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Abstract—This paper studies global channel state information
(CSI) in time-slotted wireless ring networks with time-varying
reciprocal channels. Lower bounds on maximum and average
staleness of global CSI are derived, and efficient protocols that
achieve the bounds are developed. Two extreme scenarios are
considered with either (i) one node transmitting at a time or (ii)
the maximum number of nodes transmitting at a time without
collisions. In addition, the amount of CSI disseminated per
packet is varied between two extremes. Simulation results confirm
the analysis and quantify staleness in terms of the network
parameters.

Index Terms—Wireless networks, time-varying channels,
global channel state information, channel estimation, data dis-
semination.

I. INTRODUCTION

Channel state information at the transmitter (CSIT), can
be used to improve the performance of wireless networks by
efficiently using available resources, i.e., power and bandwidth
[1]–[3]. But, in scenarios such as cooperative and distributed
communications, global channel state information (CSI), i.e.,
knowledge of all channels in the network at all nodes provides
higher gains in terms of the network’s performance, compared
to the case of just CSIT [4]–[11]. Another scenario where
global CSI can be used is wireless sensor networks to deter-
mine minimum energy routes [12], [13]. However, in all of
these scenarios, available global CSI is often assumed without
an evaluation of its feasibility in practical settings.

Recent works [14], [15] have studied the problem of provid-
ing global CSI in fully-connected networks with time-varying
reciprocal channels. A new staleness metric for the usefulness
of the estimates of all channels throughout the network was
proposed and bounds on maximum and average staleness of the
channel estimates were evaluated. Also, optimal deterministic
protocols that achieve these lower bounds were developed.
While [14] provides bounds on the best possible staleness that
can be achieved by any protocol with a deterministic data and
CSI dissemination approach, the performance of opportunistic
protocols is evaluated in [15].

Due of path loss and fading effects in wireless networks,
nodes may only be able to communicate with other nodes
within a certain range in practice, and not all nodes may
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be connected to each other. Ring networks are an example
of a scenario where each node can only communicate with
its neighbors [16], [17]. Another important factor in design
of wireless networks is energy efficiency. This becomes even
more critical in sensor networks with limited battery life. In
these cases, where energy efficient communication is impor-
tant, minimum energy routing requires each node to know the
CSI of all nodes [12], [13]. As an example, consider a four
node ring network, where node 1 wants to send a packet to
node 3. There is no direct link from node 1 to node 3, so
nodes 2 and 4 can act as relays. If node 1 has CSIT, it knows
its channel with nodes 2 and 4, and it might try to send the
packet through the best link as determined by the CSIT. But
node 1 does not know the channel from nodes 2 and 4 to node
3. Now if the chosen node, i.e., either node 2 or 4, to relay the
packet, has a poor channel with node 3, the total energy cost
of delivering the packet might be high. So, if node 1 obtains
an estimate of all channels, it can send the packet through the
best overall link.

In this paper, the problem of global CSI dissemination in
ring networks with time-varying reciprocal channels is con-
sidered. Closed-form expressions for the staleness bounds are
derived and deterministic protocols are developed to achieve
these lower bounds. Our TDD model is based on a time-slotted
assumption where nodes typically transmit one at a time.
However, our assumption of a ring network implies that not all
nodes are connected, raising the possibility of having multiple
nodes transmitting simultaneously without interference. Thus,
we consider both single transmitter operation [14], [15], and
we also consider multiple simultaneous transmissions which
leads to considerable improvements in staleness. Simulation
results are provided to verify the efficiency of the protocols.

II. SYSTEM MODEL

Consider a ring network with N single-antenna nodes
communicating over time-varying reciprocal channels. The
complex channel gain between two adjacent nodes i and j at
time n is denoted by hi,j [n] and assuming reciprocity, we have
hi,j [n] = hj,i[n]. The ring network’s topology is described by
a cycle graph, i.e., a connected, 2-regular graph with N ≥ 3
vertices and LC = {(1, 2), (2, 3), . . . , (N − 1, N), (N, 1)}
represents the set of all channels in the network, i.e., the edges
in the graph. Figure 1 represents a general structure of a cycle



graph CN where K nodes transmit simultaneously during each
time slot and M channel state estimates are disseminated by
each transmitting node. Each node in the network maintains
its own local table of estimates of the N channels.
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Fig. 1: A graph representation of general ring networks.

Figure 2 represents the general structure of a packet as-
sumed to be exchanged among the nodes in the network. All
packets are assumed to be received reliably. Each fixed-length
packet contains overhead, data, and M channel state estimates.
Since node k cannot estimate a channel to which it is not

Fig. 2: Example fixed-length packet showing overhead, data,
and CSI dissemination. The CSI dissemination consists of M
channel estimates and each channel estimate has a length of
one word. The data and overhead consists of D words. The
total packet length is P = D +M words.

directly connected, i.e., the channel between nodes i and j for
i 6= j 6= k, it uses the disseminated CSI information embedded
in the transmitted packets by other nodes that form a path
from either nodes i or j to node k, to obtain an estimate
of the (i, j) channel. Assuming a length of D words for the
data plus overhead, each packet has a length of P = D +M
words. Although Fig. 2 shows a particular packet structure, the
position of the overhead, data, and disseminated CSI within
any packet does not affect our analysis.

We assume each node requires an estimate of all N complex
channel gains in the network. Each node that receives the
transmitted packet by node i does two things:

1) It directly estimates the channel hi,j [n], which can be
obtained via a known training sequence in the packet,
e.g., a known preamble embedded in the overhead, and/or
through blind channel estimation techniques.

2) It extracts the disseminated CSI and uses it to update any
“staler” CSI in its local table.

We denote the kth node’s estimate of the (i, j) channel during
the packet transmitted at time n as ĥ(k)

i,j [n]. Note that 2 of a
node’s estimates are directly obtained via channel estimation
in step 1 above (for i = k or j = k). The remaining N − 2
estimates are indirectly obtained via disseminated CSI in step 2
above (for i, j 6= k). Thus, the network contains a total of
2N directly estimated parameters, and N(N − 2) indirectly
estimated parameters.

The following definitions are considered for the metrics that
are used to establish the results in section III.

Definition 1 (Staleness). The staleness s
(k)
i,j [n] of the CSI

estimate ĥ(k)
i,j [n′] at time n ≥ n′ is (n− n′)P words.

Definition 2 (Maximum staleness). The maximum staleness
Smax of a deterministic protocol is defined as

Smax = max
i,j,k,n≥n̄

s
(k)
i,j [n]

for n̄ sufficiently large such that all nodes have complete CSI
tables.

Definition 3 (Average staleness). The average staleness Savg

of a protocol is defined as

Savg =
1

LN
E

∑
i,j,k

s
(k)
i,j [n]


where the expectation is over n ≥ n̄ for n̄ sufficiently large
such that all nodes have complete CSI tables.

We define a protocol as a sequence of transmitting nodes and
the channel indexes they disseminate. In this paper we only
focus on deterministic protocols.

Definition 4 (Efficient protocol). An efficient deterministic
protocol is a valid protocol that simultaneously achieves
maximum staleness S∗max + gmaxP , while also achieving an
average staleness of at most S∗avg + gavgP for constants
gmax, gavg and all N .

The modulus operator

σm
k (i) = i+mk (mod N)

is used to simplify the notation. Also, if σm
k (i) = 0, set

σm
k (i) = N , and argument i can be a vector, in which case σ

operates element-wise.

III. CSI DISSEMINATION PROTOCOLS

In this section we provide lower bounds on the maximum
and average staleness of any deterministic protocol and de-
velop efficient protocols for dissemination of global CSI. The
staleness performance of the ring network is evaluated for two
extreme cases that (i) K = 1 and (ii) K = Kmax = bN3 c
nodes transmit during each time slot. Also, for each case
dissemination of the single freshest channel estimate in each
packet, M = 1, and dissemination of M = N − 1 CSI
estimates in each packet are considered.

Table I represents lower bounds on the maximum and
average staleness, S∗max and S∗avg , for different choices of K
and M . Proofs are omitted due to the lack of space, however,
in the following we mention some of the lemmas that are used
to obtain the lower bounds.

Lemma 1 (Minimum staleness of the (i, j) channel
((i, j) ∈ LC)). At any time, at most one node in the network
can have an estimate of the (i, j) channel with staleness zero
and this estimate must be observed directly.



TABLE I: Lower bounds on the maximum and average staleness.

K M P S∗
max S∗

avg Protocol

1 1 D + 1 ( 2N
2−3N−4

2
)P ( 2N

2−7N+8
4

)P 1-a,b,c,d

1 N − 1 D +N − 1 (2N − 4)P ( 2N
2−5N+4
2N

)P 2

Kmax 1 D + 1 ( 7N−16
2

)P ( 7N
2−28N+36

4N
)P 3-a,b,c

Kmax N − 1 D +N − 1 ( 2N
3

)P ( 2N
2−N+6
6N

)P 4

During any time slot, if node i (j) transmits, node j (i) makes
a direct estimate of the (i, j) channel with staleness zero, so
there exists only one node that has a fresh estimate of the (i, j)
channel. Otherwise, if neither node i nor node j transmits
during a time slot, the (i, j) channel estimates throughout the
network have staleness of at least one packet.

Lemma 2 (Minimum number of transmissions to disseminate
a channel to all nodes). The number of disseminations to
provide an estimate of the (i, j) channel to all nodes is lower
bounded by N − 2.

Note that each channel, say the (i, j) channel should be
disseminated by at least N − 4 nodes that indirectly estimate
it and to disseminate a fresh estimate of the (i, j) channel, at
least one transmission is required by each of nodes i and j,
which gives a minimum of N − 2 disseminations.

Lemma 3 (Maximum number of simultaneous transmissions
without collisions). The maximum number of nodes that can
simultaneously transmit without collisions is Kmax = bN3 c.

To have no collisions, any receiving node in the network must
be adjacent to only one or zero transmitting nodes. A receiving
node also may not transmit while receiving. Hence, if node
j, 1 ≤ j ≤ N is transmitting, nodes σ0

0({j − 2, j − 1, j + 1,
j + 2}) are not permitted to transmit.

The basic steps for deriving the given bounds involve
separately considering the directly and indirectly estimated
parameters throughout the network, deriving the staleness
statistics for each group of parameters, and subsequently
obtaining the maximum and average staleness bounds over all
parameters. For some choices of parameters (i.e., amount of
CSI disseminated per packet, and number of simultaneously
transmitting nodes), the underlying combinatorics are such
that development of bounds and efficient protocols achieving
the bounds requires splitting the number of nodes N into
different cases. For example, in the first theorem below where
K = M = 1, four separate cases of N are required: N odd
and N 6= 6k−3, N odd and N = 6k−3, N even and N 6= 4k,
N even and N = 4k, where we define k ∈ Z+.

Theorem 1 (Achievability of the lower bound on the maxi-
mum and average staleness of CN for K = 1 and M = 1).
The following protocols achieve within P time slots of S∗max.
In each protocol, H = {H0, H1, . . . ,H2N−1} denotes the
node transmission order for N(N − 2) time slots and must
be repeated with period N(N − 2) to maintain its achievable

lower bound on the maximum and average staleness.

Protocol 1-a (N odd and N 6= 6k− 3, K = 1, M = 1)
Define Hm = σm

N−1
2

(
{

1, 2, . . . , N−1
2

}
), which forms

the node transmission order for dissemination of the
σm

N−1
2

((N, 1)) channel for m = 0, 1, . . . , N − 1. De-

fine HN+m = σ−mN−3
2

(
{
N − 1, N − 2, . . . , N+3

2

}
), which

forms the node transmission order for dissemination of
the σ−mN−3

2

((N − 1, N)) channel for m = 0, 1, . . . , N − 1.

Protocol 1-a achieves maximum staleness of Smax = S∗max +
P/2 and average staleness of Savg ≤ S∗avg + P/2.

Protocol 1-b (N = 6k − 3, K = 1, M = 1)
Define Hm = σm

N−3
2

(
{

1, 2, . . . , N−3
2

}
), which forms

the node transmission order for dissemination of the
σm

N−3
2

((N, 1)) channel for m = 0, 1, . . . , `−1, which ` =
N
3 . Define H`+m = σm

N−3
2

(
{
N, 1, . . . , N−5

2

}
), which

forms the node transmission order for dissemination of
the σm

N−3
2

((N − 1, N)) channel for m = 0, 1, . . . , `− 1.

Define H2`+m = σ−mN−1
2

(
{
N − 2, N − 3, . . . , N−1

2

}
),

which forms the node transmission order for dis-
semination of the σ−mN−1

2

((N − 2, N − 1)) channel
for m = 0, 1, . . . , N − 3. Define H2`+N−2+m =
σm

N−3
2

(
{
N − 1, N, . . . , N−7

2

}
), which forms the node

transmission order for dissemination of the σm
N−3

2

((N −
2, N − 1)) channel for m = 0, 1, . . . , ` − 1. De-
fine H3`+N−2+m = σ−mN−1

2

(
{
N − 3, N − 4, . . . , N−3

2

}
),

which forms the node transmission order for dissemina-
tion of the σ−mN−1

2

((N − 3, N − 2)) channel for m = 0, 1.

Protocol 1-b achieves maximum staleness of Smax = S∗max +
P/2 and average staleness of Savg ≤ S∗avg + P/2.

Protocol 1-c (N even and N 6= 4k, K = 1, M = 1)
Define Hn = σm

N−2(
{

1, 2, . . . , N2
}

), which forms
the node transmission order for dissemination of the
σm
N−2((N, 1)) channel for n = 2m = 0, 2, . . . , N − 2.

Define H` = σm
N−2(

{
N+2

2 , N+4
2 , . . . , N − 2

}
), which

forms the node transmission order for dissemination
of the σm

N−2((N
2 ,

N+2
2 )) channel for ` = 2m + 1 =

1, 3, . . . , N−1, and m = 0, 1, . . . , N−2
2 . Define HN+n =



σ−mN−2({N − 1, N − 2, . . . , N2 }), which forms the node
transmission order for dissemination of the σ−mN−2((N −
1, N)) channel for n = 2m = 0, 2, . . . , N − 2.
Define HN+` = σ−mN−2(

{
N−2

2 , N−4
2 , . . . , 2

}
), which

forms the node transmission order for dissemination
of the σ−mN−2((N−2

2 , N2 )) channel for ` = 2m + 1 =
1, 3, . . . , N − 1, and m = 0, 1, . . . , N−2

2 .

Protocol 1-c achieves maximum staleness of Smax = S∗max +
P and average staleness of Savg ≤ S∗avg + P/2.

Protocol 1-d (N = 4k, K = 1, M = 1)
Define Hm = σm

N−2
2

(
{

1, 2, . . . , N−2
2

}
), which forms

the node transmission order for dissemination of the
σm

N−2
2

((N, 1)) channel for m = 0, 1, . . . , N − 1. De-

fine HN+m = σ−mN−2
2

(
{
N − 1, N − 2, . . . , N+2

2

}
), which

forms the node transmission order for dissemination of
the σ−mN−2

2

((N − 1, N)) channel for m = 0, 1, . . . , N − 1.

Protocol 1-d achieves maximum staleness of Smax = S∗max

and average staleness of Savg ≤ S∗avg + P/2.
Figure 3 shows the achieved staleness for this efficient

protocol at each time instant when N = 4 and D = 0. We
see that over one period of the protocol, i.e., 8 ≤ n ≤ 15, the
instantaneous maximum staleness is equal to 8, thus achieving
S∗max. Also, we note that Savg = 3.125 = S∗avg + 1/8. Thus,
Fig. 3 shows that the protocol is efficient.

Theorem 2 (Achievability of the lower bound on the maxi-
mum and average staleness of CN for K = 1 and M = N−1).

Protocol 2 (N ≥ 3, K = 1, M = N − 1)
The node transmission order for the first block of

length N is H = {1, 2, 3, . . . , N}, where each node
in disseminates all of its table except the estimate of
the channel between nodes in+1 and in+2. Note that H
denotes the node transmission order for N time slots and
must be repeated with period N to maintain its achievable
lower bound on the maximum and average staleness.

Protocol 2 achieves maximum staleness of Smax = S∗max and
average staleness of Savg ≤ S∗avg + P/2.

Theorem 3 (Achievability of the lower bound on the max-
imum and average staleness of CN for K = Kmax and
M = 1). The following protocols achieve S∗max. Note that
H = {H0, H1, . . . ,H5} denotes the node transmission order
for 3(N − 2) time slots and must be repeated with period
3(N − 2) to maintain its achievable lower bound on the
maximum and average staleness.

Protocol 3-a (N = 6k, K = Kmax, M = 1)
Let h`1+m = σ1

m+`
(N−2)

2

({1, 4, . . . , N − 2}) be the
simultaneous transmitters’ indices for dissemination

of the σ1

`
(N−2)

2

({(N, 1), (3, 4), . . . , (N − 3, N − 2)})

channels, respectively, during time 1 + m + ` (N−2)
2

for m = {0, 1, . . . , N−4
2 }. Define H` =

{h`1, h`2, . . . , h`N−2
2

} for ` = {0, 1, 2}. Let

h`
1+

3(N−2)
2 +m

= σ1

−m−` (N−2)
2

({2, 5, . . . , N − 1}) be the
simultaneous transmitters’ indices for dissemination of
the σ1

−` (N−2)
2

({(2, 3), (5, 6), . . . , (N − 1, N)}) channels,

respectively, during time 1 + m + (` + 3) (N−2)
2

for m = {0, 1, . . . , N−4
2 }. Define H`+3 =

{h`
1+

3(N−2)
2

, h`
2+

3(N−2)
2

, . . . , h`2(N−2)} for ` = {0, 1, 2}.

Protocol 3-a achieves maximum staleness of Smax = S∗max

and average staleness of Savg ≤ S∗avg + P/2.

Protocol 3-b (N = 6k − 3, K = Kmax, M = 1)
Let h2`

1+m = σ1
m+`({1, 4, . . . , N − 2}) be the simul-

taneous transmitters’ indices for dissemination of the
σ1
m+`({(N, 1), (3, 4), . . . , (N − 3, N − 2)}) channels,

respectively, during time 1 + m + `(N − 2) for m =
{0, 1, . . . , N−3

2 }. Define H2` = {h2`
1 , h

2`
2 , . . . , h

2`
N−1

2

} for

` = {0, 1, 2}. Let h2`+1
1+m = σ1

−m+`({3, 6, . . . , N}) be the
simultaneous transmitters’ indices for dissemination of
the σ1

−m+`({(3, 4), (6, 7), . . . , (N, 1)}) channels, respec-
tively, during time N−1

2 + 1 + m + `(N − 2) for m =

{0, 1, . . . , N−5
2 }. Define H2`+1 = {h2`+1

1 , h2`+1
2 , . . . ,

h2`+1
N−3

2

} for ` = {0, 1, 2}.

Protocol 3-b achieves maximum staleness of Smax = S∗max +
P/2 and average staleness of Savg ≤ S∗avg + P/2.

Protocol 3-c (N 6= 3k, N ≥ 7, K = Kmax, M = 1)
Let h2`

1+m = σ1
m+`({1, 4, . . . , 1 + 3(Kmax − 1)})

be the simultaneous transmitters’ indices for dissemina-
tion of the σ1

m+`({(N, 1), (3, 4), . . . , (N + 3(Kmax −
1), 1 + 3(Kmax − 1))}) channels, respectively, during
time 1 + m + `(N − 2) for m = {0, 1, . . . , n1 −
1}. Define H2` = {h2`

1 , h
2`
2 , . . . , h

2`
N−1

2

} for ` =

{0, 1, . . . , N
gcd(N,N−2) − 1}. Let h2`+1

1+m = σ1
−m+`({n1 −

1, n1 + 2, . . . , n1 − 1 + 3(Kmax − 1)}) be the simul-
taneous transmitters’ indices for dissemination of the
σ1
−m+`({(n1 − 1, n1), (n1 + 2, n1 + 3), . . . , (n1 − 1 +

3(Kmax−1), n1+3(Kmax−1))}) channels, respectively,
during time n1+1+m+`(N−2) for m = {0, 1, . . . , n2−
1}. Define H2`+1 = {h2`+1

1 , h2`+1
2 , . . . , h2`+1

N−3
2

} for

` = {0, 1, . . . , N
gcd(N,N−2) − 1}. Here, n1 = N−1

2 and
n2 = N−3

2 , when N is odd, and n1 = N
2 and n2 = N−4

2 ,
when N is even.

For Protocol 3-c H = {H0, H1, . . . ,H 2N
gcd(N,N−2)

−1} denotes

the node transmission order for [ N
gcd(N,N−2) ](N−2) time slots

and must be repeated with period [ N
gcd(N,N−2) ](N − 2) to

maintain its achievable lower bound on the maximum and
average staleness. When N 6= 3k, at least 4 time slots are



n = 0
1 transmits

n = 1
2 transmits (1,2)

n = 2
3 transmits (2,3)

n = 3
4 transmits (3,4)

n = 4
3 transmits (3,4)

n = 5
2 transmits (2,3)

n = 6
1 transmits (1,2)

n = 7
4 transmits (1,4)

n = 8
1 transmits (1,4)

Smax[n] = 8

Savg[n] = 3.25

n = 9
2 transmits (1,2)

Smax[n] = 8

Savg[n] = 3.25

n = 10
3 transmits (2,3)

Smax[n] = 8

Savg[n] = 3

n = 11
4 transmits (3,4)

Smax[n] = 8

Savg[n] = 3

n = 12
3 transmits (3,4)

Smax[n] = 8

Savg[n] = 3.25

n = 13
2 transmits (2,3)

Smax[n] = 8

Savg[n] = 3.25

n = 14
1 transmits (1,2)

Smax[n] = 8

Savg[n] = 3

n = 15
4 transmits (1,4)

Smax[n] = 8

Savg[n] = 3
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Fig. 3: Efficient CSI dissemination protocol for N = 4, K = 1 and M = 1 case. Numbers on edges indicate staleness of
CSI estimates locally at each node; red numbers indicate CSI estimates have been refreshed through direct estimation, blue
numbers indicate CSI refreshed through dissemination, and black numbers indicate no update to CSI since the last packet.

required so that all nodes can transmit at least once with no
collisions, while for N = 3k only 3 time slots is enough. Thus,
any protocol with N 6= 3k has to include some ”leftover”
dissemination rounds by a single node, which causes the
staleness to increase with N . Also, considering fairness among
the nodes, for N 6= 3k at least N(N−2)

gcd(N,N−2) time slots are
required to have all nodes transmit an equal number of times.
Based on this, we conjecture that Protocol 3-c achieves the
lowest maximum and average staleness compared to any other
protocol. However, Protocol 3-c does not achieve within a
constant gap of S∗max or S∗avg .

Theorem 4 (Achievability of the lower bound on the max-
imum staleness of CN for K = Kmax and M = N − 1).

Protocol 4 (N ≥ 3, K = Kmax, M = N − 1)
Let H0 = {1, 4, . . . , 1 + 3(Kmax − 1)} of length

Kmax denote the first group of nodes that simul-
taneously transmit without collisions and each node
in disseminates its table except the estimate of the
channel between nodes in+1 and in+2. Define H` =
σ`

1(H0), which forms the group of simultaneous trans-
mitters for ` = 0, 1, 2, . . . , N − 1. Note that H =
{H0, H1, H2, . . . ,HN−1} denotes the node transmission
order for N time slots and must be repeated with pe-
riod N to maintain its achievable lower bound on the
maximum and average staleness.

Protocol 4 achieves maximum staleness of Smax ≤ S∗max +
8P/3 and average staleness of Savg ≤ S∗avg + 6P/5.

Table II shows the node transmission order and their dis-
seminated CSI, i.e. Protocol 3-a for N = 6.

IV. NUMERICAL RESULTS

This section provides numerical examples to verify the
analysis in the previous section and to quantify the maximum
and average staleness as a function of the network parameters

TABLE II: Protocol 3-a for N = 6, K = 2, M = 1.

time slot Tx1 disseminated CSI Tx2 disseminated CSI

n = 0 1 (1, 6) 4 (3, 4)

n = 1 2 (1, 6) 5 (3, 4)

n = 2 3 (2, 3) 6 (5, 6)

n = 3 4 (2, 3) 1 (5, 6)

n = 4 5 (4, 5) 2 (1, 2)

n = 5 6 (4, 5) 3 (1, 2)

n = 6 5 (5, 6) 2 (2, 3)

n = 7 4 (5, 6) 1 (2, 3)

n = 8 3 (3, 4) 6 (1, 6)

n = 9 2 (3, 4) 5 (1, 6)

n = 10 1 (1, 2) 4 (4, 5)

n = 11 6 (1, 2) 3 (4, 5)

N and D. Figure 4 plots the maximum and average staleness
of the protocols for CN , versus the number of nodes N for
D ∈ {0, 10}. The D = 0 case can be considered a protocol
with no data or overhead where each packet is dedicated solely
to CSI dissemination. These results show that for large N ,
when D = 0, the K = Kmax and M = 1 case provides the
minimum maximum and average staleness, and when D = 10,
the K = Kmax and M = N − 1 case provides the minimum
maximum and average staleness.

Figure 5 plots the maximum and average staleness of the
protocols for CN , versus the packet data and overhead D for
N ∈ {6, 25}. The results show for D ≥ 6, the K = Kmax

and M = N − 1 case provides the minimum maximum and
average staleness.

Next, an example applying the derived staleness bounds to
a practical wireless setting is considered. For global CSI to
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Fig. 4: Achievable maximum and average staleness versus N .
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Fig. 5: Achievable maximum and average staleness versus D.

be useful at all nodes, the maximum staleness lower bound in
seconds must be less than the coherence time of the channel.
For a carrier frequency of fc and an average relative speed of
nodes equal to v, the resulting Doppler spread is fD = vfc

c
where c is the speed of light, and the coherence time is
Tc = 0.423

fD
= 0.423c

vfc
[18]. Consider mobile transmission

of voice using LTE [19], for example, with a data rate of
Rb = 25 Mbps, 1200 bits of data plus overhead per packet,
32 bits per word, a carrier frequency of fc = 1900 MHz,
relative speed of v = 100 m/s, K = Kmax simultaneous
transmitters without collisions and M = N − 1 CSI estimates
per packet, the bounds tell us that if the node cluster size
exceeds N > 15, global CSI dissemination is infeasible.

V. CONCLUSION

This paper analyzed lower bounds on the staleness of
deterministic protocols for global CSI estimation and dissem-
ination in wireless ring networks with packet-based transmis-
sion and time-varying reciprocal channels. Efficient protocols
that achieve these bounds within a small constant gap were

developed. The analysis showed that for both cases of dis-
seminating a single channel estimate and N−1 CSI estimates,
the maximum and average staleness bounds scale as O(N2),
except when the maximum number of nodes transmit without
collisions and a single channel estimate gets disseminated per
packet, in which case the maximum and average staleness
bounds scale as O(N). Also, for small and large amounts
of data plus overhead compared to the number of nodes,
a single channel estimate and N − 1 CSI estimates should
be disseminated per packet, respectively, to minimize the
maximum and average staleness.
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