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Abstract—This paper studies a multi-source “age of informa-
tion” problem in multi-hop wireless networks with packetized
status updates and explicit channel contention. Specifically, the
scenario considered in this paper assumes that each node in the
network is a both a source and a monitor of information. Nodes
take turns broadcasting their information to other nodes in the
network while also maintaining tables of status updates for the
information received from all other nodes in the network. Lower
bounds on the peak and average age of information are derived
and are found to be a function of fundamental graph properties

including the connected domination number of the graph and the
average shortest path length. In addition to these converse results,
achievability results are developed through the presentation of
an explicit algorithm for constructing near-optimal status update
schedules along with an analytical upper bound for the average
and peak age of these schedules. Finally, numerical results are
presented that compute the bounds, construct schedules, and
compute the achieved average and peak ages of these schedules
exhaustively over every connected network topology with nine or
fewer nodes. The results show that the the developed schedules
achieve a peak age exactly matching the lower bounds and an
average age within a multiplicative factor of 1.035 of the lower
bound in all tested cases.

Index Terms—Age of information, peak and average age, multi-
source, multi-hop, explicit contention, graph theory.

I. INTRODUCTION

Information freshness is of critical importance in a variety of

networked monitoring and control systems such as intelligent

vehicular systems, channel state feedback, and environmental

monitoring as well as applications such as financial trading

and online learning. In these types of applications, stale

information can lead to incorrect decisions, unstable control

loops, and even compromises in safety and security. A recent

line of research has considered information freshness from a

fundamental perspective under an Age of Information (AoI)

metric first proposed in [1] and further studied in [2]–[26].

The central idea is that there are one or more sources of infor-

mation along with one or more monitors. A source generates

timestamped status updates which are received by a monitor

after some delay. The “age of information” is defined as the

difference between the current time and the timestamp of the

most recent status update at the monitor. A common theme of

the AoI literature is to study and/or optimize the statistics of

AoI, i.e., average age and/or peak age, as a function of the

system parameters and update strategies.

This work was supported by the National Science Foundation award CCF-
1319458.

Much of the work in this area has focused on studying AoI

in the single-source, single-monitor setting, e.g., [2]–[8]. The

delay in delivering the updates from the source to the monitor

in these studies is typically modeled as a random delay through

a queue. As such, these papers consider AoI in an “implicit

contention” setting in the sense that the other nodes contending

for the channel resources are not explicit in the system model.

This paper studies AoI in a general multi-source, multi-

hop, time-slotted network setting with explicit contention in

the sense that all delays between sources and monitors are

due to explicit channel uses by other nodes in the network.

Each node in the system is both a source and monitor of

information. Since the only assumption on the network is

that it is connected, some nodes in the network also serve

as relays to facilitate multi-hop dissemination of information

between nodes that are not directly connected. While [1],

[13]–[26] also consider this fully-explicit contention setting,

only [23]–[26] consider multi-hop networks. The analysis in

[23]–[25] is restricted to specific network structures, e.g., line

or ring networks, however, and the schedules developed for

these networks are not easily extended to general network

structures. The recent work in [26] considers more general

network structures, but assumes a pre-defined source/monitor

pairs, and analyzes achievable AoI under certain simplifying

assumptions, e.g., stationary scheduling policies.

The main contributions of this paper are (i) the development

of fundamental bounds on the peak and average age in a

general multi-source, multi-hop network setting and (ii) the

presentation of an explicit algorithm for constructing near-

optimal update schedules. The development of fundamental

bounds on peak and average age has received relatively little

attention in the AoI literature. The bounds derived in this

paper hold for all connected network topologies and minimum

length periodic schedules in which one node transmits per time

slot. The explicit update schedules developed in this paper are

analytically shown to achieve a peak age exactly matching the

lower bound and numerically shown to achieve an average age

within a multiplicative factor of 1.035 of the lower bound for

every connected network topology with nine or fewer nodes.

II. SYSTEM MODEL

Consider a wireless network modeled by an undirected

graph G = (V , E). The vertex set V represents the nodes and

the edge set E represents the channels between the nodes in

the network. Two vertices i, j ∈ V are adjacent if edge ei,j is



in set E . Equivalently, there exists a channel between nodes i
and j; as such, any wireless transmission broadcast from node

i is received at all adjacent nodes. Here, we only consider

networks with a connected topology, i.e., there exists a path

between any two distinct vertices i, j ∈ V . Each node i ∈ V
can generate samples of a local random process Hi(t) at any

time t. In addition to information on the status of its own

process, every node in the network is also interested in updates

of the status of the remaining N−1 processes in the network.

We denote the status of process Hi(t) from the perspective

of node j at time t by H
(j)
i (t). So, at any time each of the

N nodes keeps a table of its most recently obtained status

updates of each of the N processes, giving a total of N2

parameters throughout the network. Out of the N parameters

at each node, one is obtained locally by direct observation,

and N−1 are obtained by indirect observation from the status

updates disseminated by other nodes. Overall, there exist N
directly and N2−N indirectly obtained parameters throughout

the network. We assume transmissions of status update packets

with a fixed length of one unit of time. Each packet includes

information about the one process that is being transmitted

and a time stamp indicating the time that the information was

generated. We denote the time interval ((n − 1), n] by time

slot n for an integer n.

The following definitions formalize the notation and age

metrics considered in this paper. First, we review some com-

mon graph theoretic concepts. We use the notation d(i, j) to

denote the shortest path length between vertices i and j, and

ℓG , 1
N2−N

∑

i,j∈V,i6=j d(i, j) denotes the average shortest

path length of the graph G. Recall that a set S ⊂ V of vertices

in a graph is called a dominating set if every vertex not in

S is adjacent to a vertex in S [27]. A minimum connected

dominating set (MCDS) S ⊂ V is a dominating set with

the properties that (i) the subgraph induced by S, G[S] is

connected and (ii) S has the smallest cardinality among all

connected dominating sets of G. The cardinality of any MCDS

is called the connected domination number of G and denoted

by γc. In general, the MCDS is not unique [28], [29].

Definition 1 (Pseudo-leaf vertex). We refer to a vertex as a

pseudo-leaf if it is not a member of any MCDS. That is i ∈ V is

a pseudo-leaf if i /∈U where the Sm⊂V for m = {1, 2, . . .M}
represent all M possible MCDS’s of G and

U , S1 ∪ S2 ∪ . . . ∪ SM .

Further, we refer to the set of all pseudo-leaf vertices of G by

L , V − U .

Under this definition, every true leaf (i.e., every vertex with

degree one) is also a pseudo-leaf. An example illustrating the

notion of pseudo-leaf vertices and MCDS’s is shown in Fig. 1.

Definition 2 (Age). Assume the most recent status update of

the Hi process received at node j was timestamped at time

t′. The age of status update H
(j)
i at time t ≥ t′ is defined as

∆
(j)
i (t) , t− t′ for j 6= i.

1 2

3
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5
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Fig. 1. A 5-node pan network. The nodes are indexed by V = {1, 2, 3, 4, 5}.
Here there exist two MCDS’s, S1 = {2, 3} and S2 = {2, 4}, so that L =
V − (S1 ∪ S2) = {1, 5} is the set of pseudo-leaf nodes.

Since each node is assumed to have zero-delay access to the

status of its local process, we have ∆
(i)
i (t) = 0 for any i ∈ V

and t. To capture the timeliness of all of the N2−N indirectly-

obtained status update parameters throughout the network, we

define the peak and average age metrics in the following.

Definition 3 (Peak age). The peak age is defined as

∆peak , sup
t≥t̄
i,j∈V,i6=j

∆
(j)
i (t) (1)

for t̄ sufficiently large such that all nodes have complete status

update tables.

Definition 4 (Average age). The average age is defined as

∆avg, lim
T →∞





1

N2 −N

∑

i,j∈V,i6=j

1

T − t̄

∫ T

t̄

∆
(j)
i (t) dt



 (2)

for t̄ sufficiently large such that all nodes have complete status

update tables.

We refer to a schedule as an ordered sequence of transmit-

ting nodes and the corresponding status update parameter that

they disseminate in each time slot. To illustrate the concept of

a schedule, consider the following example for a 3-node line

network represented in Fig. 2.

n = 0:Assume the first status update packet is transmit-

ted by node 1. Node 1 starts dissemination of

H
(1)
1 (−1+) which has age of 0 at the beginning of

time slot 0. Node 2 receives this packet at time t = 0
at which point the information has aged by one time

unit, giving ∆
(2)
1 (0+) = 1.

n = 1:Since node 2 now has an update of the H1(t) process,

it relays a packet containing H
(2)
1 (0+) during time

slot 1. Node 3 receives the packet at time t = 1 at

which point the information has aged by one addi-

tional time unit, giving ∆
(2)
1 (1+) = ∆

(3)
1 (1+) = 2.

Node 1 also receives the packet, but discards it since

node 1 always has fresher, local knowledge of the

H1(t) process.

n = 2:Node 2 disseminates H
(2)
2 (1+) during time slot 2.

Both nodes 1 and 3 receive this packet at time t = 2
at which point the information has aged by one time

unit, giving ∆
(1)
2 (2+) = ∆

(3)
2 (2+) = 1.



n = 3:Node 3 disseminates H
(3)
3 (2+) during time slot 3.

Node 2 receives this packet at time t = 3 at which

point the information has aged by one time unit,

giving ∆
(2)
3 (3+) = 1.

n = 4:Since node 2 now has an update of the H3(t) process,

it relays a packet containing H
(2)
3 (3+) during time

slot 4. Node 1 receives the packet at time t = 4 at

which point the information has aged by one addi-

tional time unit, giving ∆
(1)
3 (4+) = ∆

(2)
3 (4+) = 2.

Next, the sequence repeats starting by node 1 transmitting

H
(1)
1 (4+) during time slot 5. Figure 3 represents the age

evolution of the 6 indirectly-obtained status update parameters

throughout the network for 3 repetitions of the schedule

described above. Table I summarizes this schedule.

TABLE I
EXAMPLE SCHEDULE FOR THE 3-NODE LINE NETWORK IN FIG. 2

time slot transmitting node disseminated status update

n = 0, 5, 10, . . . 1 H
(1)
1 ((n − 1)+)

n = 1, 6, 11, . . . 2 H
(2)
1 ((n − 1)+)

n = 2, 7, 12, . . . 2 H
(2)
2 ((n − 1)+)

n = 3, 8, 13, . . . 3 H
(3)
3 ((n − 1)+)

n = 4, 9, 14, . . . 2 H
(2)
3 ((n − 1)+)

1 2 3

Fig. 2. A 3-node line network as an example for partially-connected networks.
The nodes are indexed by {1, 2, 3}.

Observe that there are two primary sources that cause the

status update parameters to age when maintaining a table.

First, some updates arrive relatively stale since they must be

disseminated over several hops. We refer to this source as

the multi-hop penalty. Second, status updates grow stale while

awaiting a refresh. We refer to this source as the inter-arrival

time. For example, consistent with the red curve in the bottom

subplot of Fig. 3, any status update of the H1 process obtained

by node 3 must have an age greater than or equal to 2 since

the update must be disseminated over two hops. Also, node

3 waits for 5 time slots to receive another update of the H1

process, causing ∆
(3)
1 (t) to grow staler yet by 5 more time

slots. Thus, the age of the status update of the H1 process at

node 3 grows as high as ∆
(3)
1 (6−) = 7.

III. LOWER BOUNDS ON PEAK AND AVERAGE AGE

In this section we derive lower bounds on the peak and

average age metrics for status update dissemination in general,

partially-connected networks. Prior to developing the lower

bound, we present the following useful Lemma.

Lemma 1 (Lower bound on the schedule length to refresh all

tables). To update the status of all parameters throughout the

network, at least T ≥ T ∗ , γcN + |L| status update packets

need to be disseminated.
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Fig. 3. Operation of a schedule for a 3-node line network in Fig. 2.

Proof. To provide an update of a single process Hi to all nodes

in the network, an update of the process must be disseminated

at least γc times, or at least γc + 1 times if node i is a

pseudo-leaf node [30, Theorem 1]. From Definition 1, there

are |L| pseudo-leaf vertices in the graph; thus, to update all

N parameters throughout the network it follows that at least

γcN + |L| packets must be transmitted.

The following lower bounds hold for minimum length

periodic schedules such that all parameters throughout the

network get updated exactly once during each period. We refer

to this class of schedules as T ∗-periodic schedules.

Theorem 1 (Lower bound on peak age). The peak age of

information for any T ∗-periodic schedule is lower-bounded

by

∆peak ≥ ∆∗
peak ,

{

γc(N + 1) |L| = 0

γc(N + 1) + |L|+ 1 |L| ≥ 1
. (3)

Due to space constraints, we provide a sketch of the proof

of each theorem. Refreshing the H
(j)
i process throughout the

network requires γc hops (plus one, if node i is a pseudo-leaf

node), and in each hop the age increases by one time unit.

Thus, the maximum multi-hop penalty over all parameters can



be lower-bounded by γc, or by γc + 1 if at least one pseudo-

leaf node is present, i.e. if |L| ≥ 1. Next, the maximum inter-

arrival time of all of the parameters throughout the network is

lower-bounded by T ∗. This is because only one node transmits

during each time slot, T ∗ packets need to be transmitted

to update all parameters, and there is therefore always a

parameter that has not received a new status update within

the last T ∗ time units. Since the peak total age is the sum

of the inter-arrival time and multihop penalty terms, the peak

total age is lower-bounded by the sum of the individual lower

bounds.

Theorem 2 (Lower bound on average age). The average age

of information for any T ∗-periodic schedule is lower-bounded

by

∆avg ≥ ∆∗
avg ,

T ∗

2
+ ℓG .

Since it requires at least d(i, j) hops for the update of

information process Hi to reach node j, the multi-hop penalty

of the H
(j)
i parameter can be lower-bounded by d(i, j).

Averaging over all N2−N indirectly obtained status updates

gives the lower bound of ℓG on the average multi-hop penalty.

Next, the average inter-arrival times of all of the parameters

throughout the network are lower-bounded by T ∗/2. Since the

total average age is the sum of these two terms, it is lower-

bounded by the sum.

IV. SCHEDULE DESIGN FOR STATUS UPDATE

DISSEMINATION

In this section we provide an algorithm that generates

schedules for refreshing all of the status update parameters

throughout the network with any arbitrary topology. Observe

that in the following, “Depth-First Search(G[S], i)” describes

an ordered list of vertices generated by performing a depth-

first search of the graph induced by S where the search starts

at root vertex i.

Algorithm 1: Schedule design to disseminate status updates

throughout the network

Step I: initialize time, t← −1.

Step II: for node i = 1 : N do

∗ if ∃ MCDS S̄ s.t. i∈S̄ then

S←S̄ .

else

S←S̄∪{i}, for any MCDS S̄ ⊂V .

end

∗ Ssorted = Depth-First Search(G[S], i)

∗ for k = 1 : |Ssorted| do
∗ j = Ssorted(k),
∗ node j transmits H

(j)
i (t+),

∗ t← t+ 1.
end

end

Step III: repeat from Step II.

In the following we derive upper bounds on the achievable

peak and average age of the schedules generated by Algo-

rithm 1.

Theorem 3 (Achievable peak age of Algorithm 1). The

schedule generated by Algorithm 1 achieves ∆peak = ∆∗
peak .

Algorithm 1 results in a schedule with the minimal length

T ∗, so the maximum inter-arrival time is exactly T ∗. Mean-

while, the maximum multi-hop penalty is equal to γc, or γc+1
if |L| ≥ 1. Thus, the lower bound on the peak age is achieved

by this schedule.

Theorem 4 (Upper bound on the achievable average age of

Algorithm 1). The average age of the schedule generated by

Algorithm 1 is at most

∆avg ≤
T ∗

2
+ γc +

|L|

N
.

For the schedule generated by Algorithm 1, the multi-hop

penalty of all the parameters is upper-bounded by γc, or γc+1
if |L| ≥ 1. Next, the average inter-arrival time of all of the

parameters throughout the network is exactly T ∗/2 since the

algorithm constructs a schedule with the minimal length T ∗.

After some algebra the given upper bound is obtained.

V. NUMERICAL RESULTS

This section provides an exhaustive numerical example

that illustrates the bounds on peak and average age, as well

as the achievable average age of the schedule generated

by Algorithm 1 for every connected network topology with

3 ≤ N ≤ 9 nodes. We make use of a database [31] that

exhaustively enumerates all connected network topologies with

isomorphs removed. The achievable peak age is compared to

the lower bound in Theorem 1 and the achievable average

age is compared to the lower and upper bounds in Theo-

rems 2 and 4, respectively. The results show that, indeed,

∆peak,ach = ∆∗
peak for all of the considered topologies. In

addition, for the achievable average age values the numerical

results show that

1 ≤
∆avg,ach(k)

∆∗
avg(k)

≤ 1.035,
1

K

K
∑

k=1

∆avg,ach(k)

∆∗
avg(k)

≈ 1.008,

for k = {1, . . . ,K} where K = 273191 represents the

total number of networks with a connected topology and

N ≤ 9 nodes. In addition, for all k = {1, . . . ,K} we have

∆avg,ach(k) ≤ ∆avg,ub(k). Also, observe that the achievable

average age is roughly half the the achievable peak age, i.e.,

∆avg,ach(k) ≈ 0.5∆peak,ach(k) for all k = {1, . . . ,K}.

VI. CONCLUSION

This work describes initial steps to quantify the age of

information in multi-source multi-hop status update networks

with any arbitrary partially-connected topology. Assuming that

each source can generate status updates of its local process at
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Fig. 4. Achievable peak and average age of the schedule generated by
Algorithm 1 for all networks with a connected topology and N ≤ 9. The
age values are arranged in an increasing order for the achievable average age.

any time in a network with slotted transmissions, we derived

fundamental lower bounds on the peak and average age of

information over all of the status update parameters throughout

the network. Next, an algorithm was proposed that constructs

schedules for dissemination of the status updates in any given

network topology. We derived upper bounds on the achievable

peak and average age of the schedules constructed by the

algorithm. The results showed that the schedule construction

always achieves the lower bound on the peak age, and the

gap between the achieved average age and the lower bound

on the average age was not more than 3.5% of the achieved

average age over all possible connected network topologies

with N ≤ 9 nodes.

Developing peak and average age bounds in a scenario

where the transmission times are not fixed is an interesting

extension. Characterizing the age improvement with multiple

transmitting nodes during each time slot is another interesting

future work direction to consider.
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