL in a 
far field (dB) 

4 40 
8 34 
16 28 
32 22 

Table 2.1: SPL vs. distance from omni-directional source in a free field 

 
 
 
 



 13 

Noise sources, on the other hand, become stronger relative to the desired talker when 

using hands-free microphones instead of using hand-held or headset microphones.  Noise 

suppression algorithms must work much harder at attenuating the noise as the distance of 

the talker from the microphone increases because of the weaker desired signal and 

stronger influence of the noise sources.  Hands-free microphones impose adverse 

conditions for quality speech reception and are the main motivation for the advanced 

noise suppression algorithm proposed in this thesis.  Strong noise sources also present the 

challenge of masking the desired speech. 

 

2.2 Auditory masking 

Auditory masking occurs when the listener cannot hear a particular source because it is 

hidden by a louder interfering sound source.  Conversely, the desired source can be loud 

enough to hide (mask) the interference from the listener.  The SSPN algorithm presented 

in this thesis takes advantage of the situations where the desired source masks the noise, 

so it does not need to suppress the noise thus reducing the risk of distorting the desired 

speech. 

 

The sounds perceived by humans are affected by the direction, timing, amplitude, and 

frequency of the signals arriving at the ear.  Loudness of sound is usually expressed as 

Sound Pressure Level (SPL) in decibels (dB) where a whisper is about 30 dB, normal 

conversation is about 60 dB, and a subway train is about 90 dB.  Loudness varies 

depending on frequency as demonstrated by Figure 2.3 where the dashed line represents 
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the average threshold of audibility, which is the level a sound can be heard with no other 

interfering noise present.  The normal frequency range of human hearing is from 20 to 

20,000 Hz. 

 

Figure 2.3: Equal loudness curves (dashed line represents threshold of hearing) [107] 

 

To determine this threshold of audibility, an experiment must be performed.  A typical 

masking experiment might proceed as follows.  A short, about 400 ms, pulse of a 1,000 

Hz sine wave acts as the target, or the sound the listener is trying to hear.  Another sound, 

the masker, is a band of noise centered on the frequency of the target (the masker could 

also be another pure tone).  The intensity of the masker is increased until the target 

cannot be heard and this point is then recorded as the masked threshold.[20]  Another way 

of proceeding is to slowly widen the bandwidth of the noise without adding energy to the 

original band.  The increased bandwidth gradually causes more masking until a certain 
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point is reached, at which no more masking occurs, and this bandwidth is called the 

critical band.[21]  The masker can keep extending until it is full-bandwidth white noise 

and it will have no more effect than at the critical band.  Critical bands grow larger as 

they ascend the frequency spectrum and there are many more bands in the lower 

frequency range, because they are smaller.[22]  About 30 critical bands cover the 10 

octaves of human frequency perception, this yields 30 disjoint bands.[23] [24] 

 

The two most popular perceptually based nonlinear frequency scales are the Mel scale 

and the Bark scale.  The Mel scale is generally used with Cepstral coefficients (Mel-

Cepstrum) on a logarithmic scale and commonly found in speech recognition 

applications.  It is based on experiments done by Stevens and Volkman in the 1940s, 

which is a mapping from linear frequency to the nonlinear Mels frequency scale.  The 

Bark scale is based on critical band analysis, which maps linear frequency to the critical 

bands of the human auditory system as show in Table 2.2.  Details of the frequency bands 

used in the human auditory system are described in appendix A.  
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Bark of lower 
frequency 

Lower / Upper 
frequency in Hz 

Bark of 
Center 

Center frequency 
In Hz 

Bandwidth in 
Hz 

0 0 0.5 50 100 
1 100 1.5 150 100 
2 200 2.5 250 100 
3 300 3.5 350 100 
4 400 4.5 450 110 
5 510 5.5 570 120 
6 630 6.5 700 140 
7 770 7.5 840 150 
8 920 8.5 1000 160 
9 1080 9.5 1170 190 

10 1270 10.5 1370 210 
11 1480 11.5 1600 240 
12 1720 12.5 1850 280 
13 2000 13.5 2150 320 
14 2320 14.5 2500 380 
15 2700 15.5 2900 450 
16 3150 16.5 3400 550 
17 3700 17.5 4000 700 
18 4400 18.5 4800 900 
19 5300 19.5 5800 1100 
20 6400 20.5 7000 1300 
21 7700 21.5 8500 1800 
22 9500 22.5 10500 2500 
23 12000 23.5 13500 3500 
24 15500    

Table 2.2:Critical Bands of the Human Auditory System [24] 

 

Modeling the speech signal is one approach taken to extract the speech and attenuate the 

noise to overcome noise masking. 

 

2.3 Modeling speech 

Modeling the speech production system enables the speech enhancement algorithm to 

take advantage of certain source signal characteristics.  It is important to know when the 

talker is speaking (voice activity detection) and knowledge of the source signal can 

simplify this task.  Knowledge of speech production is also needed when developing 

algorithms that identify a particular talker from interfering talkers, called talker isolation.  
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This thesis uses algorithms that depend on modeling the human speech production system 

such as Voice Activity Detection (VAD) and pitch detection. 

 

 Speech is produced by a cooperation of lungs, glottis, vocal cords, mouth, and nose 

cavity and Figure 2.4 shows a cross section of the human speech organ.  For the 

production of voiced sounds, the lungs press air through the epiglottis, the vocal cords 

vibrate (open and close), which interrupt the air stream and produce a quasi-periodic 

pressure wave.  The rate at which the vocal cords vibrate determines the pitch of your 

voice where women and young children tend to have high pitch (fast vibration) while 

adult males tend to have low pitch (slow vibration).  The shape of the vocal tract changes 

relatively slowly (on the scale of 10 msec to 100 msec) and vowel sounds such as 

a/e/i/o/u represent voiced speech. 

 

The pitch impulses stimulate the air in the mouth and for certain sounds (nasals) also the 

nasal cavity and when these cavities resonate, they radiate a sound wave, which is the 

speech signal.  Both cavities act as resonators with characteristic resonance frequencies, 

called formant frequencies and since the mouth cavity can be greatly changed, it is able to 

pronounce very many different sounds.  In the case of unvoiced sounds, the excitation of 

the vocal tract is more noise-like and for certain fricatives and plosive (or unvoiced) 

sound, the vocal cords do not vibrate but remain constantly opened.  Examples of 

unvoiced sounds are /f/, /th/, /h/, /p/, /t/, or /k/. 
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Figure 2.4: Human Speech Production 

 
The speech production system can be represented with an all-pole filter and the Linear 

Prediction algorithm identifies the parameters associated with the all-pole system.  

Voiced sounds are generated with periodic pulses and unvoiced sounds are generated by 

white noise.  Figure 2.5 shows the high-level system. 

 

Figure 2.5: Human Speech Production Model 
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Chapter 3  

Using spatial, spectral, and perceptual 

information   

The application and design of the SSPN algorithm was done in the context of a hands-

free phone application in an automobile where the goal of the signal processing was to 

attenuate the noise sources while preserving the clarity and intelligibility of the speech 

source.  Section 3.1 presents the general problem of speech enhancement and noise 

suppression, Section 3.2 describes the signals and environment used to exercise the 

proposed algorithm and Section 3.3 describes the algorithm design, control flow, and data 

flow. 

 

3.1 Multiple sources and sensors  

Many sources of noise interference are possible in a mobile environment.  These 

interferences are combined with a single desired speech source assuming only one person 

is involved in the conversation.  A high-level approach to obtain a noise-free speech 

signal is to separate the desired speech from the additive noise with the knowledge that 

the speech and noise are independent.  Multiple sensors can help achieve signal 
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separation by introducing a spatial dimension to the parameters used to identify the 

speech versus the noise sources.  The signal-processing framework of this multiple 

source, multiple sensor, and associated acoustic coupling is described in Figure 3.1, 

where the multiple input multiple out system (MIMO) has I+1 inputs and J outputs. 
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Figure 3.1: Multiple source and sensor framework 
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In Figure 3.1, the desired speech is denoted by )(ns , the ith noise source is represented by 

)(nz i , and the signal at the jth microphone is represented by )(nm j  and equation (3.1), 

where n  is the sample index. 
jsmH and 

jimzH are the source to sensor acoustic coupling 

functions for the speech and the ith noise source to each jth microphone respectively. 

( ) ( )∑
=

∗+∗=
I

i
mzismj jij

HnzHnsnm
1

)(     (3.1) 

The goal of the speech enhancement algorithm is to suppress the sum of the noise 

contributions in equation (3.1) observed by the J microphones while minimizing any 

distortion to )(ns . 

 

3.2 Automobile environment and system setup 

An automobile’s acoustic environment was used to exercise the algorithm proposed in 

this thesis.  The system consisted of four microphones, spaced 5cm apart, and placed 

directly in front of and slightly above the driver attached to the visor in the car.  Some of 

the specific signal sources in the automobile environment are the driver’s speech, engine 

noise, road noise, wind noise, passing cars, fan noise, and interfering talkers, which are 

all shown in Figure 3.2.  The signal received at the four microphones in Figure 3.2 can be 

described by equation (3.1) where 4..1=j  and 8=I .  The goal of the proposed 

algorithm is to remove the noise from the signal received by the four microphones while 

minimizing the distortion to the desired speech where the noise is considered to be 

independent and uncorrelated with the desired speech signal.   
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Figure 3.2: Source signals 

 
The speech, )(ns , is assumed to be short-term stationary, which allows for the use of 

short-term spectral analysis to enhance the signal.  The four microphones in the car 

provide the advantage of using signal direction as a means of discriminating between the 

desired signal and interference.  Larger numbers of microphones were not used because 

the increased cost to the overall system is less attractive for selling a noise suppression 

hands-free solution to the automotive market.  The SNR gain over a single microphone 

scales linearly with the number of microphones, but there is a point at which adding more 

microphones will have diminishing returns.  Typical configurations that have been 

implemented in other hands-free research in the automobile are 1, 2, 4, 6, and 8 

microphones. 
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The location of the microphones in the system used in this thesis was chosen based on 

prior research and the fundamental principal that microphones should be as close to the 

desired signal as possible and far away from the interference.[25] The placement of 

microphones relative to the desired signal and interference is one of the most critical 

aspects of the speech acquisition and enhancement system because the source signal 

strength reduces approximately as the inverse square of the distance from the 

microphone.  Positioning the microphones on the ceiling above the driver was chosen 

because it is closer to the talker’s head and further away from the engine and road noise 

and has been shown to yield the best results for both SNR and speech recognition 

rates.[26] Recordings were made of the signal strength at pairs of microphone locations 

and the results are reported in appendix B, which confirms that the best choice for 

microphone location is on the ceiling above the driver’s head. 

 

The acoustical environment described above requires the use of multiple signal and 

auditory properties to effectively enhance the speech, which is the strength of this work.  

The enhanced hands-free speech can then be used for improved speech recognition or a 

higher quality phone conversation.  The following section (3.3) describes the proposed 

algorithm, detailed signal and auditory properties used by the algorithm, and why specific 

design choices were made. 
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3.3 Spatial, spectral, and perceptual nonlinear processing 

The spatial, spectral, perceptual nonlinear (SSPN) processing algorithm uses a unique 

combination of several techniques with iteration and feedback to maximize speech 

quality.  SSPN noise suppression is potentially better than what the individual techniques 

can achieve alone because the specific order of the signal processing and feedback used.  

The SSPN algorithm depends on several other functional components, which Chapter 4 

describes in detail.  The specific algorithms used for this thesis were chosen based on 

their generally good performance, widespread use, and simplicity of implementation.  

This chapter puts the component algorithms in context of the larger design and explains 

the reasoning behind their being chosen with a section dedicated to each major 

component as indicated in the list below. 

 
3.3.3  GSC beamforming 

3.3.4  VAD and noise estimation 

3.3.5  Spectral subtraction 

3.3.6  Perceptual nonlinear frequency weighting 

3.3.7  Talker isolation and pitch tracking 

 
The resulting system could be further improved if optimal techniques for each component 

were investigated as part of the main algorithm, but such optimizations will not be 

explored here in order to limit the scope of this already broad-based investigation. 

 

The high level design of the algorithm was based on getting the most benefit from each 

component and increased accuracy of the VAD because the VAD plays a central role in 
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minimizing the distortion of the desired speech.  Section 3.3.1 describes the high level 

design of the SSPN algorithm, while the rest of sections in Chapter 3 discuss the role for 

each component and design decisions for the algorithm. 

 

3.3.1 SSPN algorithm 

The SSPN algorithm takes advantage of spatial, temporal, spectral, and auditory 

perceptual properties in order to suppress the interfering noise while minimizing 

distortion to the desired speech.  Spatial diversity is used to attenuate signals not 

originating from the desired talker.  Temporal properties of speech production and signal 

energy is used to determine when there is no speech present, so the noise estimate can be 

updated thereby enabling spectral estimates of the noise to be subtracted out from the 

spectrum of received signal.  Analysis of human auditory perceptual masking properties 

within critical frequency bands provides a perceptual model for attenuating the noise.  A 

perceptual nonlinear weighting of the spectral gain function reduces the musical noise 

artifacts typically introduced by spectral subtraction.  Temporal properties can also be 

used for pitch and amplitude tracking to isolate the desired speech and increase the 

accuracy of the VAD.  The high-level steps of the SSPN algorithm are listed below and 

further described in the following paragraphs. 

1. Beamforming 
2. VAD 
3. Spectral subtraction 
4. Auditory perceptual mask threshold calculation 
5. Nonlinearly weight spectral subtraction 
6. Talker isolation 
7. Iterate to improve the VAD accuracy 
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Beamforming reduces the noise in the received signal independent of voice activity 

detection because it is relying on the spatial diversity of the sources, which makes it a 

good candidate to be first in the signal processing chain because the resulting output of 

the beamformer can increase the accuracy of the initial voice activity detection when 

compared to placing the VAD first.  The VAD relies on changes in signal energy to 

detect frames with voice, so reducing the noise energy with beamforming will allow the 

energy of the speech to be more prominent and easily detected.  Another reason for 

choosing to place the beamformer first in the design is that beamforming reduces the 

amount of attenuation required in spectral subtraction, thus reducing possible distortion.   

 

The results in sections 5.5 and 5.8 show that beamforming significantly reduces the noise 

levels with less distortion when compared to simple spectral subtraction.  Thus, by 

placing beamforming before spectral subtraction the lower energy high frequency 

consonants, such as /f/t/s/h/p, are less likely to be over attenuated by the spectral 

subtraction part of the algorithm, this is beneficial because it has been noted that 

consonants are important to speech intelligibility.[27]  Placing the beamformer first also 

reduces the computational requirements because all subsequent processing is performed 

on a single channel of data.  The beamformer would not benefit by preceding it with 

other components of the algorithm because it is primarily working in the spatial domain, 

which is not effected by the other components.  The Generalized Side-lobe Canceller 

(GSC) was chosen as the specific form of beamforming for the SSPN algorithm because 

of its superior noise suppression when compared to simple delay and sum beamforming 

and the details of exactly how it was used are given in section 3.3.3. 
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Voice Activity Detection (VAD), described in section 3.3.4 and 4.2, is performed on the 

output signal from the beamformer.  Noise estimation is done when the VAD determines 

that no voice is present in a frame, which is then used for half wave rectified spectral 

subtraction on the output from the beamformer to reduce the residual noise left in the 

processed signal.  The beamformer used in this thesis does not perform well in the lower 

frequency ranges, as discussed in section 4.1, because of the fixed spacing of the 

microphone elements, so spectral subtraction is employed to make up for this 

shortcoming.   

 

A clean speech estimate is required for the calculation of the perceptual mask 

threshold, so it must follow an initial half wave rectified spectral subtraction 

processing step.  A nonlinear weighting function based on the calculated masked 

threshold estimate is applied to the spectral subtraction process to minimize the 

introduction of artifacts and distortion into the signal.  This weighted spectral 

subtraction is applied to the output of the beamformer in order to obtain an improvement 

in noise reduction and perceptual quality over the initial half wave rectified spectral 

subtraction. 

 

Pitch based talker isolation can be performed on the noise-reduced output of the 

nonlinear spectral subtraction.  Better pitch estimates are possible after the first two 

stages of noise removal have been performed.  If the pitch estimate and talker separation 

were done first on the noisy signal, the results could be worse than if noise removal were 
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not done at all.  Experiments were done placing pitch detection before spectral 

subtraction with no benefit resulting in the algorithms noise suppression or speech 

quality.  

 

Iterating the SSPN algorithm once improved the VAD accuracy because the VAD 

could makes its decisions based on a noise-reduced signal, which is supported by results 

in section 5.4.  Iterating the algorithm more than once did not prove beneficial because 

too many frames were classified as speech causing the noise estimate to suffer as is 

further explained in section 5.4.  Feeding back the output of the first pass noise reduction 

to the VAD can change the current VAD decision and enable a second more accurate 

noise reduction processing of the current frame.  The GSC beamformer can then 

reprocess the current frame and adapt its noise cancellation filters if the VAD marks the 

frame as not having any speech.  The new VAD decision will also give the opportunity to 

update the noise estimate to more accurately reflect the actual noise occurring in the 

current time frames, which will in turn improve the spectral subtraction results.  If the 

first VAD decision detects a voiced frame and the second VAD decision also detects 

voice for the same frame, then the current frame does not need a second pass of 

processing because the GSC filter coefficients will not change and the noise estimate will 

not be updated.  Figure 3.3 shows the control flow for the SSPN algorithm after the 

initialization is done.   
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Figure 3.3: SSPN algorithm flow chart 
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The first 10 frames of data are assumed to be just noise in order for the GSC filters to 

adapt and the noise estimate to initialize, the initialization time is calculated in equation 

(3.2). 

onds
ondsamples

framesamplesframestinit sec16.0
sec/8000

/12810
=

∗
=   ( 3.2) 

 

The first and second half of the flow chart of Figure 3.3 look similar because the current 

frame is processed a second time based on the updated parameters.  The number of 

iterations for VAD improvement was limited to 2 because experiments, documented in 

section 5.4, showed that further iteration degrades the noise suppression performance due 

to lack of frames classified as noise only.  The first GCS pass does not adapt its filters 

because it has no way of knowing if the current frame contains speech.  The second VAD 

decision tells the GSC filters if they can adapt and if the noise estimate for spectral 

subtraction should change.  This iteration of the algorithm will cause more of the signal 

to be classified as speech thus reducing the risk of falsely classifying speech as noise, 

which would result in attenuation of the desired speech.  The VAD’s sensitivity to its’ 

fixed energy multipliers, used to calculate the threshold for a speech decision, is reduced 

and allows the algorithm to perform more consistently over a wider range of input SNR. 

 

Figure 3.4 shows the data flow for the first iteration of the algorithm that receives the 

new frame of data from all four microphones and does an initial noise removal.  All four 

channels are band-pass filtered to limit the frequencies to that of normal human speech 

ranging from 50 Hz to 4 kHz.  The talker’s location is known because we are focusing on 

the driver of the car, who is broadside to the microphone array.  The estimate of the 
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speech spectrum is fed back to the VAD, which is where the second iteration begins.  

Control data is indicated by dashed lines in Figure 3.4 and are the VAD decisions.  The 

frame number is represented by the parameter k and the parameter w denotes the 

frequency index. 
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Figure 3.4: SSPN first iteration on current frame 
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Figure 3.5 shows the data flow for the second iteration of the algorithm.  The iteration 

begins by making a new VAD decision based on the initial speech estimate.  The stored 

buffers are used to reprocess the current frame of data in the GSC where the filters will 

adapt if the VAD does not detect speech.  The output of the GSC updates the noise 

estimate for spectral subtraction if the VAD has not detected speech.  Spectral subtraction 

and talker isolation is performed as in the first iteration.  The speech estimate has the 

phase information added to it from the phase at the output of the beamformer.  An inverse 

FFT and overlap-add processing then converts the signal to time domain output. 
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Figure 3.5: SSPN second iteration on current frame 
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Figure 3.6 shows the data flow with all the processing blocks represented, where the 

central role of the VAD is very apparent in this view of the algorithm. 
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Figure 3.6: SSPN algorithm with all signal paths 

 



 35 

3.3.2 Initial signal processing 

Data is received from all four microphones, which are separated by a relatively small 

known distance d.  All four channels are divided into 50% overlapped buffers, which is 

similar to the buffering used by Boll.[4] All input signals are then band-pass filtered to 

limit the frequency range to 50 to 4 kHz for subsequent processing.  Frequencies below 

300Hz are dominated primarily by noise from the engine and road [28] and a lower cutoff 

frequency of 350Hz is an example of preprocessing that has been used in car 

environment.[29]  The lower cutoff frequency could be adapted based on operating 

conditions, but will remained fixed at 50 Hz for the work done in this thesis. 

 

The GSC beamformer is then applied to attenuate the noise, which results in an enhanced 

single output channel of data.  A Hanning window is applied to the output of the GSC 

because it has lower side-lobes in the frequency domain and thus less spectral leakage 

than a rectangular window.  The 50% overlap facilitates the use of the overlap add (OLA) 

method to synthesize the signal, after spectral processing is complete, in a way that 

maintains the temporal characteristics of the input.[30]  The window size is chosen to be 

approximately twice as large as the expected pitch frequency for accurate frequency 

resolution.  The window buffer length, L, is 256 points (32ms) and input frame lengths 

are 128 points (16ms) when the sampling rate is 8khz.  Short windows must be used in 

order to take advantage of the short-term stationary properties of the speech and noise 

because beyond approximately 48ms (3 x 16ms frames) the processing degrades the 

signal quality. 
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The data window is then transformed with an FFT for the full length L of the window.  

Zero padding can be used to increase spectral resolution and reduce the effects of 

temporal aliasing caused by circular convolution and could help in the talker isolation 

processing.  However, the additional frequency resolution may not help with removing 

the noise as shown by Boll [4] and lower resolution methods, such as Bartlett’s spectrum 

estimation, can actually help because of the reduced variance in the frame-to-frame 

estimates.[31] There is clearly a tradeoff between spectral resolution and variance.  

Magnitude averaging of the noise estimate spectrum over 2 or 3 frames has been 

effectively used in SS to reduce variance. 

 

3.3.3 GSC beamforming 

Generalized Side-lobe Canceling (GSC), described in section 4.1.3, is performed to 

strengthen the signal coming from the desired talker and attenuate noise from other 

directions.  The beamformer has the advantage of reducing noise while introducing very 

little distortion to the desired speed and will improve down stream VAD decision and 

talker isolation tasks. 

 

The first 10 frames of data are assumed to be silence in order to initialize the filters in the 

GSC.  After the initialization phase, the GSC will process each frame twice because the 

GSC does depend on VAD information in order not to adapt its filters when speech is 

present, so it will avoid attenuating the speech.  The first pass will not adapt the filters, 

but will simply use the filter coefficients resulting from past noise only frames.  The filter 

will adapt during the second pass on a frame of data if the VAD indicates that no speech 



 37 

is present.  Once the frame has been processed a second time, the next frame of data will 

enter the GSC. 

 

3.3.4 VAD and noise estimation 

3.3.4.1 Noise estimate during silent frames 

The noise spectrum is estimated during silent frames where the VAD decides between 

noise only silence and speech; this is especially effective when the noise is slowly 

varying.  Silent frame are considered as containing no speech, but only background noise.  

There are many pauses in natural speech, which allows the noise estimate to be updated 

quite frequently.  An energy detection based VAD is used similar to the one described in 

section 4.2.2.  The SSPN algorithm in this thesis will estimate the noise during silent 

frames because it is relatively effective and simple to implement. 

 

3.3.4.2 Continuous noise estimatation experiment 

More sophisticated methods of noise estimation have been extensively studied and would 

in fact improve the overall system performance, but are beyond the scope of this thesis.  

Waiting for silent frames is not effective when the noise is varying rapidly, so estimating 

the noise during speech activity is required.  Some examples of continuous noise 

estimation are adaptive [32] and MMSE (minimizing a conditional mean square error)[33], 

and two channel techniques that work to obtain a separate noise channel.[34]   
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An unsuccessful attempt was made to use beamforming to create a separate noise and 

speech channel that was to be used for continuous noise estimation.  Spectral subtraction 

was to use the noise channel as a continuous noise estimate weighted by the estimate of 

how much noise leaked into the speech channel.  The noise estimate is continuously 

modified and weighted differently depending on whether the frame is classified by a 

VAD as containing speech or not.  The speech estimate from the signal separation during 

frames with no speech acts as an indication of how much noise leaks into the speech 

channel.  This information is used to scale the noise estimate during speech frames prior 

to spectral subtraction.  An approximate procedure is outlined below. 

 

A silent frame contains only background noise.  The variable β is the percentage of the 

noise that leaks into the speech channel ( )wL1 . 

( ) ( )wNwL 11 ⋅= β      ( 3.3) 

( ) ( )wNwI 11 )1( ⋅−= β     ( 3.4) 

The speech frame contains speech + noise.  The variable )1( α−  is the percentage of the 

speech that leaks into the noise channel ( )wI 2 . 

( ) ( )wNwSwL 22 )( ⋅+⋅= βα     ( 3.5) 

( ) ( )wNwSwI 22 )1()()1( ⋅−+⋅−= βα   ( 3.6) 

Equations (3.7) and (3.8) describe an algorithm for removing the residual stationary 

noise.  In reality the noise subtracted would be averaged over a few frames, but this 

shows the general idea. 
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( ) ( ) ( )wNwNwSwLwLwL 1212 )()()( ⋅−⋅+⋅=−= ββα   ( 3.7) 

( ) ( )wSwL ⋅≈ α     ( 3.8) 

The above approach did not improve the results and actually made things worse in some 

cases.  The reasons for the poor performance were the poor correlation of the noise in the 

two channels, leakage of the desired speech into the noise channel, and an inaccurate 

estimate of the noise leaking into the speech channel.  In the end, simple noise estimation 

during silent frames using a single channel gave dramatically better results than the 

attempt at continuous noise estimation. 

 

3.3.5 Spectral subtraction 

An introduction to spectral subtraction concepts is presented in section 4.3.  The first 

spectral subtraction operation in the SSPN algorithm of Figure 3.6 used fixed weighting 

of the noise estimate and half-wave rectification.  This is equivalent to setting 1)( =wa  

and 0)( =wb  in Figure 3.7.  This step is necessary because a clean speech estimate is 

needed to calculate the masking threshold.  Half-wave rectified spectral subtraction 

produces very noticeable musical noise artifacts when the input SNR approaches 0 dB, 

but its output, ( )kwS ,2 , is only used to calculate the masked threshold and not as part of 

the final speech estimate.  The input to the weighted spectral subtraction is the original 

speech estimate, ( )kwS ,1 , before the initial spectral subtraction is applied.   

 

Figure 3.7 shows the details of the weighted spectral subtraction block used in the SSPN 

algorithm of Figure 3.6 where ( )kwS ,1  is the initial speech channel input to the algorithm 
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and ( )kwN ,  is the noise estimate to be subtracted.  The auditory perceptual masking 

threshold, ( )kwT , , adjusts the over-subtraction factor ( )wa  and noise floor factor ( )wb . 

 

|.|1/x

avg(|.|x) a(w)

+

-

b(w)

Select
greater of
two inputs

Noise
floor

avg(|.|x)
( )kwS ,1

( )kwN ,

( )kwT ,
( )kwT ,

( )kwS ,3

( )kwR ,

 

Figure 3.7: Generalized Spectral Subtraction 

 

The magnitudes are taken and raised to a power x for the signal ( )kwS ,1  and noise 

( )kwN , .  The received signal ( )kwS ,1 and noise ( )kwN ,  are then averaged over three 

frames to reduce the frame-to-frame variability that causes musical noise.  The averaging 

is skipped when the received VAD detects speech.  The high-energy speech will tend to 

mask the musical noise in these frames.  This approach avoids smearing of the spectral 

peaks in the speech.[35] 

 

The subtraction multiplier ( )wa  and noise floor factor ( )wb  are determined by 

interpolating between the minimum and maximum values using the threshold & 
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weighting function ( )kwT , .  The linear interpolation functions are represented by aF  and 

bF  in equations (3.9) and (3.10) respectively. 

 

( )( )wTaaFwTwa a ,,))(,( maxmin= ,  1min =a , 6max =a    ( 3.9) 

( )( )wTbbFwTwb b ,,))(,( maxmin= ,  0min =b , 02.0max =b    ( 3.10) 

 
Both low noise and little distortion are desired, but the more the noise is suppressed the 

bigger the speech distortion gets.  The range of values for the multipliers will balance a 

tradeoff between residual noise allowed through and speech degradation.  The values in 

equations (3.9) and (3.10) for the ranges of a(w) and b(w) were used initially based on 

results reported by Virag.[91]  However, setting amax  = 3 was found to produce better 

results for the data sets processed in this thesis.  The exponent was set to 2=x  as 

successfully done in related research.  Spectral subtraction takes place in equation (3.11) 

and the noise floor is calculated in equation (3.12). 

))())(,()(()( 1
xx wNwTwawSwR −=    ( 3.11) 

Noise floor = b(w,T(w))|N(w)|x      ( 3.12) 

The noise estimate is multiplied by a function in the experimentally determined range of 

0 to 0.002 resulting in a noise floor that keeps the noise level low, but also to leaves 

enough noise in the signal to prevent large discontinuous jumps in the frame-to-frame 

audible noise.  If ( )wR  is greater than the noise floor, then it is chosen as the output.  The 

noise floor is selected as the output if it is greater than ( )wR .  This ensures that there are 

no negative spectral components and that the noise remains fairly constant when speech 
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is not present.  The last step is to take the xth root of the signal to yield the output 

( )kwS ,3 . 

 

3.3.6 Perceptual nonlinear frequency weighting 

Perceptual nonlinear frequency weighting requires the perceptual masking threshold to be 

calculated as described in section 4.4.  A smoothing function is applied to the resulting 

masked threshold function to remove any discontinuities that could introduce artifacts 

during the spectral subtraction.  The estimate of the masking thresholds need to be 

closely matched to the desired speech, therefore, an initial estimate of the clean speech is 

necessary.  The spectral subtraction with half-wave rectification is a sufficient estimate of 

the clean speech.   

 

The implementation requires some numerical checking that is not mentioned in the 

general description of the mask threshold algorithm.  It is possible for the spread linear 

threshold to be zero, so the algorithm must guard against calculating a log(0) that would 

produce negative infinite values.  Because energy in a band can be zero and the 

renormalization process divides by the band energy, the algorithm must also guard 

against a divide by zero. 

 

3.3.7 Talker isolation and pitch tracking 

A talker isolation algorithm was not implemented for this thesis because it would have 

expanded the scope of this work beyond the time available.  Instead, some experiments 
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were performed with pitch detection before and after the SSPN algorithm to better 

understand how to incorporate such a feature into the design.  Continued research on the 

effects of talker isolation on the SSPN results should be carried out in future work, the 

pitch tracking and talker separation algorithm described in section 4.5 is an excellent 

place to start.  Beamforming and spectral subtraction are inadequate for removing 

interfering speech as is shown in the results of sections 5.5 and 5.6 respectively.  

Attenuating interfering talkers is an important part of the solution for the automobile 

especially in multi-passenger vehicles in which children may be riding, such as mini-

vans. 

 

The results of pitch detection experiments with SSPN, reported in section 5.10, suggest 

that an advanced talker isolation algorithm based on pitch tracking would perform better 

after the initial noise removal is done.  If talker isolation is done before noise removal, 

then inaccuracies in the pitch estimate could severely attenuate the desired speech and not 

block the interfering speech well enough.  Trying to incorporate the pitch tracking to 

modify spectral subtraction did not improve noise suppression or speech quality as noted 

below. 

 

For the single talker case, it was thought that the desired speech could be further 

improved by pitch tracking used to modify the spectrum.  In fact, the use of pitch tracking 

to adjust the gain in spectral subtraction does not improve the signal, but makes it worse 

due to inaccuracies in the pitch estimate.  The perceptual masked threshold weighting 

already adjusts the SS gain to avoid attenuating the strong periodic portions of the 
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speech.  The perceptual masked threshold weighting also does a very good job at 

eliminating the musical-noise artifacts typically introduced by spectral subtraction. 

 

A single talker pitch detection algorithm based on the autocorrelation method was 

implemented for the experiments.  This was done to compare pitch detection on the 

original clean speech, speech + noise, and enhanced signal.  The pitch detector was also 

used to experiment with a modified spectral subtraction as reported in section 5.10.  The 

autocorrelation method with center clipping is described in Figure 3.8. 

 

Window the speech at least twice the
length of the maximum pitch

Pitch = sampling rate / lag index with max peak

Center clip

Calculate the autocorrelation function

Find the lag index with strongest peak

 

Figure 3.8: Autocorrelation method for pitch detection 
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The pitch detection is disabled when the VAD indicates a frame is unvoiced because 

there is no pitch to detect.  The first formant frequency, which is often near or below the 

pitch frequency, can interfere with detection.  Spectral flattening via center-clipping has 

been shown to remove the formant structure and enable more accurate pitch detection.[36]  

Center clipping is described in equation (3.13) where c is the center clip threshold.  The 

clipping threshold calculated as a percentage of the maximum value in the speech frame 

where 0 % represents no clipping and 100% would remove the whole signal. 

( ) =nsc

( ) cns −

0

( ) cns + ( ) cns −≤,

( ) cnsc +≤≤−,

( ) cns +≥,    ( 3.13) 

The autocorrelation function is defined by equation (3.14) where Mm ,...1,0=  is the lag 

numbers and N is the frame size. 

( ) ( ) ( )mnsnsmR c

mN

n
c += ∑

−−

=

1

0
     ( 3.14) 

Normal human pitch ranges from 50 to 900 Hz, so only points that would produce a 

result in that range were considered.  For the case of an 8kHz sample rate, the point 

between 9 and 160 are the limits of 888Hz and 50 Hz respectively.  Again, the above 

pitch detection algorithm was used to experiment with placement of the talker isolation 

component of SSPN and was not actually implemented as part of the SSPN simulation 

used to obtain the results in Chapter 5.  The output of the perceptually weighted spectral 

subtraction was fed back to the VAD for the first iteration and sent to the output via the 

phase multiplication, inverse FFT, and overlap add synthesis. 
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3.3.8 Adding phase, inverse FFT, and overlap add 

The noisy phase from the spectrum of the beamformer output is used as the phase of the 

speech estimate after the weighted spectral subtraction.  It has been shown by Lim[64] and 

others that the human auditory system is less sensitive to phase distortions, so using the 

noisy phase as an approximation of the clean speech phase does not significantly degrade 

the speech quality.[37]  An inverse Fourier transform and overlap add is then done to 

reconstruct the speech estimate in the time domain. 

 

3.4 Real-time implementation comments 

The computational load on a system is measured in the number of instruction that 

processor aggregate needs to execute per unit time and typically described in Mega-

Instructions Per Second (MIPS).  Memory requirements are not easily determined 

because it depends on how much buffer re-use can be accomplished and other code 

optimizations.  The SSPN algorithm will consume a large amount of a processing power 

because it is a combination of several fairly complex methods.  An exact characterization 

of an SSPN real-time implementation is beyond the scope of this thesis, but a very rough 

approximation can easily be done.  The resource requirements will vary based on 

sampling rate, frame size, processor architecture, and programming optimizations, so the 

following descriptions should be taken in that context.  Each of the major components of 

the SSPN algorithm, listed below, can have their real-time requirements described based 

on prior work.  
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1. Generalized Side-lobe Canceller (GSC) beamforming 
2. 256 point FFT and inverse FFT 
3. Energy based voice activity detector 
4. Spectral Subtraction 
5. Auditory masking threshold calculation 

 

GSC beamforming consumes are large amount of processing resources by itself, with 

one implementation requiring 2 Motorola 56001 DSP chips, which provide from 26 to 40 

MIPS.[48]  If longer adaptive filters or more channels are used the processing 

requirements become even higher. 

 

A 256-point FFT is almost negligible if an optimal implementation is used on a DSP 

processor designed for such operations.  One example of a 256 16-bit complex FFT 

requires only 0.27 MIPS on an Analog Devices DSP.  The 256-point inverse FFT has 

similar complexity compared to the FFT and consumes roughly the same amount of 

cycles. 

 

An energy based Voice Activity Detector (VAD) does not need many resources and is 

used in many resource-limited applications such as wireless phones.  VAD is commonly 

used as part of a voice compression algorithm or echo cancellation algorithm, where the 

VAD consumes on the order of less than a single MIP.  

 

Spectral subtraction (SS) is also an inexpensive operation, which is why it is such a 

popular noise suppression algorithm.  A brief survey of SS implementation shows that SS 

requires anywhere from 4 to 10 MIPS. 
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Calculation of the auditory masking threshold add complexity to spectral subtraction 

type algorithms and not been widely adopted for this reason.[69]  However, MIPS 

consumption for the auditory masking threshold calculation have not been widely 

published.  One of the descriptions mentioned the use of a single ATT&T DSP32C 

processor capable of 20 MIPS. 

 

Summing up the worst-case scenario of the above MIPS approximations totals 72 

MIPS, so an iteration of the SSPN algorithms should consume processing resources in a 

range near 72 MIPS.  If the SSPN algorithm is iterated twice to improve the VAD, then 

the MIPS consumption will approach about 100.  These are very crude approximations 

that provide only a general sense of the SSPN processing needs.  A more thorough 

investigation is required to accurately characterize the real-time resource requirements for 

the SSPN algorithm. 
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Chapter 4  

Algorithms used for noise suppression  

This chapter describes the detailed theory behind the methods used in the SSPN 

algorithm and some other methods to be considered and compared. 

 

4.1 Beamforming 

Beamforming and multiple microphones allow spatial diversity to be used in the SSPN 

algorithm and the only part of the algorithm to use this dimension.  Beamforming is the 

term used for steering an array of sensors to have unity gain in the direction of the desired 

source while attenuating signals originating from other directions.  Source localization 

can be important to improve the effect of beamforming, but for the purposes of the 

simulations in this thesis an approximate location of the desired source is used and no 

attempt is made to optimize results based on a better estimate of the desired taker’s 

location.  Section 4.1.1 explains the implications of approximating source location and 

how more accurate estimates could be obtained, especially on non-stationary sources.   

 

Delay and sum beamforming is an important part of the Generalized Side-lobe Canceller 

(GSC) and is described in section 4.1.2.  Section 4.1.3 talks about the GSC, which is used 
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as part of the SSPN algorithm and is evaluated independently for comparison with 

spectral subtraction and SSPN. 

 

4.1.1 Source localization 

Source localization is very important when using spatial information to improve the 

quality of the desired signal acquired by hands-free microphones because determining the 

area where you expect the desired signal to be allows you to amplify the signal from that 

direction while attenuating signals from other directions.  The receiver can also steer deep 

nulls to block interferences if their locations are known.  The approach to source 

localization is very dependent on the application scenario.  A conference room can have 

multiple desired talkers anywhere in the room and at varying distances from the 

microphone depending on the room size with the additional challenge of tracking moving 

sources if the talker is walking around.  A more constrained environment like the 

automobile reduces the possible locations of the desired speech because they must be 

seated in the car. 

 

This thesis is concerned with hands-free speech of the driver in a car, so the talker’s 

location will vary only by seat position, possibly by the person leaning to one side, and 

the person’s height.  Interferences from other talkers seated in the car can also be fairly 

well located.  This a priori information about source locations in the car allows 

constraints to be put on the area searched and thus avoids steering to the wrong source 

and simplifies computations.  Sensitivity to location errors will depend on how 

aggressive the beamformer is trying to attenuate signals coming from undesired 
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directions.  It has been shown that, for a source in close proximity to the microphones, 

the array aiming location must be accurate to within a few centimeters to prevent high 

frequency roll off in the received signal. [38] 

 

There are many source localization methods that vary in complexity, robustness to 

environment, and performance.  Three general categories for the methods are listed 

below. 

 
• Steered response of a beamformer 

Maximum Likelihood (ML) steered beam response location estimators steers an 
array to various locations and searches for a peak in output power. 
 

• High-resolution spectral estimation concepts 
Harmonic Enhanced 2-D MUSIC is a high-resolution method that has been 
effectively applied to hands-free speech in a car. [39] 

 
• Time-Difference-Of-Arrival (TDOA)  

TDOA is one of the most popular because of its low complexity and relatively 
good performance under general conditions.  The Cross-power Spectrum Phase 
Analysis (CSPA) is a method used to calculate the TDOA. 

 

TDOA is described in detail here because it is a good candidate for use with a 

microphone array in an automobile.  The description of a sound wave impinging upon an 

array of microphones is shown in Figure 4.1 
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Figure 4.1: Time Difference of Arrival 

 
The first assumption is that the source is in the far field with respect to the microphones, 

so the received signals can be treated as plane waves.  When the source is close to the 

array (in the near field), the time it takes the signal to propagate to each sensor results in a 

curved wave-front; thus, the time-delays depend on the exact source location. On the 

other hand, as the source moves further away (into the far field), the wave-front becomes 

planar, so the time-delays depend only on the source direction without any range 

information. The near-far situation, shown in Figure 2.1, depends on the source distance 

as well as the array aperture (spatial dimension), spacing among the sensors, and the 

wavelength of interest. When the sensor spacing becomes small, a curved wave-front can 
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be well-approximated by a planar wave-front. As a result, generally only angle estimation 

(DOA) is possible in the far-field for a single array, while source localization is possible 

only in the near-field.[40]  

 
Given a single source of sound that produces a time varying signal ( )tx  each microphone 

will receive the following signals  

 

( ) )()( tztxtm iiii +∆−= α      (4.1) 

( ) )()( tztxtm jjjj +∆−= α      (4.2) 

 
 

where i∆  and j∆ are the time delays it takes for sound to propagate from the source to 

microphone and ( )tzi  and ( )tz j  are the noise signals present.  The Time Difference of 

Arrival (TDOA) is ji ∆−∆=τ . 
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Finding the TDOA via Cross-power Spectrum Phase Analysis (CSPA) is divided into the 

following steps, shown in Figure 4.2. [41] 

 

Select the most
likely location

Find the maximum
CSP coefficient
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micrphone
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microphones

Distance
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of arrival
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Figure 4.2: TDOA CSP steps 
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The Fourier transform of the captured signals is: 

( ) ( ) ( ) ( )ωωαω i
jw

iii ZeXMtm i +=↔ ∆−    (4.3) 

( ) ( ) ( ) ( )ωωαω j
jw

jjj ZeXMtm j +=↔ ∆−
   (4.4) 

 
The second assumption is that the average energy of the source signals is greater than 

that of the interfering noise and is shown in equation (4.5) where the over-bar represents 

the average operation. 

( ) ( )222 ωωα ii ZX >>      (4.5) 

The cross correlation of ( )tmi  and ( )tm j  is calculated in (4.6) and maximized when ψ  is 

equal to the TDOA. 

( ) ( ) ( )dttmtmR jiij ψτ −= ∫
∞

∞−
     (4.6) 

Converting the cross correlation to the frequency domain and expanding yields equation 

(4.7) where ( )ω*
jM  is the complex conjugate of ( )ωjM . 

( ) ( ) ( ) ( )ωωωτ *
jiijij MMSR =↔     (4.7) 

( ) ( ) ( )( ) ( ) ( )( )*ωωαωωαω ωω
j

j
jji

j
iiij ZeXZeXS ji ++= ∆−∆−   (4.8) 

Because of the second assumption, the cross terms of equation (4.8) can be considered 

negligible, hence (4.8) reduces to equation (4.9). 

( ) ( ) ( )jij
ijiij eXS ∆−∆−≈ ωωααω 2

    (4.9) 
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The delay, ijτ , can be found by evaluating the equation (4.10) where 1−F  is the inverse 

Fourier transform. 

( ) ( ){ }ωττ
ττ ijijij SFR 1maxmax −==     (4.10) 

Equation (4.11) is the cross-power spectrum phase (CPSP) function. 

( ) ( ) ( )
( ) ( )ωω

ωω

ji

ji
ij MM

MM
wCPSP

*

≅     (4.11) 

Taking the inverse Fourier transform and converting to the discrete domain gives: 

( ) ( ){ } ( ){ }
( ){ } ( ){ }











=
tmDFTtmDFT

tmDFTtmDFT
IDFTtcpsp

ji

ji
ij

*

   (4.12) 

The cpsp  function, in typical conditions, is delta-like and has a peak that ijττ = . 

The angle of arrival can then be found using the calculation in equation (4.13) where c is 

the speed of sound at approximately 340 meters/second, τ is the estimated delay, d  is the 

distance between microphones, and sF  is the sampling rate. 







 ⋅

= −

d
Fc s/

cos 1 τ
θ      (4.13) 

 
Finally, several locations are clustered and analyzed to determine the most likely 

direction of arrival.  Various clustering and optimization methods can be applied to 

choose the best DOA.  Some frequency specific considerations should be applied rather 

than assuming uniform processing across all bands.  Noise power can be severe below 

200 kHz, so in the absence of noise reduced signal it makes sense to discard information 
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at those frequencies.  It can also be expected that frequencies with greater magnitude 

come from the source because the desired source dominates the average energy per frame 

and would suggest weighting portions of ( )wSij  with greater magnitude more heavily in 

order to increase accuracy.[42] 

 

4.1.2 Delay and sum beamforming 

Multiple microphones can have their data processed to form a receptive beam that 

enhances signals from certain directions and suppresses signals from other directions.  

The spacing between the microphones and different delays of the signals to each 

microphone are used to spatially discriminate between signals.  A beamformer can be 

considered a spatial filter.  Figure 4.3 shows the processing for a delay and sum 

beamformer. 

+
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( )ny2τ−z

Jzτ−

 

Figure 4.3: Conventional Delay and Sum Beamformer 
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Figure 4.1 shows the physical layout of the microphones and signals.  The delay between 

microphones is described by equation (4.14) where smc /342=  is the speed of sound, 

id is the distance between the microphones, and iθ is the angle of arrival.  If the 

microphones are in a straight line and have equal spacing between them, then it is 

referred to as a Uniform Linear Array (ULA).  A ULA simplifies the equations by 

allowing them to use constant distance and delays respectively. 

c
d jj

j

θ
τ

cos
=       ( 4.14) 

The array of received signals at each microphone is 

( ) ( ) ( ) ( )[ ]T
J nmnmnmnmnm ,...,,,)( 321=

r
   (4.15) 

The source signal received by the jth microphone with a delay jτ  is 

( ) ( )jsjj nsnhnm τθ −= *,)(      (4.16) 

where ( )sj nh θ,  is the impulse response of the jth microphone. 

( ) ( )nsvJnm sθ
rr

=)(       (4.17) 

The array response vector ( )sv θ
r  is derived directly from equations (4.16) and (4.17).  

Equation (4.18) is often used in equations that analyze the response of the delay and sum 

beamformer.   

( ) ( ) ( ) ( )[ ]TFjFjFj
s

sJcscsc eee
J

v θτπθτπθτπθ 222 ,...,,1
21 −−−=

r
  (4.18) 

Substituting equation (4.14) into equation (4.18) and recognizing that λ/cFc =  yields 
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( ) ( ) ( ) ( )[ ]Tdjdjdj
s

sJss eee
J

v λθπλθπλθπθ /cos2/cos2/cos2 ,...,,1
21 −−−=

r
 (4.19) 

 

Equation (4.20) is the output of the delay and sum beamformer where jm  is the signal 

received at each microphone, J is the number of microphones, and jw  is the weighting 

coefficient for a microphone j .  The weights can be used to shape the received signal to 

further attenuate signals coming from undesired locations. 

( ) ( )∑
−

=

−=
1

0

1 J

j
jjj nmw

J
ny τ     (4.20) 

The “far field assumption” is made here, which assumes the incident signals are plane 

waves as described in section 2.1 and section 4.1.1.  One can assume a planar wave if the 

source to sensor distance is at least twice the aperture of the sensor array.  The aperture of 

the microphone array is the distance between the first and last microphone.  A Uniform 

Linear Array (ULA) with 4 microphones and uniform spacing of 5 cm would have an 

aperture of 15 cm, for example.   

 

A source is said to be in the near field if equation (4.21) is true 

λ

22Lr <       (4.21) 

where r is the radial distance from the microphone, L is the aperture of the array, and 

wavelength λ  is defined as the speed of sound over frequency. 

f
c

=λ        (4.22) 
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Inserting equation (4.22) into (4.21) yields the near field requirement of 

c
fLr

22
<       (4.23) 

or 

22L
rcf >       (4.24) 

Given the following example: 

mr 24.0=  
mL 15.0=  

smc /342=  
 

 
Equation (4.24) then tells us that a near field assumption is valid for frequencies above 

1824 Hz.  Conversely, a far field assumption is valid for frequencies below 1824 Hz.  

The range of frequencies that can be considered in the far field condition becomes higher 

as the source’s distance r  from microphone increases. The maximum frequency in the 

far field decreases as the array aperture L increases, which represents a tradeoff because a 

larger array aperture provides better spatial resolution.43 

 

A microphone array increases in its ability to distinguish between closely spaced sources 

as its aperture increases because of a narrower main beam and narrower side-lobes for 

larger aperture, as can be seen in Figure 4.4.  The degrees of freedom also increase with 

number of microphones, where 5 microphones produce a single main lobe plus four nulls 

and 10 microphones produce one main lobe and 9 nulls.  The beam response of equation 

(4.25) is computed by applying the beamformer weights to a set of array response vectors 

from all possible angles, °° <≤− 9090 φ . 

( ) ( )φφ vwW H rr
=      (4.25) 
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Figure 4.4 shows the magnitude of the beam response ( ) 2φW  for Jw j /1=  uniformly 

weighted beamformers where J=5 and J=10 respectively. 

 

 

Figure 4.4: Beam pattern for different apertures 

The spacing between elements has a direct effect on the frequency resolution of the array.  

In order to avoid aliasing in the spatial frequency domain the spacing between elements 

should be less than half the wavelength of interest, which is shown in equation (4.26).   

Figure 4.5 shows that multiple main lobes with unity gain are created when the distance 

between microphones increase beyond half of a given wavelength.  Multiple main lobes 

make certain angles of arrival indistinguishable from others, which is the definition of 

spatial aliasing.   
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2
λ

≤d       (4.26) 

 

Figure 4.5: Spatial aliasing beamformer 

 

To obtain un-aliased spatial frequency resolution at 100 Hz the spacing between 

microphones would have to be less than or equal to 1.7 meters.  However, for a frequency 

of 3400 Hz the inter-microphone spacing would have to be less than or equal to 0.05 

meters, which would also be acceptable for frequencies lower than 3400 Hz. 

 

Ideally, the beamformer would have the same response over all frequencies of interest, 

which is referred to as Constant Directivity Beamforming (CBD).  Nested sub-arrays of 
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microphones and forming multiple beams are the two major techniques used to achieve a 

constant response over a broad range of frequencies.  The problem that CBD is trying to 

overcome is the fixed inter-element spacing of microphones, which causes the main beam 

to be wider (with less resolution) at lower frequencies and spatial aliasing to occur at 

higher frequencies.  Spatial selectivity start to be lost at below about 800 Hz for a delay 

& sum beamformer using a Uniform Linear Array (ULA) with 5 microphones and 

uniform spacing of 5 cm.[44] 

 

The beamforming gain is defined as the ratio of the SNR for one microphone to the SNR 

for the array, where 

( )
2

2

w

vw
J

SNR
SNR

G s
H

one

array
bf r

rr
θ

=≅     (4.27) 

( bfG ) is strictly a function of the angle of arrival ( sθ ) of the desired signal, the 

beamforming weight vector ( w ), and the number of microphones ( J ).  Equation (4.27) 

shows that bfG  scales linearly with the number of microphones J  [45] and equation (4.19) 

is the array response vector, ( )sv θ , for the array in look direction ( )sθ  where T represents 

the vector transpose operation. 

 
d  = distance between microphones 
c  = speed of sound which is about 342 m/s 
λ = wavelength of the signal 
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4.1.3 Generalized Side-lobe Canceller (GSC) 

The Generalized Side-lobe Canceller is used in the SSPN algorithm and is evaluated 

independently for comparison purposes.  The GSC has higher noise suppression than the 

delay & sum beamformer because it can adaptively steer nulls toward locations of 

interfering sources in addition to the steering of the main beam in the direction of the 

desired source.  This higher noise suppression and adaptation to the noise sources was the 

motivation for choosing the GSC instead of the delay & sum beamformer for the SSPN 

algorithm.  Theoretical advantage of the GSC was confirmed by the simulations results 

using the signals measured in the car. 

 

The beamforming problem can also be formulated at a constrained minimization [46] 

where the goal is to minimize the array output subject to the constraint of unity gain in 

the desired direction.  The output of the array can be described by equation (4.28) where 

mr is the vector of inputs received at the array microphones. 

( ) ( )nmwny H rr
=        (4.28) 

Equation (4.29) defines the output covariance matrix, which is often used to compute the 

weights of an optimal filter.  The symbol H represents the complex conjugate (Hermitian) 

transpose operation. 

( ) ( )[ ]nmnmER Hrr
=       (4.29) 

The goal is to minimize the contribution of the noise, which is done by adapting the 

filters to minimize the output power of the array while maintaining unity gain in the look 

direction.  The power to minimize is shown in equation (4.30) subject to the constraint of 
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unity gain in the look direction in equation (4.31) where is ( )θv defined in equation 

(4.19). 

( )  ( ) ( )[ ] wRwwnmnmEwnyEP HHH rvrrr
=== 2

    (4.30) 

( ) 1=θvwH rr
       (4.31) 

The solution to this problem is the Linearly Constrained Minimum Variance Filter 

(LCMVF) using the weights of equation (4.32). 

( )
( ) ( )θθ

θ
vRv

vRw H rr

r
r

1

1

−

−

=       (4.32) 

 

Griffiths & Jim[47] reformulated the problem as a natural separation of the constraint and 

the minimization described as follows.  The Griffiths & Jim beamformer is also known as 

the Generalized Side-lobe Canceller (GSC).  In the GSC the constraint is inserted in the 

direct signal path and an unconstrained Least Mean-Square (LMS) algorithm is used to 

minimize the output energy in outy .  The architecture of a 4-microphone GSC is shown in 

Figure 4.6 where the four microphones outputs are time delay steered to produce 4 

signals, which ideally have the desired signal in phase with each other.  These four 

signals are then sent to the blocking matrix whose purpose is to block out the desired 

signal from the lower path of the GSC.  The blocking matrix produces 3 signals that are 

fed into adaptive FIR filters.   
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Figure 4.6: Generalized Side-lobe Canceller 

 
Equation (4.33) is an example of a blocking matrix that simply takes the difference of the 

input channels and assumes the inputs are perfectly in phase where 00 =ω . 
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The matrix B represents a bank of band-rejection filters, each of which is tuned to an 

angular frequency 0ω .  The function of the matrix B is to cancel interference that leaks 
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through the side-lobes of the band-pass filter in the direct path.  A detailed development 

of the blocking matrix of the GSC can be found in the adaptive filter theory textbook by 

Simon Haykin.[2] 

 

The bottom branch of Figure 4.6 contains 3 filtered versions of the noise to be subtracted 

from the top branch.  The top branch of the GSC is the beamformed signal delayed by L/2 

to be in phase with the noise signals after the FIR filters, where L is the number of taps in 

the filters.  The filters in the bottom branch must adapt to approximate the noise in the top 

branch.  The Normalized Least-Mean-Square (NLMS) algorithm is used to update the 

coefficients of the FIR filters for the implementation of the GSC used in this thesis. 

 

Ideally the lower path would not contain any of the desired signal and the filters would 

adapt to cancel the noise source.  Unfortunately, reverberation and multi-path effects 

cause only a portion of the desired signal to arrive at the array from the steering direction.  

Multi-path combined with an energy minimization criteria results in signal cancellation 

because the free filter coefficients are partially adapted to minimize power from the 

desired signal.[48] 

 

The NLMS algorithm is a stochastic gradient algorithm used for linear adaptive filtering 

similar to the LMS algorithm, where the tap weight vector, nwr , represents an estimate 

whose expected value approaches the optimal Wiener solution.[49]  Minimizing the output 

of the GSC in equation (4.34) is done by adapting the coefficients using the NLMS 

algorithm. 
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( ) ( ) ( )nynyny abfout −=      (4.34) 

 

Given the filter tap-input vector ( )nx  and desired response ( )nya , determine the tap-

weight vector ( )1+nw  so as to minimize the squared Euclidean norm of the change 

( ) ( ) ( )nwnwnw −+=+ 11δ      (4.35) 

in the tap weight vector 1+kw  with respect to its old value kw , subject to the constraint 

( ) ( ) ( )nynxnw a
H =       (4.36) 

The squared norm of the change ( )1+nwδ  in the tap weight vector ( )1+nw  may be 

expressed as  

( ) ( ) ( )111 2 ++=+ nwnwnw H δδδ     (4.37) 

( ) ( ) ( )[ ] ( ) ( )[ ]nwnwnwnwnw H −+−+=+ 111 2δ   (4.38) 

( ) ( ) ( )
21

0

2 11 ∑
−

=

−+=+
Order

j
jj nwnwnwδ     (4.39) 

 

The remaining derivation of the NLMS algorithm goes on to define a complex cost 

function based on the squared norm ( ) 21+nwδ  and uses Lagrange multipliers to find the 

solution to the minimization of equation (4.39). [50] 

 

The vectors nw ,1
r , nw ,2

r , and nw ,3
r  contain the filter coefficients of FIR1, FIR2, and FIR3 

respectively at time n, they can be combined to create an overall filter coefficient vector 
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nwr in equation (4.40).  Similarly an overall input vector can be created as shown in 

equation (4.41). 
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NLMS update of the coefficients at time (n+1), where µ  is the step-size is: 

noutn
n

nn yx
x

ww ,21
r

r
rr µ

+=+      (4.42) 

The current output at time k is  

nanbfnout yyy ,,, −=       (4.43) 

where 

n
H
nna xwy rr

=,        (4.44) 

The delay (L/2), corresponding to half the filter’s propagation time, is introduced to the 

( )kybf  to ensure that the middle of each of the adaptive filters at time k corresponds to 

( )kybf .  This means that both samples were generated from the same input samples 

before their paths split. 
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4.2 Voiced Activity Detection (VAD) 

The purpose of Voice Activity Detection (VAD) is to determine whether a frame of the 

captured signal represents voiced, unvoiced, or silent data.  Voice activity detection 

ideally is aware of the human speech production system, so it can differentiate between 

silence, unvoiced, and voiced sounds.  Voiced sounds are periodic in nature and tend to 

contain more energy than unvoiced sounds, while unvoiced sounds are more noise-like 

and have more energy than silence.  Silence has the least amount of energy and is a 

representation of the background noise of the environment.  The VAD plays a central role 

in the SSPN algorithm in that its accuracy dramatically affects the noise suppression level 

and amount of speech distortion that occurs. 

 

Applications of VAD include speech recognition, voice compression, noise 

estimation/cancellation, and echo cancellation.  Speech recognition is concerned with 

finding out exactly when a word or utterance begins and ends; these are called the speech 

endpoints.  The speech recognizer requires accurate endpoints in order to achieve good 

performance when pattern matching.  Voice compression uses VAD to reduce the 

required bit rate needed to accurately transmit a voice stream.  The percentage of time 

that a VAD detects the presence of speech is called the voice activity factor, VAF, which 

can range from 44% down to 36%.[51]  During typical conversation, talk spurts comprise 

only 31.5% of each party’s speech and the remaining 68.5% is silence.[52]  The wireless 

phone voice compression standards such as GSM (Global System for Mobile 

Communications), EVRC (Enhanced Variable Rate Coder), and ITU (International 

Telecommunications Union) G.729 are examples of algorithms that use VAD.[53], [54], [55]  
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Single channel noise estimators require a VAD to know when to update the noise 

reference and a VAD is used in many spectral subtraction algorithms, which works well 

as long as the noise is slowly varying.  This single channel application of the VAD is 

exactly what is used in the SSPN algorithm where the VAF range of 36 to 44% for 

typical speech patterns enables the accumulation of an accurate stationary noise 

reference. 

 

The choice of a VAD algorithm for the SSPN algorithm required a trade off of delay, 

sensitivity, accuracy, and computational cost.  Some of the measures used in VAD 

algorithms are the Itakura LPC distance, energy levels, spectral energy distribution, 

timing, pitch, zero crossing rates, cepstral features, adaptive noise modeling, and 

periodicity.  Noise frames have also been detected by measuring the spectral difference 

over a number of time periods.[56]  Many of the algorithms also assume that the first 4 to 

10 frames are silence in order to initialize the noise estimate, where 10 frames or  160 ms 

was used in the VAD for the SSPN algorithm.  Most VADs operate well in the 5 to 10 dB 

SNR range with a few advanced algorithms reaching to between -5 and 0 dB [57] and the 

VAD used in this thesis worked reasonably well for the purposes of a noise estimate 

down to 0 dB input SNR.  An algorithm by Rabiner and Sambur was experimented with 

for this thesis, which is noted for good performance for speech endpoint analysis and low 

computational cost uses a combination of zero crossings and energy level detection.[58]  

However, it became too conservative in classifying noise at low SNR and did not update 

the noise reference frequently enough, this decreased the amount of noise suppression the 

SSPN algorithm could achieve. 
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4.2.1 Energy level detection 

Energy level detection in the frame is one of the simplest and earliest measures used for 

VAD, and was chosen as the VAD method used for the SSPN algorithm in this thesis.  

Other research has extended the energy calculation to dual and multiple spectral sub-

bands within each frame.[55] [59]  The initial noise spectrum, mean, and variance are 

calculated assuming the first 10 frames are noise only.  Thresholds are calculated for 

speech and noise decisions and all statistics are gradually updated when a noise frame is 

detected.  The update factors α and β can be tuned and have been set to 0.95 in previous 

experiments.[59]  The steps for the VAD algorithm used for all calculations in this thesis 

are outlined in Figure 4.7, where the same VAD was used in order to make fair 

comparisons between spectral subtraction and SSPN.  More advanced VAD algorithms 

documented in the literature are mentioned, in the paragraphs following the detailed 

description of energy detection, as possibilities to investigate in future research to 

improve the SSPN algorithm. 
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Figure 4.7: VAD using energy detection 

 
The equations used in the VAD of Figure 4.7 are described next, where these equations 

were used directly as part of the SSPN VAD.   

 

1. Buffer data into the kth frame, x(n, k), and transform to the frequency domain. 

( ) ( )( )knxFFTkwX ,, =     (4.45) 
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2. Initialize the noise spectrum and noise mean for k =1. 

( ) ( )kwXwN ,=      (4.46) 

∑
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µ      (4.47) 

 

3. If VAD = 0, then update the noise spectrum, mean, and standard deviation for 

frame.  Frames 2 through 10 are assumed to be noise in order to get a good initial 

average of the stationary noise in the environment. 

),()1()()( kwXwNwN αα −+=     (4.48) 
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)()1( kNNN µββµµ −+=      (4.50) 

( ) 2/12
)(

2 )1( kNNN µββσσ −+=     (4.51) 

The mean of he noise estimate is Nµ , the standard deviation of the noise estimate 

is Nσ , and the noise estimate variance is represented by N
2σ . 

 

4. Update thresholds if a frame does not contain speech, using the mean and 

variance of the noise estimate where threshold settings are adjusted using the 

multipliers Sα  and Nα , which can be adapted and set experimentally.  Optimally 

adapting these VAD thresholds has been the subject of recent research [57], but 
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was not attempted in this thesis because sensitivity to the thresholds was reduced 

by the iteration of the algorithm as mentioned in section 5.4. 

 NSNSThresh σαµ +=     (4.52) 

 NNNNThresh σαµ +=     (4.53) 

 

5. VAD decisions can be made with a speech threshold determination where if the 

signal energy exceeds twice the standard deviation above the mean of the noise, 

then the frame is classified as speech.  If the signal energy falls within some 

fraction of the noise standard deviation, then it is classified as noise and modifies 

the reference accordingly.  If neither speech nor noise is chosen, then the last 

frame’s decision is repeated for the current frame. 

 
if(Energy(k) > ThreshS), VAD(k) = 1 

if(Energy(k) < ThreshN), VAD(k) = 0 

else VAD(k) = VAD(k-1) 

 

The plot in Figure 4.8 shows the sentence, “Nonlinear speech processing”, and was 

sampled at 8kHz and the frame size was 128 samples or 16ms.  The solid line 

superimposed on the plot shows the portions of the signal that are classified as speech 

when it is one and noise when it is zero.  From this plot you can visually conclude that 

the algorithm performs quite well on average, but has some trouble at transitions.   
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Figure 4.8: Voice Activity Detection 

 

4.2.2 Other VAD algorithms 

Other VAD algorithms have been developed to improve accuracy of detecting the 

beginning and ending of speech segments.  The additional measures of voice activity can 

be considered for possible improvements to the SSPN algorithm. 

 

Zero crossing rates can be calculated for each frame and compared with a threshold.  The 

zero crossing rate of noise is assumed to be considerably larger than that of speech.  This 

assumption works well at high SNR values, but has problems at low SNR and in the 
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presence of periodic noise (interfering talkers).[60]  Zero crossing was added to the criteria 

used for the VAD in the SSPN algorithm, but it had the affect of not classifying enough 

frames as non-speech, so the noise estimate was not updated frequently enough, 

especially at lower input SNR values near 0 dB.  The zero crossing rate was taken out of 

the VAD for the final SSPN algorithm used to report the results in Chapter 5. 

 

Periodicity is a major indicator that speech is present in the current frame.  However, care 

must be taken to understand the possible noise present in the environment because 

interfering talkers, tones, or other periodic noise would cause false indications of speech.  

Pitch tracking and other measures can minimize the problem of periodic noise.  Tucker 

designed a VAD based on periodicity that operates successfully even at 0 dB SNR and 

has moderate performance as low as -5 dB.[61]  The detector uses a least-squares 

periodicity estimator, LSPE, on the input signal and triggers when a significant amount of 

periodicity is found.  Irwin investigated the LPSE optimum method for measuring 

periodicity and discusses the required preprocessing.[62]  Periodicity was not used as a 

VAD indicator for the SSPN algorithm because it does not detect unvoiced non-periodic 

speech utterances and cannot accurately  locate the boundaries of the speech.  Periodicity 

should be used in combination with other VAD methods or for speech applications that 

can afford a margin of error to account for missed unvoiced speech. 

 

Hangover time is needed to prevent certain low-energy unvoiced speech sounds from 

being confused with background noise.  If the noise level is high enough speech sounds 

such as /f/, /th/, or /h/ can be confused with the noise and there are also extremely short 
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pauses during active speech plosives such as /p/, /t/, and /k/, where a detector could 

prematurely declare the start of a silent frame.  Hangover is the amount of time that the 

VAD will delay its decision to declare silence where more delay will cause more frames 

to be counted as speech and allow less updates of the noise estimate.  Less delay will 

allow the noise reference to be updated more frequently, but may result in a higher 

speech threshold and mask the low energy speech mentioned above.  This tradeoff must 

be tuned according to the specific application and environment.[63]  The use of hangover 

time was experimented with for the VAD in the SSPN algorithm with mixed results.  

Hangover helped reduce distortion of the speech if the speech detection thresholds were 

set high in an attempt to aggressively attenuate the noise because the hangover would 

prevent some speech from being falsely classified as noise.  However, if the speech 

detection threshold was set low enough, then the speech was already being detected and 

the only effect of the hangover was to reduce the frequency of the noise update thus 

suppressing less noise.  The hangover was not included in the SSPN algorithm for the 

results reported in Chapter 5 because the algorithm took the conservative approach by 

classifying more frames as speech by setting the speech detection threshold fairly low.  

Another reason the hangover was not needed is the iteration of the SSPN algorithm 

tended to expand the number of frames classified as speech as reported in section 5.4. 
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4.3 Spectral subtraction 

4.3.1 General spectral subtraction 

Generalized spectral subtraction (GSS) was used for the SSPN algorithm to allow the 

parameters of the noise subtraction to be modified by the auditory perceptual masking 

threshold function.  GSS also has the ability to fall back to simple spectral subtraction 

with half wave rectification, which is used in the SSPN algorithm prior to calculating the 

masking threshold.  Spectral subtraction uses the short-term spectral magnitude of the 

noisy speech and an estimate or reference of the noise signal.  Most single channel 

spectral subtraction methods use a voice activity detector (VAD) to determine when there 

is silence in order to get an accurate noise estimate and the noise is assumed to be short-

term stationary so that noise from silent frames can be used to remove noise from speech 

frames.  In order to estimate the clean speech frame a phase estimate is also required, but 

Wang and Lim have determined that it is sufficient to use the noisy phase spectrum as an 

estimate of the clean speech phase spectrum.[64]  Figure 4.9 shows the signal flow for 

spectral subtraction where ( )km  is a frame of unprocessed noisy data, k  is the frame 

index, ω  is the frequency index, ( )kM ,ω  is the spectrum of the frame, ( )kN ,ω  is the 

spectrum of the noise estimate, ( )kS ,ˆ ω  is the spectrum of the speech estimate, and ( )kŝ  

is the speech estimate frame in the time domain. 
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Figure 4.9: Single Channel Spectral Subtraction 

 

The most frequently referenced paper on spectral subtraction was written by Boll in 1979 

and uses four steps in its spectral subtraction algorithm.[4]  First, magnitude averaging 

across frames is done to reduce spectral errors, which helps avoid the creation of musical 

tones.  Longer averages will further decrease the error, but if too many frames are 

averaged then the short-term stationary assumption on the speech is no longer valid.  The 

averaging of more than three half overlapped windows with total time duration of 38.4ms 

will reduce intelligibility.  The second step is half-wave rectification to remove the noise, 

but this also degrades the speech signal and introduces musical noise.  The third step is 

for residual noise reduction, which done by is replacing the current frame value with a 

minimum value from adjacent frames.  This approach is based on the theory that noise 

will vary more than the speech from frame to frame.  Taking the minimum is only used 

when the magnitude of the speech estimate is less than the maximum noise residual 

calculated during non-speech activity.  If the value is higher than the maximum noise 

level, then it is considered speech and left alone.  Taking the minimum will retain the 

speech signal below the noise maximum because it varies slowly, but taking the 
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minimum of varying noise will suppress the noise value.  The fourth step is to use 

additional signal attenuation during non-speech activity.  It was found that leaving some 

noise present in the non-speech frames created a more perceptibly pleasing transition 

between non-speech and speech frames, with one example of attenuating noise frames by  

–30dB found to be a reasonable amount. 

 

A major challenge in spectral subtraction is to obtain low variance amplitude spectrum 

estimates.  Variance in the spectral estimate can be reduced using Bartlett’s method at the 

cost of frequency resolution.[31]  Since the spectral subtraction technique is frame-based 

and uses FFT’s, frame effects must be considered.  An FFT corresponds to a critically 

sampled filter bank.  A circular convolution (which comes from the FFT and IFFT 

operations) results in discontinuities between frames, but can be avoided using correct 

lengths of the filter and data frame.[31] 

 

After subtraction the spectral magnitude is not guaranteed to be positive where the 

possibilities to remove the negative components are by half-wave rectification (setting 

the negative portions to zero), full wave rectification (absolute value), or weighted 

difference coefficients.  Half-wave rectification is commonly used but introduces 

“musical” tone artifacts in the processed signal.  Full wave rectification avoids the 

creation of musical tones, but is less effective at reducing noise.  Much of the spectral 

subtraction research has focused on how to remove or reduce the creation of musical 

tones while maximizing the suppression of noise.[65] [66]  The SSPN algorithm prevents the 
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negative spectral components from accruing by weighting the spectral gain function 

according the masking threshold and a lower limit of zero. 

 

The noise residual will typically appear as randomly spaced narrow bands of magnitude 

spikes and have a magnitude between zero and a maximum value measured during non-

speech activity.  It will sound like the sum of a tone with random fundamental 

frequencies when it is transformed back to the time domain and during speech activity 

these tones will be heard where the speech does not mask them.  A simple way to reduce 

the musical tones is to over-subtract the noise estimate from the signal, but this will also 

eliminate low energy speech information.[67] Low energy unvoiced speech is particularly 

important to hearing impaired listeners, so it is best to minimize this type of signal 

degradation.[27],[68]  Other methods explored with varying success are critical band 

analysis[69], sub-frame randomization[70], iterative spectral subtraction[71], post-processing 

spectral classification[67], non-linear spectrum estimation[72], and minimum mean square 

error estimation.[73]  Critical band analysis with an auditory perceptually weighted 

spectral subtraction gain function was used in the SSPN algorithm, which was very 

effective in eliminating the introduction of musical noise artifacts.  

 

4.3.2 Noise estimation 

The SSPN algorithm uses an estimate of the stationary noise based on the frame 

classification provided by the VAD.  Other noise estimation techniques are mentioned 

below as a possibility for future research into improving the noise suppression 

performance of the SSPN algorithm.  Noise estimation is an important part of spectral 
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subtraction for removing the unwanted interference from the signal.  The noise sources 

can be broadband (white) background noise, interfering talkers, or narrow band signals.  

Stationary noise can be estimated over longer time frames to obtain better accuracy and 

noise that is non-stationary requires a quickly converging adaptive algorithm or 

estimation during the current frame.  Naturally, the accuracy of the estimated noise 

spectrum will determine to a great deal how much residual noise is left after processing 

the signal through algorithms like spectral subtraction.  The measure of the noise estimate 

is also a key to the performance of the voice-activity detector because the speech 

detection threshold is often based on the noise statistics.   

 

4.3.2.1 Noise reference channel 

A noise reference channel was not used in the SSPN algorithm, but represents an 

interesting possibility for enhancing the algorithm to cancel non-stationary interferences 

like passing cars.  Multiple microphone systems enable the signal processing to perform 

signal separation to obtain a noise reference channel free of the desired signal where this 

separation provides a continuous estimate of the noise, so non-stationary noise can be 

tracked and removed.  A typical use of the noise reference signal is for an adaptive noise 

cancellation system, such as those using the Least Mean-Square (LMS) algorithm as 

shown in Figure 4.10.[2], [74], [75]  
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Figure 4.10: Adaptive Noise Cancellation 

 
Signal separation can be done statistically, spectrally, spatially, and by estimating the 

source to sensor transfer functions to de-correlate and the general problem is to determine 

the coupling between the signals based on a given criteria and then undo it to achieve the 

signal separation.  De-correlation of the received signal to perform channel separation has 

received some attention in recent literature and yet another area to explore for improved 

noise suppression algorithms.[76], [77], [78] 
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Figure 4.11: Dual Channel Signal Separation 

Figure 4.11 describes one framework used for separating noise and the desired signal 

where the observed signals at each microphone are shown in equations (4.54) and (4.55).  

The coupling between channels is represented by ))(( 212 nsH  and ))(( 121 nsH . 

))(()()( 21211 nsHnsnm +=     (4.54) 

))(()()( 12122 nsHnsnm +=     (4.55) 

The goal is to subtract out the coupling effects between channels by using an estimate of 

the relationships between sources and sensors. 

))(()()( 22111 nmGnmny −=     (4.56) 

))(()()( 11222 nmGnmny −=     (4.57) 
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Assuming the source signals are statistically independent has been used as the criteria for 

signal separation.  The decoupling filters, 12G  and 21G , are adjusted so that the 

reconstructed signals )(1 ny  and )(2 ny  are statistically independent, which should 

approximately represent the original source signals )(1 ns  and )(2 ns , then higher order 

statistics are used to measure the degree of independence achieved. 

 

Single microphone implementations simply place the microphone as close to the desired 

source as possible and far away from the noise source.  Multi-microphone systems offer a 

lot of flexibility for placement and potential for improving the noise estimation accuracy.  

The microphone designated for the noise reference should be far away from the desired 

source for good channel separation, but not so far that the noise at one microphone is not 

correlated with the noise at the microphone for the desired signal.  If the noise and speech 

channel are not well separated, then a portion of desired signal will be cancelled.  If the 

noise is not correlated well between the microphones, then noise statistics will not be 

well matched and the signal will either be degraded or more noise will remain.  These 

two contradicting goals must be balanced and are very application dependent. 

 

The SSPN algorithm can be used independently in multiple seat locations in the car, but 

could possibly be improved by taking advantage of the expanded set of microphones and 

additional spatial diversity.  It has been shown that there is some correlation of noise 

between the area facing the driver’s seat and other locations in the car such as the front 

passenger seat.[79]  This situation allows the placement of microphones in front of both 

the driver and front seat passenger.  When the driver is speaking the passenger 
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microphone can be used as the noise reference and when the passenger is speaking the 

driver side microphone can be used as the noise reference.  Simply placing the 

microphones in an optimal location is not enough because the correlation of the noise 

between the microphones will not always be high because if one window is down in the 

car and the other is not for example, then the noise will vary a lot based on location.  The 

correlation of the noise between the microphones is also frequency dependent, where 

experiments have shown that low frequency components of the noise are highly 

correlated, and that the correlation decreases gradually as the frequency is increased until 

it vanishes for frequencies higher that about 2 kHz.[79]   

 

4.3.2.2 Noise estimation during silence 

The main advantages of noise power estimation during non-speech frames in conjunction 

with a VAD are the low complexity, low computational costs, and implementation with a 

single microphone.  The disadvantages are that non-stationary noise cannot be tracked 

and the VAD performance degrades significantly at lower SNR.  The long-term average 

spectral mean of the noise is calculated to estimate the stationary noise and the new noise 

estimation data is introduced slowly to the current estimate to avoid sharp frame-to-frame 

changes that would worsen the musical noise artifacts present in some spectral 

subtraction algorithms.[80] 

 

A sub-band implementation could eventually be used for the SSPN algorithm to improve 

the noise estimation and computational efficiency.  Noise estimation during non-speech 

has also been used for sub-band processing algorithms where low frequency bands have 
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high coherence, so they can use a strategy that adapts during silent frames.  In some of 

the higher frequency bands the speech information has higher coherence than the noise 

and can be continually adapted.[81]  Another example that the SSPN algorithm could 

consider for noise estimation is a microphone array that makes the speech vs. non-speech 

decision for each microphone, so only the microphones with significant noise content 

update the overall estimate of the noise.[82] 

 

4.3.2.3 Continuous noise estimation 

Continuous noise estimation could expand the SSPN algorithm’s ability to suppress 

severe and non-stationary noise sources.  More sophisticated techniques are required 

when the signal to noise ratio, SNR, is low or the noise is highly non-stationary.[83]  If the 

noise estimate is too low, then there will be excess residual noise passed through the 

system, but if the noise estimate is too high, then speech sounds will be degraded and 

perhaps be worse than if the noise was still present.  Current research is aimed at 

incorporating soft-decision schemes, which are also capable of updating the noise Power 

Spectral Density (PSD) during speech activity.  Some of the successful methods will be 

described below, which could be used with the SSPN algorithm proposed in this thesis.   

1. Multi-channel signal separation 
2. Minimum statistics 
3. Energy clustering 
4. Weighted average of past sub-band spectral magnitudes 

 
Multi-channel signal separation to obtain a noise reference channel is a common 

technique to get an accurate noise estimate during speech.  This method is described in 

section 4.3.2.1.  Another effective channel separation technique is to use a two-channel 
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beamformer where a blocking matrix filters out the desired speech leaving the rest of the 

signal as the noise estimate.  This use of a beamformer is more effective than the 

traditional application because it works well even when the number of sources exceed the 

number of microphones.[84]  Microphone placement is also of great concern when using 

arrays of microphones to perform one of the many beamforming algorithms.  The array 

needs to be able to locate and track signal and noise sources.  The array should be placed 

close to the desired source as in the single microphone case.  However, the spacing 

between microphones has an effect on the frequency resolution of the array and thus its 

ability to enhance the signal.[85] 

 

Minimum statistics noise estimation is based on the observation that even during speech 

activity a short-term power spectral density estimate of the noisy signal frequency decays 

to values that are representative of the noise power level.  There is a fundamental 

assumption that during speech pause or within brief periods in between words and 

syllables the speech energy is close to zero.  Thus, the noise floor can be estimated by 

tracking the minimum power within a finite window large enough to bridge high power 

speech segments.  The low energy envelope of the signal is tracked within frequency 

bands.  Some of the challenges to this technique are:  

• Calculating an optimal smoothing of the estimate 
• Accounting for a bias towards lower values 
• Delays in tracking during periods of increasing power  

 
Listening tests show that this approach outperforms a VAD plus soft-decision updating 

during speech activity.  The minimum statistics algorithms also preserved weak voiced 
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sounds such as the consonants /m/ and /n/ and had dramatic improvements when the 

input signal was music.[86], [87] 

 

Energy clustering is based on the analysis of histograms of energy values within different 

frequency bands.  Each band can be assumed to have two modes.  A low energy mode 

related to speech pauses and a high energy mode related to the speech.  The energy 

distribution in a band is analyzed using this two-mode approach.  Either a two-centroid 

clustering algorithm or a fit to Gaussian probability density function is used to detect the 

mode for each band.  This analysis can be done during speech and can also determine the 

SNR within a given band.  One of the challenges of this method is that the two modes 

tend to merge when low SNR conditions are present.  This blending of the modes causes 

an underestimate of the noise level that must be compensated.[88] 

 

Weighted average of past sub-band spectral magnitudes and analysis of their histograms 

are two more methods for noise estimation without a VAD.  The first method calculates 

the weighted sum of past spectral magnitudes iX  in each sub-band i.  The weighting is 

done by a first order recursive system, ( ) ( ) ( ) ( )11 −⋅+⋅−=
ΛΛ

kNkXkN iii αα , where 

( )kX i  denotes the spectral magnitude at time k in sub-band i and ( )kN i

Λ

 is an estimation 

of the noise magnitude.  Higher values occur at the onset of speech, so a threshold 

( )1−⋅
Λ

kN iβ  is introduced where β  takes on values between 1.5 and 2.5.  When the 

spectral component ( )kX i  exceeds the threshold this is considered as an approximate 

detection of speech and the recursive algorithm is stopped.  The second approach looks at 
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the histograms of the spectral values in each sub-band.  Values below the same threshold 

of the first method are classified as noise.  Past values of noise segments totaling 400 ms 

are evaluated to determine the distribution in 40 frequency bins.  The noise level is 

estimated as the maximum of the distribution in each sub-band.  The estimated noise 

values are smoothed to remove any spikes.  The second method provides a more accurate 

noise estimate than the first, but requires more computation.[83] 

 

4.4 Perceptual nonlinear frequency weighting 

The SSPN algorithm uses perceptual nonlinear weighting of the gain function used for 

spectral subtraction, which enables it to aggressively attenuate the noise while avoiding 

the introduction of annoying artifacts to the speech signal.  SNR, signal to noise ratio, is 

the most broadly used criteria for reducing noise in a received speech signal and has been 

very successful, but it is limited because inaccuracy of the noise estimate can cause either 

excess residual noise or distortion of the signal.  Taking advantage of the human auditory 

system’s characteristics can help mitigate the effects of residual noise and render the 

speech to be more perceptually pleasing to the ear because the distortion of the signal is 

minimized by not processing noise that is effectively inaudible.  The human auditory 

system performs some form of frequency signal analysis and reconstruction when 

listening to a signal present in noise, so enhancement algorithms can follow a similar 

process.  The short-time spectral amplitude, STSA, enhancement methods can take 

advantage of how people perceive the frequencies instead of just working with SNR.  

There has been considerable work done in the area of perceptual masking during the past 

decade and some examples can be found in these references.[11], [89], [90], [91], [92], [93], [94], [95], 
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[96], [97]  A description of the psychoacoustics behind the perceptual masking threshold is 

described in Appendix A. 

 

This section describes how the SSPN algorithm calculates the masking threshold for 

purposes of weighting the spectral subtraction gain function.  Perceptual speech 

enhancement techniques have the problem that there is no clean speech reference or 

accurate spectral noise estimate in order to determine exact auditory masking thresholds.  

If the clean-speech masking threshold is too high then more noise will be left in the 

signal, but if the clean-speech masking threshold is calculated too low, then information 

about the desired signal will be lost.  Spectral subtraction is commonly used to obtain an 

estimate of the clean speech from which the masking thresholds are calculated and what 

is used in the SSPN algorithm.   

 

A similar approach has been proposed which calculates the masking threshold of the 

noise and noisy speech, compares the two, and then performs a subtraction to obtain an 

estimate of the clean speech threshold.  The problem introduced by the distortion of 

spectral subtraction can be avoided by performing the threshold calculation before the 

subtraction is done.[89]  This approach was not attempted in this thesis due the added 

complexity that would be introduced to the algorithm. 

 

The steps required to calculate the masking threshold are taken directly from the paper by 

Johnson [98] and are shown in Figure 4.12 with the data flow of the mask threshold 

algorithm shown in Figure 4.13.  The diagrams and equations are an accurate 
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representation of the algorithm used in the SSPN processing to obtain the results in 

Chapter 5. 

Obtain initial estimate of the speech

Relate the spread masking threshold to the critical band
masking threshold

Apply the spreading function to the critical band spectrum

Calculate the spread masking threshold accounting for
spectral flatness

Convert the spread spectrum back to the Bark domain via
renormalization

Adjust for absolute thresholds

 
Figure 4.12: Steps for mask threshold calculation 
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Figure 4.13: Masking Threshold Calculation 

 

Critical Band Analysis partitions the power spectrum into critical bands according to 

Table 2.2 presented in the section 2.2.  The power spectrum is calculated from the 

frequency data as in equation (4.58). 

)(Im)(Re)( 22 ωωω +=P     (4.58) 
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The energy in each critical band is summed in equation (4.59) where Bi  is the energy for 

critical band i , bli  is the lower frequency for the band, and bhi  is the upper frequency 

for the band. 

    ∑
=

=
bhi

bliw

PBi )(ω      (4.59) 

The number of critical bands used will depend on the bandwidth of the signal in question.  

Humans can only perceive frequencies between 20 Hz and 20kHz, so that places a bound 

on the range of frequencies to consider.  There would be 22 critical bands for an 8kHz 

signal that is sampled at the Nyquist rate of 16kHz.   

 

The spreading function is used to estimate the effects of masking across critical bands.  

The spreading function is calculated as ( ) 25<=− ij , where i  is the Bark frequency of 

the masked signal and j  is the Bark frequency of the masking signal.  The term Bark is 

used to indicate the frequencies of one critical band as defined in Table 2.2.  The 

spreading function is put into matrix form, ijS , and convolved with critical band energies 

iB . The spread critical band spectrum, iC , is given in equation (4.60) where ∗  is the 

convolution operator. 

iiji BSC ∗=       (4.60) 

There are different masking thresholds based on spectral flatness of the signals. 

1. Tone masking noise is estimated as (14.5 + i) dB below iC ,  

where i  is the Bark frequency. 
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2. Noise masking a tone is estimated as 5.5 dB below iC  uniformly  

across the critical band. 

 

Spectral Flatness Measure, SFM, is defined in equation (4.63) as the ratio of the 

geometric mean, Gm, of the power spectrum to the arithmetic mean, Am, of the power 

spectrum.  Arithmetic mean is given in equation (4.61) and geometric mean is given in 

equation (4.62). 

 
n

PPPP
A n

m
)(...)()()( 321 ωωωω ++++

=    (4.61) 

  n
nm PPPPG )(...)()()( 321 ωωωω ⋅⋅⋅⋅=    (4.62) 

  
m

m
dB A

G
SFM 10log10 ∗=     (4.63) 

The coefficient of tonality in equation (4.64), α , is calculated where an  

SFM = SFMdbmax = -60 dB indicates the signal is very tone-like and an SFM = 0 indicates 

the signal is more noise-like.  For example an SFM = -30dB would result in 5.0=α . 

  







= 1,min

maxdB

dB

SFM
SFM

α     (4.64) 

The offset in equation (4.65), iO , for the masking energy in each band, is determined by 

using the tonality to weight the masking thresholds for tones and noise. 

  ( ) ( ) 5.515.14 ∗−++∗= αα idBOi    (4.65) 
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The spread threshold estimate is then calculated using equation (4.66). 

  
( ) 






−

= 10
log 10

10
i

i
OC

iT     (4.66) 

The spreading convolution must now be undone and the threshold converted back to the 

Bark domain.  De-convolution is unstable due to the shape of the spreading function and 

would introduce undesired artifacts into the signal, so renormalization is used instead to 

remove the increased energy added to each band by the spreading function.  

Renormalization multiplies each Ti by the inverse of the energy gain, assuming a uniform 

energy of 1 in each band. 

 

Critical band noise thresholds that are lower than the absolute threshold of hearing are 

changed to equal the mean of the absolute threshold of hearing for that band, so it does 

not make sense to calculate a mask threshold for something that cannot be heard anyway.  

The absolute threshold of hearing has been measured with several experiments and is 

given as an estimated curve plotted versus frequency in Figure 4.14.[24], [99]  
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Figure 4.14: Absolute threshold of hearing in a free field [24], [100] 

 

4.5 Talker isolation via pitch tracking 

The SSPN algorithm proposes the use of talker isolation after initial noise removal is 

done by the GSC beamforming and weighted spectral subtraction, which, in theory, 

should allow the talker isolation to perform better than if were operating on the original 

noisy signal.  Experiments using pitch detection, described in section 3.3.7 and reported 

in section 5.10, were done with the SSPN algorithm to gain insight on how a talker 

isolation algorithm based on pitch tracking might perform using the noise reduced signal 

compared to the noisy signal.  A full pitch tracking and talker isolation algorithm was not 



 99 

implemented because the complexity of such an algorithm would have expanded the 

scope of this thesis beyond the initial goals of designing the higher-level framework.  

Integrating a talker isolation program into the SSPN algorithm is the next logical step of 

continued research on this algorithm and some specifics of a potential algorithm are 

discussed in the follow paragraphs. 

 

A typical goal of signal separation is to isolate the desired speech from other speech 

sources and noise.  Separating the sources is crucial since the desired and undesired 

speech have similar spectra and comparable amplitudes.  The challenge of extracting a 

single talker from a signal with multiple talkers has been referred to as the “cocktail party 

effect” where the name comes from the amazing ability of the human auditory system to 

focus on an individual talking in a crowded noisy room by using binaural cues to 

spatially focus on the desired speech.   

 

An excellent example using a combination of techniques for advanced pitch tracking and 

talker isolation is the work by Luo and Denbigh.[101]  They use frequency and amplitude 

continuity to track the desired talker.  Binaural spatial cues are used to discriminate pitch 

frequencies that are too close to resolve spectrally.  Room reverberation can severely 

degrade the performance of speech enhancement algorithms and reported results often 

neglect this important measure.  The multi-path effects of an enclosure can introduce 

false peaks and can nullify or split genuine spectral peaks of the speech.  These multi-

path effects make it much more difficult to perform pitch tracking when multiple signals 

have similar frequency content.  Multi-path reverberation also adversely effects signal 
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separation based purely on directional information because of the large variations across 

the frequency bands of the inter-aural time difference.  Their results show an average 

40% increase in intelligibility for low SNR speech of –6dB and –12dB.  The algorithm by 

Luo and Denbigh is presented in Figure 4.15. 

 

The algorithm described in Figure 4.15 does not separate the signal above 3kHz based on 

the assumption there is little power in the speech at those frequencies.  Also if two speech 

sources have simultaneous unvoiced frames, then they must be separated based only on 

inter-aural time differences because they lack the required periodicity for pitch tracking. 
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Select the desired speech from the
separated ptich tracks.

Divide the signal into 40 ms frames
with 38 ms overlap.  The small

separation of 2 ms is used to track
fast changes in picth.

Eliminate parts of the spectrum that is weaker than 10%
of the local mean spectral level.  Keep the obvious

peaks.

Perform FFT on each frame

Differentiate the spectrum and examine shoulders as
prospective hiden peaks.  Estimate the strength of the

candidate peaks by comparing their contrast to the
neighboring valleys.

Simplify spectrum
to contain only
genuine peaks

Apply the sub-harmonic summation method of Hermes
to that part of the spectrum between 50 and 1600 Hz.

The stronger voice is found first and then subtracted out
before locating weaker voiced pitches. This processing
is done every 20 ms to minimize computational load.

Do voices
overlap?

Perform dynamic tracking of the frequency and amplitude to exploit the
similarity of the speech from frame to frame.  Only those components

that have the same pattern of amplitude and frequency modulation and
are harmonically related can pass through the same tracking filter.

Yes

No

When pitches are too close to separate in frequency,
then use the inter-aural time difference to separate

speakers spatially.

 

Figure 4.15: Talker separation algorithm by Luo and Denbigh 
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Chapter 5  

Results 

Evaluating the SSPN algorithm using real data collected in an automobile was an 

important consideration in this thesis, so the performance could be characterized beyond 

what could be learned from computer generated white noise.  The eventual deployment of 

the SSPN algorithm in a hands-free application in the automobile will have a higher 

chance of success because research is based on data from that environment.  Ideally, 

extensive subjective listening tests would have been performed on the results, but that is a 

time consuming and costly process, so only informal listening was done to verify 

objective quality measures.  The objective speech quality measures provided a consistent 

method for comparing results and evaluating different initial SNR conditions. 

 

Section 5.1 provides the details of the real-world data that was used in order to test the 

algorithms’ performance for the intended application of a hands-free phone in an 

automobile.  MATLAB simulations and the spectrum of the input signals are explained 

in section 5.2.  The objective speech quality measures that were used are described in 

section 5.3.  Results for the proposed SSPN algorithm, beamforming and spectral 

subtraction, are reported in sections 5.4, 5.5, and 5.6 respectively and compared in 
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section 5.8.  Because the VAD plays such an important role, it’s accuracy was closely 

analyzed in section 5.9.  Pitch detection results are reported in section 5.10.  Statistical 

analysis of SSNR results using all the data in Table 5.2 is presented in section 5.11.  The 

results reported in this chapter support the expected theoretical strengths and weaknesses 

of the algorithms as described in Chapter 3 and Chapter 4.  Some ideas were proven not 

to work and insights were gained with respect to the quality of the speech and 

performance of the VAD.   

 

5.1 Measurements 

The measurements were made in a 2001 Honda Odyssey minivan where Figure 5.1 

shows the microphone setup in the van.  A uniform linear array of 4 Larson-Davis BNK 

omni-directional microphones was mounted between the visor and ceiling slightly above 

and in front of the driver.  The center of the array was about 38cm from the talker’s 

mouth and the spacing between the microphones was 5cm to allow for the beamforming 

to have good spatial resolution up to 3420Hz and a total aperture of 15cm.  A position 

close to where the microphones might be permanently installed in an automobile is 

protruding from beneath the visor toward the windshield, so this position was used for the 

recordings. 
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Figure 5.1: Microphone setup in van 

Calibration between the microphones is important for the subsequent beamforming to be 

effective, so this was done to ensure they had equal gains.  The microphones were 

attached to Larson-Davis 2200C pre-amplifiers with Larson-Davis 5-pin EXC010 

microphone cables and gains on the pre-amps were set to 10dB at all times.  The pre-

amps then fed their outputs through a BNC to ¼ inch jack connector cable to the line 

inputs of a 4-track TASCAM PortaStudio-424-III analog taper recorder where the trim 

level on the line inputs to the recorder were set to the top position for the clean speech 

recordings and lowered two notches for the noise recordings in order to avoid clipping.   

 

14.4 volts dc was supplied from the van to a 1750 Watt PortaWattz DC to AC inverter by 

StatPower Technology Corp. that was plugged into the power socket of the car to supply 

power for the recording equipment and a 6 amp fuse was in the socket plug.  Figure 5.2 

describes the layout of analog recording components, which were borrowed from Bose 

Corporation.   
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Later, the 4-track analog tape recordings were then played simultaneously into a 

Midiman Delta-10-10 sound card in a PC that digitized the signal at a 16kHz sampling 

rate with 16-bits of resolution.  All recording clips were digitized to be of the same time 

duration to make subsequent digital mixing easier and the components used to digitize 

the recordings are shown in Figure 5.3 
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Larson-Davis
pre-amplifier

TASCAM 4-track
Analog tape recorder

DC / AC
Power
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microphones = 0.05 m

Cigarrette lighter is
DC power source

 

Figure 5.2: Analog recording setup 
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Analog tape recorder

Midiman sound card
for PC PC Hard Drive
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One file per track

 

Figure 5.3: Digitizing analog data 
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Single close talking headset microphone recordings of the clean speech were made, so it 

would be possible to compare the results of microphone array processing to alternative 

solutions.  Ideally, noise recordings with the single microphone would have been done 

also, and these may be done at a later date.  Headsets achieves good speech quality 

simply because it is close to the source, but present an inconvenience to the user.  The 

headset microphone was an Optimus 33-3012 manufactured in the Philippines and was 

connected to an Optimus 170 Mhz FM wireless transmitter where an Optimus wireless 

receiver had its volume set to 5/10 and was connected through a mono RCA to ¼ inch 

cable to the TASCAM recorders line 1 input.  A single microphone was 1½ inches from 

the talker’s mouth.  

 

Adult male and female voices were recorded, using the array of microphones and the 

single headset microphone, in a quiet parked car with the windows up and down.  The 

different speech recordings are summarized in Table 5.1.  On a quiet clear evening, the 

recordings were made using the phrase, “We are getting off exit 12 near Bose, so we will 

be there in ten minutes.  Turn up the radio.  This is my favorite song.”   

 

Speech 
measurements 

Adult Window 
positions 

Single headset 
microphone 

Array of 
microphones 

Tape  
Locations 

FUA Female Up  X 20-45 
FDA Female Down  X 45-66 
MDA Male Down  X 66-94 
MUA Male Up  X 94-121 
FUS Female Up X  121-150 
FDS Female Down X  150-180 
MDS Male Down X  180-206 
MUS Male Up X  206-235 

Table 5.1: Clean speech measurements 
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The noise measurements were made separately without the driver speaking and are 

summarized in Table 5.2.  The noise was recorded on a day when a steady light rain fell, 

so there is noticeable splashing in the street and windshield wiper sounds evident in some 

of the recordings.  The rain can also be heard hitting the windshield and roof, which was 

significant because the microphones were located on the ceiling near the windshield. 

 

Noise  ID Location Speed Window 
positions 

Radio Fan Other  
talkers 

Wipers Tape 
Position 

Q0UIW Quiet road 0 Up Off Off Yes On 235-285 
Q0DIW Quiet road 0 Down Off Off Yes On 285-335 
H55UIW Highway 55 Up Off Off Yes On 335-445 
H55UW Highway 55 Up Off Off No On 445-495 
H55DW Highway 55 Down Off Off No On 495-545 

H55UFW Highway 55 Up Off High No On 545-595 
H55U Highway 55 Up Off Off No Off 595-645 
H55D Highway 55 Down Off Off No Off 645-695 

H55UF Highway 55 Up Off High No Off 695-745 
H55UI Highway 55 Up Off Off Yes Off 745-795 
EOUI Engine off 0 Up Off Off Yes Off 795-895 
EODI Engine off 0 Down Off Off Yes Off 895-955 
Q0UR Quiet road 0 Up On Off No Off 955-1037 
Q0UF Quiet road 0 Up Off On No Off 1037-1137 
Q0DR Quiet road 0 Down On Off No Off 1137-1188 
Q30U Quiet road 30 Up Off Off No Off 1188-1238 
Q30D Quiet road 30 Down Off Off No Off 1238-1288 
D0U Downtown 0 Up Off Off No Off 1288-1355 
D0D Downtown 0 Down Off Off No Off 1355-1410 

D20UW Downtown 20 Up Off Off No On 1410-1464 
D20DW Downtown 20 Down Off Off No On 1464-1562 

Table 5.2: Car noise measurements 

 

The clean speech was then added to the different types of noise that were measured to 

form the input signals to the enhancement algorithms.  Adding the noise and speech after 
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measuring provided a consistent “clean” speech reference to compare against the 

improvements made to the different noise corrupted signals.  Known SNR levels can be 

used as inputs to the simulations because of the separate noise and speech recordings.  

Only a limited amount of simulation data is presented in the following sections because it 

is sufficient to demonstrate the performance of the algorithms and results did not differ 

considerably using the other data. 

 

5.2 Simulation  

The simulations were done in MATLAB© using real data recorded in the car sampled at 

16 kHz and down-sampled to 8kHz to reduce the simulation time.  The phrase, “turn up 

the radio”, said by a woman was used in all the tests; it had a duration of 2.5 seconds or 

20,000 samples.  The different noise types were also from recordings in the car except for 

the additive white Gaussian noise (AWGN), which was computer generated.  The signals 

and noise were mixed on the computer and the SNR of the signals was adjusted to the 

known values of 0, 5, and 10 dB before running the enhancement algorithms to simplify 

analysis of the results. 

 

Figure 5.4 shows the Power Spectral Density of the signals where a FFT was used on the 

entire 2.5 seconds length of the signal sampled at 8 kHz.  The frequencies below 1 kHz 

contain most the energy for the signals involved and most of the speech energy is in the 

lower frequencies with peaks around the pitch of the desired talker just below 200 Hz.  

About 90% of the road noise is contained below 120 Hz.  The fan noise has significantly 

more energy around 200 Hz, which caused more problems than the road noise when 
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mixed with the speech.  The interfering talker noise has strong harmonics at 300 and 600 

Hz, which corresponds well to the expected pitch of the children talking.  The Additive 

White Gaussian Noise (AWGN) energy is fairly well distributed across the spectrum by 

definition and causes more problems at low SNR than colored noise because it will be 

more likely to mask the speech in a given spectral band.  The insights gained from Figure 

5.4 agree with the results calculated after processing the signal combined with different 

noise types. 

 

Figure 5.4: PSD of speech and noise signals 

The speech spectrum and noise spectrum are compared more closely in Figure 5.5, Figure 

5.6, Figure 5.7, and Figure 5.8.    
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Figure 5.5: Speech and road noise spectrums 

 

Figure 5.6: Speech and fan noise spectrums 
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Figure 5.7: Speech and talker noise spectrums 

 

Figure 5.8: Speech and awgn noise spectrums 
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The voice activity detector (VAD) and frames-size was kept constant through all the 

simulation runs because they have such a large impact on the results.  Using the same 

VAD enables fair comparison between regular spectral subtraction and the enhanced 

algorithm.  MATLAB© M-files were also used to calculate the objective speech quality 

measures and create the plots to visualize the comparison of results, which allowed for 

the simulation flow shown in Figure 5.9 to be done entirely in MATLAB© for each noise 

type. 

 

Load speech and noise data, then set
the input SNR to a known value.

Plot results for all noise level and all algorithms

Process the signal through one of the
3 enhancement algorithms

Calculate all the object speech quality
metrics on the enhanced signal

Save the results for comparison

Calculate all the object speech quality
metrics on the input signal

Change input
SNR choice

Change
algorithm

 

Figure 5.9: Simulation flow chart 
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5.3 Speech quality measures 

The person who listens to the speech is ultimately the one who decides its quality, thus 

subjective listening tests are the best way to judge the performance of an algorithm.  

Commonly used subjective tests are the Mean Opinion Score (MOS), Diagnostic 

Acceptability Measure (DAM), and Diagnostic Rhyme Test (DRT).  The challenge with 

subjective measures is that a large number of people tested under consistent conditions 

are required to get valid results.  Objective measures overcome this burden by allowing a 

computer to analyze the speech quality. 

 

Objective quality measures do not correlate 100% to subjective tests, but they can 

provide rough analysis to help understand how well an algorithm is performing.  Some 

objective measures correlate fairly well to subjective tests and when used in combination 

can come even closer.  The objective measures used in this thesis were chosen for their 

good correlation to subjective tests and general acceptance in the speech enhancement 

research community. 

 

Objective Speech Quality Measure Correlation to Subjective Tests 

Signal-to-Noise Ratio (SNR) 24% 

Segmental SNR (SSNR) 77% 

Articulation Index 67% 

Itakura-Saito Distance 59% 

Table 5.3: Objective Speech Quality Measure Correlation to Subjective Tests [102] 
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The correlation measures in Table 5.3 were calculated against a database of subjective 

speech quality test data accumulated by Quackenbush, where the subjective quality test 

used was the Diagnostic Acceptability Measure (DAM).  All the objective quality 

measures cited in Table 5.3 require the original speech for their calculations.  The speech 

and the noise used in this thesis were recorded separately in the same environment in 

order to have the required clean speech reference when computing objective quality 

measures. 

 

5.3.1 SNR and SSNR 

Signal-to-Noise (SNR) ratio is the most popular measure of signal quality, but it may be 

necessary to correct phase errors in the signal estimate in order to achieve correct time 

alignment.  The definition for SNR is equation (5.1) where ( )ns  is the original clean 

speech and ( )ns
∧

 is the speech estimate. 
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It has been shown that SNR, as defined in equation (4.1), is a poor estimate of subjective 

speech quality, so other methods are required to obtain a better characterization of the 

processed speech.  SNR taken over short speech segments and then averaged together is 

called Segmental SNR (SSNR) and is more closely correlated to subjective speech 
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quality.  Segmentation has the effect of applying equal weight to the loud and soft 

portions for the speech signal.  The definition for SSNR  is equation (5.2) where M is the 

number of frames.[18] 
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If there are intervals of silence in the clean speech, even the smallest amount of error in 

the estimate will result in very large negative SNR values for that frame.  Calculating 

SSNR only on frames that contain speech is a way to avoid the presence of these large 

negative values and a simple energy detection VAD was used in this thesis for that 

purpose. 

 

5.3.2 Articulation Index 

The Articulation Index (AI) measures only the intelligibility of the speech estimate 

compared to the original clean speech, which was researched as early as 1918 by Fletcher 

[103], proposed by French and Steinberg in 1947, and then further developed by Kryter in 

1962.[104]  The signal is divided into frequency bands, which are all given equal weight  in 

the AI calculation because each band is considered to have an equal contribution to 

intelligibility.  The Bark scale requires 18 bands for a 4 kHz bandwidth or 8kHz sampling 

rate.  An approximation of the AI measure is defined in equation (4.3) as described by 

Deller, Hansen, and Proakis.[105]  The SNR per critical band is calculated and averaged 
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together to obtain the AI result where 1 corresponds to upper limit of intelligibility and is 

30 dB for the calculations performed in this thesis.   

{ }
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=

=
B

j

jSNR
B

AI
1 30

30,min1
    ( 5.3) 

Equation (5.3) defines the AI approximation where B  is the number of critical bands and 

the SNR per critical band is represented by jSNR .  A problem with the definition of AI in 

equation (5.3) is that it is possible to obtain negative AI results and AI is typically 

reported on a scale from 0 to 1.  This thesis will set any negative AI results to a lower 

limit of intelligibility equal to zero, which only occurs for the unprocessed AWGN case 

at 0 dB input SNR. 

 

5.3.3 Itakura-Saito distance 

The Itakura distance measure is based on the dissimilarity between all-pole modes of the 

reference and estimate speech signal where the all-pole model of speech using Linear 

Prediction (LP) is described in section 2.3.  The Itakura distance is a representation of the 

short-term spectral differences between two frames of speech.  It has been demonstrated 

that differences between two spectra in formant locations and formant bandwidths cause 

phonetic differences, which implies that a better speech spectrum envelope produces 

better perceptual quality.[106]  The form of the measure used in this thesis is referred to as 

the Itakura-Saito (IS) distance, which is defined in equations (5.4) and (5.5).[18]  A 

smaller IS measure is better, unlike the other objective quality measures, because the 

smaller IS metric represents less spectral distortion from the original clean speech. 
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Further explanation of the IS distance offers some insight into how to interpret the results 

of comparing the noisy speech or processed speech to the clean speech reference.  The IS 

distance is also referred to as a Log Likelihood ratio based on the pth order all-pole model 

of the speech in equation (5.6) where the speech is divided into short segments of 

approximately 16 ms. 

( ) ( ) ( ) ( )nGuinsians r

p

i
rr +−= ∑

=1
    (5.6) 

( )nsr  Clean reference speech 
( )ia  Coefficients of the all-pole filter 

G   Filter gain 
( )nu  Unit variance white filter excitation 

 
The log likelihood ratio compares the two windowed speech forms using the 

autocorrelation matrix and LPC coefficient vectors. 
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( )kd  Distance for frame k 

yar    Noisy speech LPC coefficient vector ( ) ( ) ( )( )paaa yyy −−− ,...,2,1,1   

sar    Clean speech LPC coefficient vector ( ) ( ) ( )( )paaa sss −−− ,...,2,1,1  

sR   Autocorrelation matrix for the clean speech 
Tx   Transpose operation 
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An alternative development of the log likelihood ratio is to look at it as a filtering 

operation, where the inverse filters are represented in equation (5.8) and (5.9). 
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The corresponding prediction error or residual from inverse filtering the clean speech 

through both filters is shown in equations (5.10) and (5.11). 
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The log likelihood ration for a frame can be written as the ratio of the power in the 

residuals in equation (5.12) and re-written as equation (5.13) using Parseval’s relation. 
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This shows that the spectral differences between the clean reference speech and noisy or 

processed speech are most heavily weighted when ( )ωj
y eA/1  is large, which is generally 

near the formant peaks of the speech.[18]  It has also been noted in general that spectral 

estimates using linear prediction are always biased towards the pitch harmonics.[106] 
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The properties of the IS measure help explain the IS results reported for the algorithms in 

the rest of this section.  The type of additive noise would have to significantly effect 

spectral region of the speech near the pitch harmonics or formant frequencies in order to 

produce large IS distances.  Beamforming is working primarily in the spatial domain to 

achieve its noise suppression and does not dramatically affect the envelope of the speech, 

which explains why it results in smaller IS measures than the other enhancement 

algorithms.  Spectral subtraction and SSPN, in contrast to beamforming, do modify the 

spectrum directly to achieve noise suppression.  Subsequently, the IS distance measures 

are larger for the SS and SSPN results because they are attenuating the noise in discrete 

frequency bands, which also attenuate the speech harmonics to a degree.  The logic above 

explains why the IS distance is sometimes smaller for the noisy speech than for the 

speech processed by the enhancement algorithms. 

 

5.4 SSPN Algorithm 

5.4.1 Simulation results 

The SSPN algorithm’s main advantage is the perceptually weighted nonlinear spectral 

subtraction and the beamformer because the talker isolation was not implemented.  The 

beamforming results must be reported separately because the objective speech quality 

measures all require phase alignment of the input and output signals and this was not 

possible with the beamformer.  The beamformer was evaluated by sending the noise and 

speech through separately.  The results reported here are for the SSPN algorithm without 
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the beamformer, so the beamforming gains in quality will have to be assumed 

approximately additive to the gains presented here. 

 

The SSPN algorithm was iterated once, as shown in Figure 3.4, to achieve the results 

shown in Table 5.4, Table 5.5, and Table 5.6.  On the second iteration show in Figure 3.5, 

the first speech estimate is used as input to the VAD and the algorithm reprocesses the 

original signal.  The arrows shown next to the names of the objective quality measures 

indicate whether higher or lower values are better.  An up arrow, , hints that large 

values are better, as in SNR.  A down arrow, , hints that a smaller value is better, as in 

IS.   

 Original noise + speech After SSPN 
Noise 
Type 

Road & 
Engine 

Fan Interfering   
talkers 

AWGN Road & 
Engine 

Fan Interfering   
talkers 

AWGN 

SNR   0 0 0 0 12.20 6.39 4.77 5.84 
SSNR  -3.77 -3.41 -3.47 -4.37 7.88 4.09 2.86 1.75 
AI      0.32 0.20 0.11 0 0.42 0.31 0.16 0.04 
IS       0.77 0.94 0.85 15.80 0.77 1.12 1.05 18.74 

Table 5.4: SSPN Results at 0 dB SNR 

 

 Original noise + speech After SSPN 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   5 5 5 5 16.8 13.70 9.47 9.85 
SSNR  1.23 1.58 1.53 0.63 12.30 9.97 7.16 5.49 
AI      0.49 0.37 0.27 0.01 0.62 0.47 0.32 0.17 
IS       0.51 0.64 0.58 11.00 0.39 0.71 0.73 13.56 

Table 5.5: SSPN Results at  5 dB SNR 
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 Original noise + speech After SSPN 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   10 10 10 10 20.74 17.86 14.22 15.00 
SSNR  6.23 6.59 6.53 5.63 15.96 13.75 11.15 10.50 
AI      0.65 0.53 0.44 0.18 0.76 0.59 0.47 0.33 
IS       0.36 0.45 0.44 7.49 0.30 0.56 0.63 6.43 

Table 5.6: SSPN Results at 10 dB SNR 

 

The algorithm offers better improvement based on the noise type and this performance 

bias is consistent across most measures and starting SNR values.  SSPN suppresses the 

road noise best, does well removing fan noise, not very good suppressing AWGN, and is 

worst at removing interfering talkers. 

 

The fan noise spectrum has more energy near the same frequency as the speech energy, 

so it will affect the speech quality more than the road noise.  The decrease in performance 

for AWGN can be attributed to the VAD not detecting the speech frames as accurately as 

for the other noise types.  The interfering talker noise passes right through and can be 

clearly heard in the processed signal because it is classified as speech and not subtracted 

out, which underscores the need for talker isolation.  Virtually no musical noise artifacts 

can be heard in the processed signals even at 0 dB SNR, this indicates that the perceptual 

weighting of the spectral subtraction gain function is performing as expected. 

 

5.4.2 Iteration results 

Voice activity detection is generally more accurate for higher SNR, thus VAD accuracy 

should improve when using a noise reduced signal versus the original noisy speech.  
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Experiments iterating the SSPN algorithm were motivated by the desire to calculate the 

VAD on a noised reduced signal.  Voice activity detection was improved by iterating the 

algorithm twice, as shown in Figure 5.10, and also made the VAD less sensitive to the 

fixed energy thresholds for detection of speech vs. noise. 

 

( )wSPN GSS & Mask
Threshold

GSS & Mask
Threshold

( )wS 1

∧

VAD improves and is less
sensitive to fixed energy

thresholds

( )wS 2

∧

 

Figure 5.10: Iteration of GSS 

 

Table 5.7 shows the speech quality results of iterating the algorithm and the 

corresponding percentage of voice frames detected.  The example in Table 5.7 is for road 

noise at 5 dB SNR, but similar results were found for all noise types and SNR levels.  It 

was seen that all the speech quality measures improve on the second iteration of the 

algorithm.  The improvement is directly related to the performance of the VAD.  The 

results also show that iterating more than two times starts to degrade the quality of the 

speech and provide less noise suppression. 
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Signal Road 
& 

Engine 

GSS 
iteration 

1 

GSS 
iteration 

2 

GSS 
iteration 

3 
%VAD - 52 60 62 
SNR   5 15.5 16.8 15.4 
SSNR  1.23 11.17 12.30 11.74 
AI      0.49 0.54 0.62 0.61 
IS       0.51 0.58 0.39 0.42 

Table 5.7: Iterating GSS and VAD 

 
Another interesting effect of iterating the algorithm is that VAD is less sensitive to the 

fixed energy thresholds used to determine if speech or noise is present.  The threshold for 

speech in the simulations was fixed to 0.7 of the variance of the noise estimate.  This 

threshold could be moved up or down by as much as 0.3 with little change in % VAD 

reported in the second iterations.  In contrast the first iteration would change the % VAD 

reported directly corresponding to any variation of the threshold. 

 

The behavior of the VAD, described in section 4.2.1, using the first speech estimate is 

very logical when the algorithm for voice detection is examined.  The speech threshold is 

a fixed constant, Sα , multiplied by the standard deviation of the noise estimate, Nσ , and 

added to the mean, Nµ , of the noise estimate as shown in equation (5.14).   

NSNSThresh σαµ ∗+=      ( 5.14) 

 

Noise variance is significantly smaller when the signal has passed through the first 

iteration of the perceptually weighted non-linear spectral subtraction.  The smaller 

variance causes the overall value of the speech detection threshold, SThresh , to be lower, 
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which naturally detects more speech frames.  Lower noise variance also makes the VAD 

less sensitive to the choice of the fixed threshold constant because the value of the 

standard deviation, Nσ , that the fixed constant multiplies is less, so the impact of the 

constant, Sα , on the VAD performance is also less.  The lower threshold is less likely to 

classify a speech frame as noise, thus avoiding attenuation of the speech.  If this is taken 

too far by iterating the algorithm many times, then not enough frames contribute to the 

noise estimate and the noise is less effectively removed the from the signal. 

 

5.5 Beamforming 

This section examines speech enhancement using GSC beamforming alone as described 

in section 4.1.3.  Measuring the objective speech quality needs to be done differently for 

beamforming because there is not a single channel as a reference, so the method chosen 

here is to send the clean speech through the beamformer and then the noise.  The 

processed signals are compared to analyze the relative speech attenuation versus noise 

suppression.  The results in Table 5.8, Table 5.9 and Table 5.10 are for a Generalized 

Side-lobe Canceller (GSC) where it is assumed the filters are only adapting during silent 

frames in order to avoid too much attenuation of the speech.  This is an ideal case and the 

results in Table 5.8, Table 5.9, and Table 5.10 show how well GSC can do when it is only 

adapting to the noise. 

 



 125 

 Original noise + speech After Beamforming 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   0 0 0 0 3.45 3.11 5.21 5.76 
SSNR  -3.77 -3.41 -3.47 -4.35 -1.77 -1.96 0.59 -0.56 
AI      0.32 0.20 0.11 0 0.40 0.30 0.17 0.01 
IS       0.77 0.94 0.85 11.28 0.69 0.85 0.97 10.25 

Table 5.8: Beamforming Results at 0 dB SNR 

 

 Original noise + speech After Beamforming 
Noise 
Type 

Road & 
Engine 

Fan Interfering   
talkers 

AWGN Road & 
Engine 

Fan Interfering   
talkers 

AWGN 

SNR   5 5 5 5 8.45 8.11 10.21 10.76 
SSNR  1.23 1.59 1.53 0.65 3.23 3.04 5.59 4.44 
AI      0.49 0.37 0.27 0.02 0.57 0.46 0.34 0.18 
IS       0.51 0.64 0.58 8.41 0.50 0.65 0.81 5.97 

Table 5.9: Beamforming Results at 5 dB SNR 

 

 Original noise + speech After Beamforming 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   10 10 10 10 13.45 13.11 15.21 15.76 
SSNR  6.23 6.59 6.53 5.65 8.23 8.04 10.59 9.44 
AI      0.65 0.53 0.44 0.18 0.73 0.63 0.51 0.35 
IS       0.36 0.45 0.44 5.00 0.39 0.50 0.66 3.28 

Table 5.10: Beamforming Results at 10 dB SNR 

 

The beamformer is less effective on the road and fan noise, which are heavily weighted in 

the low frequency end of the spectrum.  The lower frequencies fall below the resolution 

of the beamformer and the results support this theoretical expectation.  The interfering 

speech and AWGN have more high frequency content and are consequently attenuated 

more by the beamformer.  The gains are very consistent for the different noise sources 

across the SNR levels of 0, 5, and 10 dB.  The SNR gain for the fan noise is 3.11 dB for 
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all three starting SNRs.  This consistency at different noise levels can be attributed to the 

assumption that the filters are adapting only to the noise and are not dependent on the 

VAD for these simulations. 

 

The distortion as measured by the IS metric is reduced by the beamformer for AWGN, 

but changes only slightly for the other noise sources.  The AI and SNRs measures show 

good improvement for all the noise sources.  The reduced distortion and good gains in 

SNR make the beamformer an excellent candidate for up front processing of the noise 

speech signal.   

 

5.6 Spectral subtraction  

The results reported here are for noise suppression using spectral subtraction with half-

wave rectification with the same VAD that was used for the SSPN algorithm’s 

perceptually weighted spectral subtraction. 

 

 Original noise + speech After Spectral Subtraction 
Noise 
Type 

Road & 
Engine 

Fan Interfering   
talkers 

AWGN Road & 
Engine 

Fan Interfering   
talkers 

AWGN 

SNR   0 0 0 0 9.25 5.25 5.69 4.51 
SSNR  -3.77 -3.41 -3.47 -4.37 5.86 2.46 3.98 1.12 
AI      0.32 0.20 0.11 0 0.41 0.27 0.16 0.01 
IS       0.77 0.94 0.85 15.80 0.86 1.12 1.47 32.41 

Table 5.11: Spectral Subtraction Results at 0 dB SNR 
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 Original noise + speech After Spectral Subtraction 
Noise 
Type 

Road 
& 

Engine 

Fan Interfering  
talkers 

AWGN Road 
& 

Engine 

Fan Interfering  
talkers 

AWGN 

SNR   5 5 5 5 12.36 9.67 10.62 7.36 
SSNR  1.23 1.59 1.53 0.63 9.06 6.81 8.45 4.16 
AI      0.49 0.37 0.27 0.01 0.55 0.44 0.32 0.11 
IS       0.51 0.64 0.58 11.00 0.52 0.81 1.30 23.34 

Table 5.12: Spectral Subtraction Results at 5 dB SNR 

 
 Original noise + speech After Spectral Subtraction 
Noise 
Type 

Road 
& 

Engine 

Fan Interfering  
talkers 

AWGN Road 
& 

Engine 

Fan Interfering  
talkers 

AWGN 

SNR   10 10 10 10 16.04 13.93 12.5 11.80 
SSNR  6.23 6.59 6.53 5.63 12.23 10.43 9.77 8.73 
AI      0.65 0.53 0.44 0.18 0.67 0.56 0.48 0.26 
IS       0.36 0.45 0.44 7.50 0.43 0.56 1.13 9.60 

Table 5.13: Spectral Subtraction Results at 10 dB SNR 

 

Spectral subtraction provides significant SNR gains, but the gains are less for lower SNR 

possibly attributed to the change in VAD accuracy.  The results show that spectral 

subtraction is better at removing the low frequency noise of the road, engine, and fan, but 

the interfering talkers and AWGN show less of an SNR gain when compared to the other 

noise sources.  The AI measures are generally improved by spectral subtraction while the 

IS measures indicate there is more distortion after the spectral subtraction then before.  

Very noticeable musical noise artifacts are present when listening to the processed signal 

in contrast to the smooth sounding output of the SSPN algorithm.  The interfering talkers 

are not attenuated very much because they can be clearly heard in the processed signal.   
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5.7 Theoretical limit of spectral subtraction 

The theoretical limit of a speech enhancement algorithm based on spectral subtraction is 

perfect estimation and subtraction of the noise’s spectral magnitude from the spectral 

magnitude of the received signal.  Thus, the only effect of the noise is to distort the phase 

of the clean speech signal as seen in Figure 5.11.  The theoretical limit can be calculated 

by multiplying the spectral magnitude of the clean speech times the phase of the noisy 

speech signal.  An algorithm cannot achieve the theoretical perfect performance, but it 

does serve as an upper bound. 
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Figure 5.11: Theoretical limit of spectral subtraction 

 

 Original noise + speech Theoretical limit of SS algorithms 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   0 0 0 0 17.45 13.98 17.70 12.51 
SSNR  -3.77 -3.41 -3.47 -4.37 13.18 10.95 14.13 9.04 
AI      0.32 0.20 0.11 0 0.60 0.50 0.56 0.25 
IS       0.77 0.94 0.85 15.80 0.27 0.33 0.29 0.69 

Table 5.14: Theoretical limit of spectral subtraction at 0 dB SNR 
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 Original noise + speech Theoretical limit of SS algorithms 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   5 5 5 5 20.42 17.41 20.39 15.57 
SSNR  1.23 1.59 1.53 0.63 15.89 13.91 16.32 11.75 
AI      0.49 0.37 0.27 0.01 0.73 0.63 0.67 0.35 
IS       0.51 0.64 0.58 11.00 0.21 0.25 0.23 0.61 

Table 5.15: Theoretical limit of spectral subtraction at 5 dB SNR 

 

 Original noise + speech Theoretical limit of SS algorithms 
Noise 
Type 

Road & 
Engine 

Fan Interfering  
talkers 

AWGN Road & 
Engine 

Fan Interfering  
talkers 

AWGN 

SNR   10 10 10 10 22.32 20.98 22.87 18.99 
SSNR  6.23 6.59 6.53 5.63 18.06 16.84 18.60 14.95 
AI      0.65 0.53 0.44 0.18 0.84 0.77 0.77 0.46 
IS       0.36 0.45 0.44 7.50 0.17 0.19 0.19 0.50 

Table 5.16: Theoretical limit of spectral subtraction at 10 dB SNR 

 

There are large improvements in all the speech quality measures as expected.  The 

improvements are not perfect because of the noisy phase.  For example, the SNR does not 

even approach 30 dB.  The gains are less as the starting SNR increases from 0 to 10 dB 

because there is less relative noise to remove as SNR increases.  The IS measure is very 

low when compared to any of the other methods, this would suggest that the noisy phase 

does not contribute much in the way of displacing the all-pole model of the speech. 
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5.8 Comparison of results 

5.8.1 Speech quality measures 

Figure 5.12, Figure 5.13, Figure 5.14, and Figure 5.15 graphically compare the 

algorithms’ performance for each noise condition and speech quality measure.  Higher 

numbers are better for SNR, SSNR, and AI.  Lower numbers are better for the IS distance 

because it represents smaller distortion.  The values of the objective speech quality 

measures vary significantly when the noise type is changed as can be seen when 

comparing the different groups of subplots.  The SSPN algorithm (solid blue line) 

outperforms the SS (dashed red line) and BF (dash-dotted purple line) in most measures 

and noise types.   The original noisy speech measures are included in each subplot as a 

dotted black line. 

 

The road noise plots in Figure 5.12 show BF at 0 dB input has less distortion as shown in 

the IS metric plot.  Spectral subtraction type algorithms can reduce distortion by being 

less aggressive at reducing the overall noise level in low SNR conditions, but that 

tradeoff was not explored in this thesis. 
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Figure 5.12: Results for road noise 

 

All the algorithms show less improvement with the fan noise in Figure 5.13 when 

compared to the road noise results in Figure 5.12, but SSPN still outperforms the other 

algorithms on increasing SNR.  Again beamforming introduces less distortion as shown 

in the IS subplot of Figure 5.13. 
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Figure 5.13: Results for fan noise 

 

Beamforming effectively suppresses interfering talkers in Figure 5.14 when compared to 

the spectral subtraction methods because the interfering talker noise is less diffuse than 

road and engine noise, so the directional gains have a greater effect on the received 

signal.  Poor performance of the spectral subtraction type algorithms on the interfering 

talker noise can be attributed to the VAD in the SS routines classifying the talker noise as 

voiced and not including it as part of the noise estimate. 
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Figure 5.14: Results for talker noise 

 

Beamforming does well in AWGN, as shown in Figure 5.15, because there is more noise 

energy in the higher frequencies than the other noise types.  The higher frequencies are 

better resolved by the 4-element microphone array with 5 cm spacing and an overall 

aperture of 15 cm.  The IS distance is very high for all the algorithms in AWGN when 

compared to other noise sources. 
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Figure 5.15:  Results for AWGN 

 

5.8.2 Time domain plots 

Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19 show the clean speech, noise 

speech, and enhanced signals for different noise types at 0 dB SNR.  The female speech 

shown in the plots is “Turn up the radio”.   
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Figure 5.16: Road noise + speech signals 

 

The low frequency content of the noise is evident in the noisy speech plot of Figure 5.16.  

Less residual noise is left in SSPN when compared to BF and SS, as can be seen by 

looking at the silent periods of the plots.  Most of the original speech content remains in 

the processed signal with the exception of the SSPN and SS removing lower energy 

speech around 1.4 seconds.  The overall envelope of the SSPN plot is much smoother 

than the SS plot which is expected because the SSPN algorithm removes artifacts that are 

introduced by SS. 
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Figure 5.17: Fan noise + speech signals 

Much more of the low energy speech is attenuated when SS or SSPN removes the fan 

noise.  This speech attenuation is evident by comparing the plots at around 1.8 seconds in 

Figure 5.17.  The fan noise estimate contains large spectral magnitude near the pitch of 

the female talker, which would explain the speech attenuation of SS and SSPN.  The BF 

does not rely on a noise estimate, so it does not attenuate the low energy speech as seen 

in the other algorithms. 
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Figure 5.18: Talker noise + speech signals 

 

Figure 5.18 shows the problem that occurs when the VAD classifies interfering talkers as 

a voiced signal and does not update the noise estimate.  The desired speech has no energy 

around 0.5 seconds and 2.4 seconds, but the interfering speech is present.  The 

subsequent plots of the processed signal show that very little interfering speech is 

removed.  This is strong evidence for using talker separation as input to the VAD during 

a second iteration of processing on the same frame, which was not implemented in this 

thesis work and can be explored during future research on the SSPN algorithm. 
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Figure 5.19: White Gaussian Noise + speech signals 

It can be seen in Figure 5.19 that the SS and the SSPN algorithms do a better job 

reducing the white noise than beamforming, but at the cost of some distortion.  The 

beamforming retains more detail of the original clean speech signal, which can be seen 

by looking at the signal between high-energy locations around 0.8 and 1.8 seconds.  

Again, the SSPN algorithm has less residual noise and a smoother envelope than SS or 

BF. 
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5.8.3 Spectrograms 

The spectrograms in Figure 5.20, Figure 5.21, Figure 5.22, Figure 5.23, and Figure 5.24 

show the signal’s frequency energy versus time.  Musical noise artifacts introduced by 

spectral subtraction will show up as a localized short-term smudge in the spectrogram. 

 

Figure 5.20: Spectrogram for clean speech 
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Figure 5.21: Spectrogram for noisy speech 

 

Figure 5.22: Spectrogram for SSPN enhanced speech 
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Figure 5.23: Spectrogram for beamform enhanced speech 

 
Figure 5.24: Spectrogram for SS enhanced speech 
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5.9 VAD performance 

A closer analysis of the VAD is warranted because it plays such a critical role in the 

SSPN algorithm.  Correct VAD decisions for each frame are determined by visually 

inspecting the clean speech signal and used as a reference, VADref, for comparison to the 

VAD decisions calculated by the algorithm. 

framestotal
VADVADabssum

framestotal
framescorrectAccuracyVAD ref

_
))((

_
__

−
==   (5.15) 

Parameters of the test signal: 

• 8 kHz sampling rate 
• 128 sample frame-size 
• 157 frames for signal length 
• Length of the female speech used is 2.5 seconds or 20,000 samples 

 

Visual inspection of the clean speech signal found 88 speech frames and 69 silent frames, 

which corresponds to 56% voice activity.  The comparison to this reference for each 

noise type, SNR level, and SSPN iteration is reported in Table 5.17. 

 
SNR (dB) 0 0 5 5 10 10 
Iteration 1 2 1 2 1 2 
Noise-free  % VAD accuracy 95 
Road          % VAD accuracy 91 91 95 94 96 95 
Fan             % VAD accuracy 81 89 90 94 94 96 
Talker         % VAD accuracy 73 75 76 75 74 74 
AWGN       % VAD accuracy 54 56 82 87 90 95 

Table 5.17: SSPN VAD accuracy 

VAD accuracy, using the fan noise and AWGN, was improved by iterating the algorithm 

a second time.  Road noise VAD accuracy stayed about the same for both iterations, but 

the second iteration tended to classify more frame as speech.  Interfering talkers produced 
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consistently poor VAD accuracy across all SNR levels and iterations because the 

algorithm does not distinguish between desired and undesired talkers. 

 

5.10 Pitch detection 

Pitch detection experiments were performed with the SSPN algorithm to evaluate the 

possibility of using talker isolation to improve VAD accuracy and suppression of 

interfering talkers.  Talker isolation was not tested directly with the SSPN algorithm in 

this thesis because of the overall complexity of the many approaches, mixed results 

reported in the research, and the large amount of time required for implementation.  Pitch 

detection is simple to implement and was able to offer some insight into how a talker 

separation algorithm might perform before and after noise suppression. 

 

As mentioned in section 3.3.7, the pitch detection is not a good candidate for modifying 

the spectral subtraction parameters.  Experimental results consistently showed the 

spectral subtraction modified by pitch estimate weighting was worse than without it. 

 

It was shown that the pitch detection algorithm could be more accurate using the noise-

reduced signal when compared to the noisy signal.  However, there are occasions that the 

enhanced signal causes the pitch detection to deviate from what would have been 

estimated in the original speech.  Thus the noise removal helps pitch detection, but 

sometimes makes it worse.  A more advanced pitch detection algorithm that is designed 

with knowledge of the noise suppression algorithms would likely have more success.  
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These results on pitch detection are not conclusive and future research should look closer 

at the effects of noise suppression on pitch detection. 

 

Figure 5.25: Pitch detection example 

 

The measure of the pitch detection was done only on frames containing speech where the 

correct pitch is assumed to be the pitch detected on the original clean speech signal.  

Figure 5.25 is an example comparing the pitch detection for the clean original (solid blue 

line), speech + noise (green dotted line), and the speech estimate after noise removal (red 

dashed line). 
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5.11 Statistical analysis of Segmental SNR results 

Segmental SNR (SSNR) is an objective speech quality measure that is fairly well 

correlated to subjective speech quality tests, so it is a good candidate for further analysis 

of the algorithms.  Twenty-one different noise measurements were made in the car as 

reported in Table 2.1, which can be used to test the enhancement algorithms over a broad 

range of conditions.  Statistical analysis examining the variances of the SSNR results will 

demonstrate the overall performance difference between the algorithms and the effect of 

input SNR. 

 

5.11.1 SSNR results for multiple speech + noise data sets 

Before doing the statistical analysis, some insights can be gained by examining the SSNR 

results directly.  Figure 5.26, Figure 5.27, and Figure 5.28 compare the difference in 

improvement between the algorithms for 0, 5, and 10 dB input SNR respectively.  It can 

be seen that SSPN outperforms the other two algorithms in most cases.  Spectral 

subtraction provides more SSNR improvement than beamforming for all 21 data sets 

used.  The SSNR for the original unprocessed noisy speech is included in each figure to 

show the relative improvement achieved by each algorithm across the 21 data sets. 
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Figure 5.26: SSNR results at 0dB input SNR 

 

Figure 5.27: SSNR results at 5dB input SNR 
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Figure 5.28: SSNR results at 10dB input SNR 

 

Taking a different view of the data, the following figures compare the relative effects on 

SSNR of the input SNR.  The SSNR results for input SNR levels of 0, 5, and 10 dB are 

shown for the original noisy speech in Figure 5.29, the beamforming output in Figure 

5.30, the spectral subtraction output in Figure 5.31, and the SSPN algorithm output in 

Figure 5.32.  Not surprisingly, the SSNR increases directly with increases of the input 

SNR for all four figures.  The beamformer results scale linearly with input SNR with 

little or no variation in the shape of the curve each input SNR level.  However, SS and 

SSPN do have some slight variations between input SNR curves, perhaps indicating the 

changing performance of the voice activity detection. 
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Figure 5.29: SSNR of original speech + noise 

 
Figure 5.30: SSNR results for Beamforming 
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Figure 5.31: SSNR results for Spectral Subtraction 

 
Figure 5.32: SSNR results for SSPN algorithm 
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5.11.2 ANOVA analysis of SSNR results 

The purpose of the ANOVA analysis is to show that the SSPN algorithm does better than 

the other two algorithms for a wide set of speech + noise measurements.  Two-way 

ANOVA finds out whether data from several groups have a common mean. One-way 

ANOVA and two-way ANOVA differ in that the groups in two-way ANOVA have two 

categories of defining characteristics instead of one.   Effects of input SNR and algorithm 

type are the two characteristics of interest for the SSNR results.  Two-way ANOVA can 

show how much the SSNR results vary with input SNR and with algorithm type.  If an 

algorithm type only works well at a specific input SNR, then this is called an interaction 

between the two characteristics.     

 

The input to the two-way ANOVA analysis function is a 63 x 4 matrix where the 

columns represent the different algorithm types (original data, beamforming, spectral 

subtraction, and the SSPN algorithm).   The rows are made up of 63 SSNR results 

divided into groups of 21 for each input SNR level of 0, 5, and 10 dB.  If the prediction 

variances are small compared to the model variances, the model gives a good description 

of the data.  Hence the SSPN algorithm comparison to the other algorithms is accurate 

and the means are significantly different.  Table 5.18 contains the results of the two-way 

ANOVA analysis where the F statistic is calculated as the mean squares divided by the 

error and used for hypothesis testing. The mean squares are equal to the sum of squares 

divided by the degrees of freedom.  Larger F is better because it is an indication that the 

error is small compared to the effect of the characteristic being analyzed. 
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 Sum of  
squares 

Degrees of  
freedom 

Mean 
squares 

F p-value 
Probability > F 

Columns 1970.84 3 656.95 228.51 0.0000 
Rows 3711.70 2 1855.85 646.64 0.0000 
Interaction 16.97 6 2.83 0.98 0.4369 
Error 689.98 240 2.87   
Total 6389.49 251    

Table 5.18: Two-way ANOVA 

 

F statistics can be viewed as a measure of significance, so the results in Table 5.18 show 

that rows (input SNR) have more influence on the data than columns (algorithm type). 

The F statistics can be used to do hypotheses tests to find out if the SSNR is the same 

across algorithms, input SNRs, and algorithm-SNR pairs, where the p-value (Probability 

> F) from these tests is given in Table 5.18.  The p-value for the algorithm effect is zero 

to four decimal places, which is a strong indication that the SSNR varies from one 

algorithm to another. An F statistic as extreme as the observed F would occur by chance 

less than once in 10,000 times if the SSNR were truly equal from algorithm to algorithm.  

Each pair of the 4 data sets is significantly different.  The p-value for input SNR effect is 

also zero, which indicates that the SSNR values are significantly different for each of the 

3 data sets.  The p-value, 0.4369, means that there is high risk (44 out 100 times) of 

wrongly deciding that there is interaction. 
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Figure 5.33 shows a box-plot of the SSNR result means and variances for the original 

noisy speech and three enhancement algorithms.  Visual inspection of Figure 5.33 shows 

that the means are different with the closest relationship being between SS and SSPN 

results.  This proximity of SSNR means for SS and SSPN results agrees with the direct 

view of the SSNR results shown in Figure 5.26, Figure 5.27, and Figure 5.28 from 

section 5.11.1.   

 

Figure 5.33: ANOVA box plot for algorithm comparison 

 

Sometimes it is necessary to determine not just if there are any differences among the 

means, but specifically which pairs of means are significantly different. The output from 

the multi-comparison shown in Figure 5.34 indicates the results grouped according to 

algorithm type are significantly different.  The only exception is that SS and SSPN results 

do appear to be only slightly different.  It is interesting to note that the slight SSNR 

differences between SS and SSPN do not reflect the importance of that gain.  SSPN 
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removes the annoying musical artifacts contained in SS, which is perceptually significant.  

The statistical analysis of SSNR results is only one view of the enhancement algorithms’ 

performance and must always be considered in the larger context of overall speech 

quality.   

 

Figure 5.34: Multi-compare for algorithm type 

 

Results of the ANOVA for SNR comparison are shown in the plots of Figure 5.35 and 

Figure 5.36.  The SSNR results according to input SNR are significantly different 

according to p-value of 0 and well separated means shown in both figures. 
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Figure 5.35: ANOVA box plot for input SNR comparison 

 

Figure 5.36: Multi-compare for input SNR 
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Chapter 6  

Conclusions and future work 

6.1 Conclusions   

The SSPN algorithm contained a unique combination of complementary signal 

processing that was presented and evaluated in this thesis.  The combinations of signal 

processing, in most cases, exceeded the performance of simpler techniques.  High-level 

speech enhancement algorithms must be carefully designed and not simply cascaded one 

after another expecting the results to improve proportionally.  Each algorithm benefits the 

other in a unique way beginning with beamforming in the SSPN algorithm. 

 

Beamforming is used first because the other algorithms would not help its performance 

greatly and the multi-channel processing collapses to a less computationally intensive 

single channel problem.  GSC beamforming takes advantage of the directional 

information in the signal to attenuate the noise while introducing only minimal distortion 

of the desired speech.  An important aspect of the SSPN algorithm is that it uses the VAD 

to instruct the GSC to update its filter coefficients only during frames not containing 

speech, which avoids attenuating the desired speech.  Experiments suggest that the 

beamformer is not effective at creating a separate noise reference channel to be used in 
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subsequent spectral subtraction because the noise in the separate channel does not 

correlate well with the noise in the main speech channel.  The effective frequency range 

of the beamformer is approximately 800 to 3400 Hz because of the fixed spacing of the 

microphones and length of the array, as explained in 4.1.2.  The far field assumption is 

only valid for a subset of frequencies, so including spherical spreading effects will 

improve performance at frequencies where the far field assumption is not valid. 

 

Spectral subtraction supplements the GSC beamformer’s limited frequency range by 

attenuating noise in the lower frequencies subtraction as shown by the results in Chapter 

5.  Additional noise reduction in the lower frequencies is important in the car because 

most of the noise sources are heavily weighted below 1 kHz.  Spectral subtraction 

operates on the single channel output of the beamformer and acts independently of the 

beamformer.  Enhancing the signal before spectral subtraction will improve the accuracy 

of the VAD, which is crucial for SS.  This arrangement of beamforming and spectral 

subtraction also allows the enhancement gains to be linearly combined.  However, simple 

spectral subtraction can introduce undesirable audible artifacts. 

 

Perceptual masked threshold frequency weighting is very effective at both minimizing 

musical noise artifacts and attenuating the noise further than simple half-wave rectified 

SS.  The perceptual frequency weighting is so effective that any further modification to 

the generalized spectral subtraction parameters did not help.  Using an approximate pitch 

estimate to modify the gains in the corresponding critical band did not improve speech 

quality because the perceptual mask threshold already accounted for high signal energy in 
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that band.  This experiment with pitch detection was done using the clean speech to 

ensure accurate pitch information, but the lack of improvement was the same.  Another 

experiment was to double the amount of frequency bands used below 1 kHz in an attempt 

to further decrease the noise in narrower bands while leaving behind more of the desired 

signal.  However the higher resolution frequency bands did not offer any improvement 

over dividing the spectrum into critical bands using the Bark scale.  Despite the noise 

attenuation and good signal quality achieved by using perceptually weighted spectral 

subtraction based on the Bark scale, non-stationary noises such as interfering talkers were 

not removed. 

 

Talker separation is necessary because beamforming and spectral subtraction do a very 

poor job at removing this type of noise as shown in Chapter 5.  Talker separation and 

pitch tracking require detailed feature analysis and benefit from the removal of the 

stationary noise and directionally strengthened speech performed by the previous 

processing.  Talker separation also has potential for improving the accuracy of the VAD, 

which is so important to the SSPN algorithm.   

 

The accuracy of the VAD plays a central role for both the spectral subtraction noise 

estimate and the decision to adapt the filters in the GSC beamformer.  Therefore, a 

substantial improvement is obtained by feeding back the initial speech estimate from a 

first pass through the system and using it to drive the VAD as the original input is 

processed again.  Talker separation will avoid falsely classifying data frames as voiced 

when interfering talkers are speaking while the desired talker is silent.  Even without the 
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talker separation the VAD is improved by limited iteration with spectral subtraction.  In 

doing this, the VAD also becomes less sensitive to the value of the fixed constant 

multiplier used to determine the speech threshold.  The reduced sensitivity will enable the 

algorithm to perform better over a wider range of noise conditions.  The VAD and the 

overall algorithm performance will be better if the desired speech signal is stronger at the 

inputs because the microphones were installed in optimal locations. 

 

Microphone placement in the car is a very important part of the system design.  Placing 

the microphone(s) over the head and slightly forward of the desired talker is the optimal 

location in an automobile.  The evidence that supports the theory behind this assumption 

is shown in Appendix B – Microphone Location. 

 

Finally, this unique combination of signal processing algorithms, SSPN, also has the 

advantage of a modular design.  The beamformer, VAD, noise estimate, spectral 

subtraction, and talker separation can each be modified independently to incrementally 

introduce advanced techniques and improve the overall performance of the system.   

 

6.2 Future work 

Ideally the noise suppression system for hands-free phones and speech recognition would 

remove all the interfering noise in the car.  Stationary noise sources are readily removed 

as demonstrated in this thesis.  However, there are various noise sources that remain and 

continued research is required for their removal.  Some of these challenging noise sources 

and suggested research are listed below. 
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1. Talker isolation to remove interfering speech 

2. Speaker dependent voice extraction from the noise 

3. Noise suppression specific to the make and model of automobile 

4. Removing the non-stationary noise of passing cars 

5. Removal of music played by the stereo 

6. Scaling the system up to include multiple talkers in the car 

7. Optimization of the SSPN algorithm with respect to the VAD 

 

Further work on talker isolation in the car is required.  The current techniques are 

inadequate at removing interfering talkers.  Interfering speech is most prominent in the 

millions of min-vans full of children out there. 

 

Speaker dependent enhancement is another area well suited to the automobile.  Typically, 

the same few people will be driving a certain automobile, so the opportunity to obtain 

training data is excellent.  Speaker dependent processing would help retain valuable 

speech energy in the lower part of the spectrum normally swamped by road and engine 

noise.  If the approximate pitch of the driver was 180Hz, then a bandpass filter around 

that frequency could be used to attenuate the other low frequencies, which are likely due 

to noise. 

 

Signal processing that is specific to a particular make of automobile could also offer 

significant improvements over generic noise reduction algorithms.  Each car has slightly 
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different noise characteristics due the engine, tires, interior design, materials used to 

construct the car, positions of the vents, fans, and many other considerations.  

Attenuating noise frequencies for each make of car, for example, would allow optimal 

use of the spectrum.  Measuring the source to microphone transfer functions in each car 

could help de-reverberate the signal. 

 

Future research into removing the non-stationary noise of passing cars is required.  The 

removal of passing car noise and other short transient noise sources is still an unsolved 

problem.  The non-stationary noise sources require continuous update of the noise 

estimate.   

 

Future work should include Echo Cancellation and removal of music from the received 

signal, which will be required of any practical speech acquisition system in a car.  

Investigation into scaling the system up to include multiple pairs of microphones would 

allow optimal processing for multiple talkers while at the same time improve each 

individual speech signal.  One could envision persons in the back seat of a car wanting to 

participate in a hands-free phone call. 
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Chapter 7  

Appendix A – Psychoacoustics 

It is useful to have some understanding of how the human hearing system works when 

discussing speech enhancements based on perception.  The pictures, diagrams, and plots 

in this chapter where copied from Hyper Physics web pages at Georgia State 

University[107]. 

 

Figure 7.1: Human Ear 

 

As seen in Figure 7.1 the ear has three major parts: the outer, middle, and inner ear.  The 

pinna or outer ear-the part of the ear attached to the head, funnels sound waves through 
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the outer ear.  The sound waves pass down the auditory canal to the middle ear, where 

they strike the tympanic membrane, or eardrum, causing it to vibrate.  The vibrations are 

received by three small bones (ossicles) in the middle ear; named for their shapes: the 

malleus (hammer), incus (anvil), and stapes (stirrup).  The stirrup is attached to a thin 

membrane called the oval window, which is much smaller than the eardrum and 

consequently receives more pressure.  As the oval window vibrates from the increased 

pressure, the fluid in the coiled, tubular cochlea (inner ear) begins to vibrate the 

membrane of the cochlea (basilar membrane), which bends fine hair-like cells on its 

surface.  These auditory receptors generate miniature electrical forces, which trigger 

nerve impulses that then travel via the auditory nerve, first to the thalamus and then to the 

primary auditory cortex in the temporal lobe of the brain.  The impulses are relayed to 

association areas of the brain, which convert them into meaningful sounds by examining 

the activity patterns of the neurons, or nerve cells, to determine sound frequencies.  

Although the ear changes sound waves into neural impulses, it is the brain that actually 

"hears," or perceives the sound as meaningful. 

 

The auditory system contains about 25,000 cochlear neurons that can process a wide 

range of sounds.  The sounds humans hear are determined by two characteristics of sound 

waves: their amplitude (the difference in air pressure between the peak and baseline of a 

wave) and their frequency (the number of waves that pass by a given point every second).  

Loudness of sound is influenced by a complex relationship between the wavelength and 

amplitude of the wave; the greater the amplitude, the faster the neurons fire impulses to 

the brain, and the louder the sound that is heard.  Loudness of sound is usually expressed 
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in decibels (dB).  A whisper is about 30 dB, normal conversation is about 60 dB, and a 

subway train is about 90 dB.  Sounds above 120 dB are generally painful to the human 

ear.  The loudest rock band on record was measured at 160 dB. 

 

The normal frequency range of human hearing is 20 to 20,000 Hz.  Frequencies of some 

commonly heard sounds include the human voice (120 to approximately 1,100 Hz), 

middle C on the piano (256 Hz), and the highest note on the piano (4,100 Hz).  

Differences in frequency are discerned, or coded, by the human ear in two ways, 

frequency matching and place.  The lowest sound frequencies are coded by frequency 

matching, duplicating the frequency with the firing rate of auditory nerve fibers.  

Frequencies in the low to moderate range are coded both by frequency matching and by 

the place on the basilar membrane where the sound wave peaks.  High frequencies are 

coded solely by the placement of the wave peak. 

 

The organ of Corti is the sensitive element in the inner ear and can be thought of as the 

body's microphone as displayed in Figure 7.2: Hair cells on basilar membrane.  It is 

situated on the basilar membrane in one of the three compartments of the Cochlea.  It 

contains four rows of hair cells, which protrude from its surface.  Above them is the 

tectoral membrane which can move in response to pressure variations in the fluid- filled 

tympanic and vestibular canals.  There are some 16,000 -25,000 of the hair cells 

distributed along the basilar membrane which follows the spiral of the cochlea. 

 



 164 

 

Figure 7.2: Hair cells on basilar membrane 

 

The place along the basilar membrane where maximum excitation of the hair cells occurs 

determines the perception of pitch according to the place theory as shown in Figure 7.3.  

The perception of loudness is also connected with this organ.  High frequency sounds 

selectively vibrate the basilar membrane of the inner ear near the entrance port (the oval 

window).  Lower frequencies travel further along the membrane before causing 

appreciable excitation of the membrane.  The basic pitch determining mechanism is 

based on the location along the membrane where the hair cells are stimulated. 

 

Figure 7.3: Cochlea 
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A schematic view, in Figure 7.4, of the place theory unrolls the cochlea and represents 

the distribution of sensitive hair cells on the organ of Corti.  Pressure waves are sent 

through the fluid of the inner ear by force from the stirrup. 

 

Figure 7.4: Cochlea Frequency Selectivity 

Whether a sound can be heard depends on its intensity and spectrum, and perceptibility is 

discussed in terms of hearing thresholds.  The inner ear’s vibration and neural firings are 

highly nonlinear with the result that perception of sound energy at one frequency is 

dependent on the distribution of sound energy at other frequencies.  The amount of 

energy before and after a sound on the time scale also effects it’s perception.  The 

phenomenon of masking is when the perception of one sound is obscured by the presence 

of another.  Frequency masking occurs when sounds occur simultaneously and temporal 

masking happens when there is a delay between the sounds.  The auditory system can be 

considered as a bank of band-pass filters.  Frequency resolution of the ear’s filtering 

mechanism is known as critical bands.  The widths of the critical bands increase with 

increasing center frequency.  The frequency resolution can be measured in terms of the 

minimum frequency separation at which two tones can be distinguished.  [92] 
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Chapter 8  

Appendix B – Microphone Location 

Location of the microphones is extremely important because it determines how much 

noise vs. speech will be received.  In a free field, the strength of the source is proportional 

to the inverse square of its distance from the microphone, corresponding to a 6 dB 

decrease in intensity for each doubling of distance.  The noise suppression algorithms 

must work much harder as the distance of the talker from the microphone increases 

because of the weaker signal as shown using rough approximations in Table 8.1. 

 

Location of 
microphone 

Distance to  
talker in (cm) 

Equivalent intensity  
in a free field (dB) 

Equivalent noise 
suppression (dB) 

Headset 2 32 4 
Car ceiling above  
drivers head 

8 8 28 

Conference  
phone table 

32 2 34 

On rear view  
mirror in car 

64 1 35 

Table 8.1: Microphone distance and required noise suppression 
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Microphones inside an automobile are not in a free field and some desired signal energy 

would reach them from reflections, so the free field approximations in Table 8.1 should 

be taken in that context.  However, the table does not show how much the noise energy 

can increase as microphones are moved closer to the noise, which will also be a big factor 

in determining the required noise suppression.  Suggested by results in this thesis and 

prior research, the optimal location for the microphone(s) in the car is on the ceiling 

above the driver’s head and slightly forward.  The reasons for this location are listed 

below. 

 

1. It is the closest place to the driver’s mouth other than the steering wheel. 

2. The steering wheel is not a practical location because the air bag deployment 

needs to be un-obstructed.  Considerable vibration from the engine and road is 

also transmitted along the steering column. 

3. The microphone needs to be away from wind currents coming from the window.   

4. Keeping the microphone away from the windshield avoids the wind from the 

defroster, windshield wiper noise, and rain noise. 

5. The directionality of the talker’s voice does not require the microphone to very far 

in front of the talker.  Distance is the dominating factor. 

6. The microphone can easily be insulated against noise from the roof and wind 

inside the car. 

7. It does not impair the driver’s vision. 
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The biggest drawback to locating the microphone on the ceiling of the car is that 

automakers have to complicate their manufacturing process to install it.  Automakers 

prefer the center console or the rear view mirror because it is easier to install. 

 

An experiment was done to compare two pairs of microphones at different locations.  The 

signals used were 312.5 ms of speech sampled at 16 kHz.  There were only two 

microphones available, so only two positions were compared simultaneously.  

Comparisons were made between microphones A & B and between A & C.   

������ ������

������
������

38 cm24 cm

54 cm

A B

C

 

Figure 8.1: Microphone positions 

 

A. Microphone A is on the ceiling of the car over the talker’s head and slightly 

forward.  The distance between the talker and microphone is 10 cm. 

B. Microphone B is on the ceiling of the car close to the windshield in front of the 

talker.  The distance between the talker and microphone is 24 cm. 
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C. Microphone C is on the rear view mirror in the center of the car.   

The distance between the talker and microphone is 38 cm. 

 

 

Figure 8.2: Comparison between 24cm and 38 cm microphone distances 

The source signal strength difference in Figure 8.2 clearly shows the advantage of the 

closer microphone.  The ratio of power between the 24 cm and 38 cm position is 2.21.  

The inverse ratio of the distances is 38 / 24 = 1.58. 
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Figure 8.3: Comparison between 24cm and 54 cm microphone distances 

 

Figure 8.3 shows how the signal strength scale with the farther distance at 54 cm.  The 

ratio of power between the 24 cm and 54 cm position is 4.12.  The inverse ratio of the 

distances is 54 / 24 = 2.25. 

 

A similar conclusion was reached by research done in 1994 about the best microphone 

positions in an automobile for speech recognition.  After analyzing 7 different locations 

the conclusion stated, “The position at the ceiling right in front of the speaker gave the 

best results.” 108 
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