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Abstract—In wireless networks, it is well-known that inter-
mediate nodes can be used as cooperative relays to reduce the
transmission energy required to reliably deliver a messageto
an intended destination. When the network is under a central
authority, energy allocations and cooperative pairings can be
assigned to optimize the overall energy efficiency of the network.
In networks with autonomous selfish nodes, however, nodes
may not be willing to expend energy to relay messages for
others. This problem has been previously addressed through
the development of extrinsic incentive mechanisms, e.g. virtual
currency, or the insertion of altruistic nodes in the network to
enforce cooperative behavior. This paper considers the problem of
how selfish nodes can decide on an efficient energy allocationand
endogenously form cooperative partnerships in wireless networks
without extrinsic incentive mechanisms or altruistic nodes. Using
tools from both cooperative and non-cooperative game theory, the
three main contributions of this paper are (i) the development of
Pareto-efficient cooperative energy allocations that can be agreed
upon by selfish nodes, based on axiomatic bargaining techniques,
(ii) the development of necessary and sufficient conditionsunder
which “natural” cooperation is possible in systems with fading
and non-fading channels without extrinsic incentive mechanisms
or altruistic nodes, and (iii) the development of techniques
to endogenously form cooperative partnerships without central
control. Numerical results with orthogonal amplify-and-forward
(OAF) cooperation are also provided to quantify the energy
efficiency of a wireless network with sources selfishly allocating
transmission/relaying energy and endogenously forming coop-
erative partnerships with respect to a network with centrally
optimized energy allocations and pairing assignments.

I. I NTRODUCTION

Multihop or cooperative transmission is often used in wire-
less ad hoc networks to increase energy efficiency by allowing
packets to be delivered over several short links [1]. One or
more intermediate nodes between the source and destination
can assist in the transmission by forwarding or relaying the
packet along the route to the destination. Autonomous nodes
acting in their own self-interest, however, may refuse to use
their limited resources to forward packets for other nodes.
This can lead to inefficient use of the network resources since
messages may have to be retransmitted or re-routed through
different paths to the destination node [2].

Several techniques have been proposed to encourage co-
operation and improve the efficiency of wireless ad hoc
networks with selfish autonomous nodes. A comprehensive
study of these techniques can be found in [3]. One well-studied

technique to encourage cooperation among selfish nodes is the
development of extrinsic incentive mechanisms, e.g. virtual
currency [4], [5], where nodes are reimbursed for cooperation.
The idea of virtual currency is intuitively appealing in many
scenarios, but the use of virtual currency has the potentialfor
fraud and/or collusion as discussed in [6]. Another technique
that can induce cooperation is the introduction of altruistic
nodes into the network [7] that punish misbehaving nodes.
While both of these techniques have been shown to encourage
cooperation among selfish nodes, they both require some level
of central authority in the network to perform accounting or
to strategically insert altruistic nodes. They also implicitly
assume that the near-term costs and benefits of cooperative
behavior are one-sided, hence remuneration is necessary to
enable cooperation. While this assumption is true in some
cases, recent studies, e.g. [8], have shown that the benefitsof
cooperation can be two-sided and have considered the question
of when “natural” cooperation is possible in large networks
without any central authority. In [9], a two-player relaying
game based on the orthogonal amplify-and-forward (OAF)
cooperative transmission protocol [10] was analyzed in a non-
cooperative game-theoretic framework and it was shown that
natural cooperation without extrinsic incentive mechanisms
or altruistic nodes can emerge under certain conditions on
the channels. Two limitations of this work, however, are that
it used centrally-controlled energy allocations and did not
consider networks with more than two source nodes.

This paper considers the problem of how selfish nodes can
locally decide on an efficient energy allocation and endoge-
nously form cooperative partnerships in wireless networks
with two or more source nodes and without any sort of
extrinsic incentive mechanisms, altruistic nodes, or central
authority. We first use bargaining tools from cooperative game
theory to determine efficient energy allocations that can be
locally computed and agreed to by a pair of selfish nodes. We
then develop a repeated-game framework and employ tools
from non-cooperative game theory to describe necessary and
sufficient conditions under which natural cooperation between
a pair of nodes is possible. To extend our results to networks
with more than two source nodes, we then consider the
question of how to endogenously form cooperative partner-
ships in general networks and propose the use of the “stable



roommates” algorithm [11], [12] to form partnerships that are
stable with respect to unilateral or bilateral deviations.Finally,
numerical results with orthogonal amplify-and-forward (OAF)
cooperation are provided to quantify the energy efficiency of
a wireless network with sources selfishly allocating transmis-
sion/relaying energy and endogenously forming cooperative
partnerships with respect to a network with centrally optimized
energy allocations and pairing assignments.

Unlike the previous studies on this subject, the novelty
of the approach in this paper is that the nodes in the net-
work behave selfishly without any form of central authority,
community enforcement, or extrinsic incentive mechanisms.
Selfish autonomous nodes endogenously form cooperative
partnerships, locally determine efficient energy allocations,
and cooperate by relaying messages during transmission ses-
sions with multiple frames. Throughout this paper, we assume
that nodes exhibit rational individual choice behavior, meaning
that each individual source node has a consistent preference
relation over all possible energy allocations and partners, and
always chooses the most preferred feasible alternative. Wealso
assume that nodes can always refuse to cooperate if it is in
their best interest to do so.

The rest of the paper is organized as follows. Section II
introduces the system model used throughout the paper. In
Section III we present a two-player relaying game in stage-
game formulation, develop axiomatic bargaining solutions
to determine an optimum energy allocation that two selfish
players can agree upon, and then develop necessary and
sufficient conditions under which selfish nodes will cooperate
and not defect under a repeated-game formulation for both
fading and non-fading channels. Section V extends these two-
player results to networks withK > 2 sources and describes a
technique in which the sources can endogenously form stable
cooperative pairings. Section VI provides numerical energy
efficiency examples based on OAF cooperative transmission
and concluding remarks are made in Section VII.

The rest of the paper is organized as follows. Section II
introduces the system model used throughout the paper. In
Section III we present a two-player relaying game in stage
game and repeated game formulation for both fading and non-
fading channel conditions and Section IV provides several
axiomatic bargaining solutions to determine an optimum en-
ergy allocation that the two selfish players can agree upon.
Section V extends the two-player game to more than two
players by allowing the transmitting sources to form stable
cooperative pairs. Section VI provides a numerical example
based on OAF cooperative relaying. Concluding remarks are
made in Section VII.

II. SYSTEM MODEL

We consider an ad hoc wireless network withL half-duplex
nodes and a discrete model of time where nodes transmit
information to other nodes in the network intransmission
sessionsof variable duration. The sets of source nodes and
destination nodes in a given transmission session are denoted
asS andD, respectively, where|S| = |D| = K ≤ L/2 and

S ∩ D = ∅. The destination node for source nodei ∈ S is
denoted asdi ∈ D. It is assumed that the number of nodes
and/or the amount of offered network traffic is sufficiently
large such that, in any given transmission session,K ≥ 2
source nodes wish to transmit independent information to
distinct destination nodes in the network.

In each transmission session, theK source nodes involved
in the transmission session take turns transmitting using time-
division multiple access (TDMA). A transmission session is
composed ofN ≥ 1 framesand each frame is composed of
2K timeslotsas shown in Figure 1 for the case whenK = 2.
The channelhij [n] between nodei ∈ S and nodej ∈ D ∪
S\i in framen is assumed to be frequency non-selective. The
squared channel magnitude between nodei and j in frame
n, normalized with respect to the power of the additive white
Gaussian noise (AWGN) in the channel, is denoted asHij [n].

In the first K timeslots of each frame, each source node
transmits a packet to its destination. Due to the undirected
nature of wireless transmission, the TDMA transmissions in
the first K timeslots are also overheard by the other source
nodes in the transmission session. The signal received by node
j from nodei in framen is given as

yij [n] =
√

Hij [n]xi[n] + uij [n].

for all i ∈ S and all j ∈ D ∪ S\i in the current transmission
session wherexi[n] is the packet transmitted by source node
i in framen anduij [n] is zero-mean unit-variance AWGN. In
the remainingK timeslots of the frame, each source node can
potentially help one other source node by relaying a packet
to its intended destination. When source nodej ∈ S\i elects
to relay a packet for source nodei, it transmits a function of
the observation received from source nodei in the first half
of the frame. Destination nodedi ∈ D receives

zjdi
[n] =

√

Hjdi
[n]f(yij [n]) + vjdi

[n]

where the relaying functionf depends on the cooperative
protocol andvjdi

[n] is zero-mean unit-variance AWGN. All
noise terms are assumed to be spatially and temporally white.
Note that each destinationdi ∈ D always receives at least one
observation in each frame, i.e. the direct transmissionyidi

[n],
and may receive two observations if another source node elects
to relay the packet from source nodei.

It is assumed that the normalized channel magnitudes
H[n] = {Hij [n]} are quasi-static and fading in the sense
that H[n] is constant over the duration of each frame, but
are independent and identically distributed (i.i.d.) in different
frames of the transmission session. The current channel state
is assumed to be known by theK source nodes involved in the
current transmission session. Channel phases are only assumed
to be known at the respective receivers.

III. T WO-PLAYER RELAYING GAME

This section considers the scenario when there are two
source nodes, denoted asS = {1, 2}, that wish to communi-
cate independent information to two distinct destination nodes,
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Fig. 1. A transmission session composed ofN frames withS = {1, 2}.

denoted asD = {3, 4}. We extend the ideas developed in this
section to the case withK > 2 source nodes in Section V.

A. Stage Game Formulation

A stage gameis defined in terms of the players, available
actions, and payoffs received by each player as a consequence
of the actions for one frame of the current transmission
session. The players in the game are the source nodes. In the
first two timeslots of framen, each source node transmits to its
destination using transmit energyE1[n] andE2[n], respectively.
If a source node does not request relaying from the other
source node, i.e. it uses direct transmission to its destination,
it will transmit with sufficient energy to satisfy a minimum
quality-of-service (QoS) constraint, e.g. SNR or rate, at its
destination based on the current channel state. For example, if
the required signal-to-noise ratio at destination nodedi is ρ,
then source nodei will transmit with energyEi[n] = ρ/Hidi

[n]
in frame n when it uses direct transmission. We denote the
required direct transmission energy for source nodei in frame
n as Edt

i [n]. If a source node requests relaying from the
other source node in framen, it will transmit with energy
0 < Ei[n] < Edt

i [n].
Referring to the timeslot schedule in Figure 1, if node 2

has requested relaying, then node 1 must decide in timeslot 3
whether to fulfill this relaying request. Since both source nodes
know the channel state, node 1 can determine the minimum
relaying energyErmin

1 [n] required to ensure the QoS constraint
is satisfied at destination node 4 [13]. Although node 1 can
choose any non-negative relaying energyEr

1 [n], it will never
rationally choose a relaying energy larger than the minimum
required relaying energy since there is no benefit to either
source node if a node expends excess relaying energy. If source
node 1 transmits with relaying energy less than the minimum
required relaying energy, then the packet will not be received
at destination node 4 with the required QoS and node 2 will
need to transmit with additional energy at the end of the frame
to ensure the QoS constraint is satisfied. For these reasons,we
assume that node 1 chooses from the discrete set of actions
“do not relay” (a1[n] = DNR ⇔ Er

1 [n] = 0) and “relay with
minimum required relaying energy” (a1[n] = R ⇔ Er

1 [n] =
Ermin

1 [n]) in framen. If source node 1 chooses the actionDNR
whenErmin

1 [n] > 0, then node 2 will transmit at the end of the
frame with the remaining energy required to ensure the QoS
constraint is satisfied at node 4. Since the channel magnitudes
are assumed to be constant over the duration of the frame,
the total transmission energy expended by node 2 in this case
will be the same as if node 2 had used direct transmission in
timeslot 2. If source node 1 chooses the actionR, the packet
will be received by node 4 at the required QoS level without
any additional transmission energy from node 2.

In timeslot 4, if node 1 has requested relaying, node 2 must
also decide between the actionsDNR andR. The situation is
the same in this case as when node 1 relays for node 2 except
that node 2 has the advantage of having just observed whether
or not node 1 fulfilled its relaying request and can choose its
action accordingly.

Since packets from both source nodes are always delivered
to each destination irrespective of whether relaying requests
are fulfilled or not, we define thestage-game payoffas the
transmission energy saved in the current frame with respectto
direct transmission. The payoff received by source nodei in
framen for actions

a[n]=(a1[n], a2[n])∈{(DNR, DNR),(DNR, R),(R, DNR),(R, R)}

is denoted asπi(a[n], n). Note that whenevera[n] =
(DNR, DNR), both source nodes receive a payoff of zero. If
source nodei choosesR and nodej choosesDNR, then nodei
receives a payoff ofπi(a[n], n) = −Ermin

i and nodej receives
a payoff ofπj(a[n], n) = E∗

j where

E∗
j [n] := Edt

j [n] − Ej [n] > 0

is defined as the energy saved by nodej with respect to
direct transmission if nodej requests relaying and nodei 6= j
fulfills the relaying request by relaying with sufficient energy
to ensure the QoS constraint is satisfied at destination node
dj . Finally, if a[n] = (R, R), the source nodes receive payoffs
(π1(a[n], n), π2(a[n], n)) = (E∗

1 − Ermin

1 , E∗
2 − Ermin

2 ). Fig-
ure 2 summarizes the two-player relaying game in extensive
form [14] and shows the payoffs received by each source node
as a function of the actions chosen by the players in the current
frame.

start of frame

1:DT 1:RR

2:DT 2:RR 2:DT 2:RR

1:DNR

2:DNR

1:R

2:DNR 2:DNR

1:DNR 1:DNR
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2 )(−Ermin
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2 )(E∗

1 ,−Ermin
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Fig. 2. Two-player relaying game in extensive form with source nodesS =

{1, 2}. The actionsDT, RR, R, andDNR correspond to “direct transmission
(no relay request)”, “request relay”, “relay”, and “do not relay”, respectively.
The pairs at the bottom of the tree correspond to the payoffs of nodes 1 and 2,
respectively, at the end of the frame.

1) Stage Game Analysis:Inspection of the payoff pairs in
Figure 2 shows that, when node 2 is requested to relay such
that Ermin

2 > 0, node 2 will choose the actionDNR because
its payoff of choosingDNR is always better than choosing
R, irrespective of node 1’s actions. Knowing this, node 1 will
also choose the actionDNR for the same reasons. Since both
source nodes know that any relay requests will always be
rejected, both source nodes will choose to communicate with
their respective destinations by direct transmission and receive



the payoff pair(π1(a[n], n), π2(a[n], n)) = (0, 0).
To formalize this result, we briefly review the concept of a

Nash Equilibrium (NE) [14]. In ak-player game, the action
profile(a∗

1, ..., a
∗
k) is an NE if, for each playeri, a∗

i is playeri’s
best response toa∗

−i, wherea−i denotes the actions of all the
players except playeri. In framen, this can be expressed as

πi({a
∗
i [n], a∗

−i[n]}, n) ≥ πi({ai[n], a∗
−i[n]}, n)

for all ai in the set of available actions for playeri and where
πi is the payoff function playeri. Intuitively, if all of the
players are choosing NE actions, no player can increase their
payoff by unilaterally deviating from the NE action profile.
It is not difficult to show that the only NE of the two-player
relaying stage game isa[n] = (DNR, DNR).

The dilemma in this result is that both nodes could poten-
tially receive a payoff better than(0, 0) by accepting relay
requests whenE∗

1 − Ermin

1 > 0 and E∗
2 − Ermin

2 > 0. In
other words, if the channel state is such that both nodes could
save energy through mutual cooperation, both nodes would do
better by choosinga[n] = (R, R) than a[n] = (DNR, DNR).
Nevertheless, analysis of the stage game yields only one NE
action profile for selfish players: mutual non-cooperation.In
the following section, we extend this stage-game analysis to a
repeated game formulation and show that, unlike a single-stage
game, a repeated game with uncertain ending can include a
mutually cooperative NE for selfish players.

B. Repeated Game Formulation

Since each transmission session is composed ofN ≥ 1
frames, the stage game formulation developed in the prior
section can be extended to arepeated gamemodel where the
players interact over multiple stage games. IfN is known
to both source nodes in the current transmission session,
backward induction arguments can be used to show that both
players will choosea[n] = (DNR, DNR) in each stage game.
To see this, first consider the last stage game. Since there is
no possibility of gain from future cooperation, node 2 will
rationally chooseDNR to maximize its payoff. Knowing this,
node 1 will also chooseDNR for the same reasons. Since
each node knows that the other node will chooseDNR in the
last stage game, they will also choosea[n] = (DNR, DNR)
in the second to last stage game, and so on, ensuring that the
only rational strategy for both source nodes is to reject relay
requests in all of the stage games [15, p.10].

Now consider the scenario when the number of frames
in the current transmission session is not known by the
source nodes. Specifically, we consider the case when the
transmission session continues after the current frame with
fixed probabilityδ, whereδ is known to both source nodes.
In this case, the number of framesN is a geometrically
distributed random variable with probability mass function
pN (n) = (1 − δ)δn−1 for n = 1, 2, . . . . Since the number of
frames in the current transmission session is not known to the
source nodes (and, as will be discussed in Section III-B1, the
payoffs in future frames may also be unknown), both source
nodes seek to maximize theirexpectedtotal payoff in the

transmission session. We define the expected total payoff of
nodei as

Πi := E

{

N−1
∑

n=0

πi(a[n], n)

}

whereN is random andπi(a[n], n) may be random. Under
the assumption that the stage-game payoffs are independent
of N , the expected total payoff can be shown to be equivalent
to a repeated game having an infinite number of stages with
future payoffs discounted according to the expected duration
of the game [15]. For playeri, this can be expressed as

Πi =

∞
∑

n=0

δnE{πi(a[n], n)}

whereδ is called thediscount factorandπi(a[n], n) is thei
th

player’s payoff in framen given action profilea[n].

In repeated games, players use astrategyto specify their
actions in each stage game as a function of the channel state,
cooperative protocol, QoS constraint, and previous actions
of the other players. We define aTRIGGER strategy in the
repeated two-player relaying game as follows: ifErmin

i [n] > 0,
player i chooses the actionai[n] = R unless the other player
has previously chosenDNR when relaying was requested. If
playeri choosesDNR whenErmin

i [n] > 0, then playeri is said
to defect. If either player defects, the other player “triggers”
punishment by choosingDNR in all future stage games (note
that, since node 2 chooses its action after it observes the
action of node 1 in the current stage game, node 2 will trigger
punishment by playingDNR in the current stage game).

1) Repeated Game Analysis:In our analysis of the re-
peated game scenario, the channel states in the current and
previous frames are assumed to be known to both sources.
The channel states in future frames are not known; only
their distribution is known. The energy allocationE [n] =
{E1[n], E2[n], Ermin

1 [n], Ermin

2 [n]} is assumed to dynamically
determined in each framen = 0, 1, . . . according to the known
channel state, the cooperative protocol, and the QoS constraint.
The following proposition establishes necessary and suffi-
cient conditions under which the (TRIGGER,TRIGGER) strategy
profile is an NE of the repeated two-player relaying game
with uncertain ending in systems with quasi-static i.i.d. fading
channels.

Proposition 1. In a system with quasi-static i.i.d. fading
channels, the strategy profile (TRIGGER,TRIGGER) is an NE of
the repeated two-player relaying game with uncertain ending if
and only ifErmin

1 [n] ≤ E∗
1 [n]+ δ

1−δ Ē1 andErmin

2 [n] ≤ δ
1−δ Ē2

for all n = 0, 1, . . . whereĒi := E{E∗
i [n] − Ermin

i [n]}.

Proof: In framen′, if both nodes have faithfully played
and continue to play the strategy profile (TRIGGER,TRIGGER),



they will receive an expected total payoff of

Πi =

n′
−1

∑

n=0

δn(E∗
i [n] − Ermin

i [n])

+ δn′

(E∗
i [n′] − Ermin

i [n′]) +

∞
∑

n=n′+1

δnĒi.

The first and second terms in this expression correspond
to the known total payoff of the previous frames and the
known payoff of the current frame, respectively. The final term
in this expression corresponds to the expected total payoff
from mutual cooperation in future stage games where the
i.i.d. channel state assumption has been used to remove the
dependence of the mean onn.

If node 1 deviates from theTRIGGER strategy by defecting
in stage gamen′, it will receive a total payoff of

Π1 =

n′
−1

∑

n=0

δn(E∗
1 [n] − Ermin

1 [n])

because node 2 will punish node 1 immediately for its
defection in the current stage game. Note that this total
expected payoff does not exceed the total expected payoff from
faithfully playing the TRIGGER strategy whenδn′

(E∗
1 [n′] −

Ermin

1 [n′])+
∑∞

n=n′+1 δnĒ1 ≥ 0. Hence, node 1 has no incen-
tive to deviate from the strategy profile (TRIGGER,TRIGGER)
whenErmin

1 [n′] ≤ E∗
1 [n′] + δ

1−δ Ē1.
If node 2 deviates from theTRIGGER strategy by defecting

in stage gamen′, it is punished by node 1 in the next stage
game and receives a total expected payoff of

Π2 =

n′
−1

∑

n=0

δn(E∗
2 [n] − Ermin

2 [n]) + δn′

E∗
2 [n′].

The second term here corresponds to the payoff received by
node 2 in stage gamen′ when its packet is forwarded by
node 1 but it does not reciprocate. This total expected payoff
does not exceed the total expected payoff from faithfully
playing theTRIGGER strategy whenErmin

2 [n′] ≤ δ
1−δ Ē2.

Proposition 1 implies that, as long as both sources can find
an energy allocation such that they are not requested to expend
“too much” relaying energy in the current frame, then mutual
cooperation (with the threat of punishment for defection) is an
NE of the repeated two-player relaying game with uncertain
ending. In other words, both source nodes have no incentive to
defect when they can expect to receive more long-term benefit
from cooperation than short-term benefit from defection. Note
that the strategy profile (ALWAYS DEFECT, ALWAYS DEFECT)
is also an NE of the repeated two-player relaying game with
uncertain ending since neither player stands to gain from
cooperation with an opponent that always defects.

As a special case of Proposition 1, we can also consider
a system with non-fading channels where the channel state
is the same over all of the frames in the transmission ses-
sion, i.e. H [n] ≡ {H12, H13, H14, H21, H23, H24} for all
n = 0, 1, . . . , and the sources use fixed energy allocations,

i.e. E [n] ≡ {E1, E2, E
rmin

1 , Ermin

2 } for all n = 0, 1, . . . . The
following lemma establishes necessary and sufficient condi-
tions under which the (TRIGGER,TRIGGER) strategy profile is
an NE of the repeated two-player relaying game with uncertain
ending in systems with non-fading channels.

Lemma 1. In a system with non-fading channels, the strategy
profile (TRIGGER,TRIGGER) is an NE of the repeated two-
player relaying game with uncertain ending if and only if
Ermin

1 ≤ E∗
1 and Ermin

2 ≤ δE∗
2 .

The proof of Lemma 1 follows from Proposition 1 by
substituting Ēi = E∗

i − Ermin

i for i ∈ {1, 2}. Unlike the
case with fading channels, all of the future payoffs are known
when the channels are non-fading; only the duration of the
transmission session is unknown. Both source nodes have no
incentive to defect when they expect to receive more long-
term benefit from cooperation than short-term benefit from
defection.

In each framen = 0, 1, . . . , Proposition 1 and Lemma 1
identify a set of feasible energy allocations under which selfish
nodes will rationally choose mutual cooperation. This set
might be empty, depending on the channel state, cooperative
protocol, and QoS constraint, in which case the only NE is
for both sources to use direct transmission. When this set is
not empty, there remains the question of how much relaying
energy the sources should demand of each other. The initial
transmit energies0 < E1[n] ≤ Edt

1 [n] and0 < E2[n] ≤ Edt
2 [n],

when combined with the channel stateH[n], the cooperative
protocol, and the QoS constraint, imply the minimum required
relaying energiesErmin

1 [n] and Ermin

2 [n]. Since the channel
state is known to both source nodes, one possible strategy
would be for both source nodes to chooseE1[n] and E2[n]
such that they request the maximum relaying energy from the
other source under the conditions of Proposition 1, i.e. node 2
selectsE2[n] such thatErmin

1 [n] = E∗
1 [n] + δ

1−δ Ē1 and node 1
selectsE1[n] such thatErmin

2 [n] = δ
1−δ Ē2. Under this energy

allocation, the (TRIGGER,TRIGGER) strategy profile is an NE
of the repeated game and the total expected payoff for both
source nodes can be calculated asΠ1 = 0 andΠ2 = E{E∗

2 [n]}.
This energy allocation, however, is likely to be inefficient
in the sense that there may be other energy allocations that
result in a better total expected payoff for one orboth source
nodes. The question of how to select an efficient and mutually
agreeable energy allocation is considered in the following
section.

IV. EFFICIENT COOPERATIVE ENERGY ALLOCATION

When the setÛ\(0, 0) is not empty, selfish nodes will
attempt to arrive at a unique mutually agreeable payoff pair
(and, consequently, a unique energy allocation) through “bar-
gaining”. The bargaining problem is one of the paradigms
of cooperative game theory in which a group of two or
more participants are faced with a set of feasible outcomes,
any of which can be the bargaining solution if agreed to
unanimously. Our use of the term bargaining here is somewhat
misleading in the sense that the nodes do not actually bargain



by communicating offers and counteroffers to each other.
Rather, since the channel state is known to both source nodes
and each node knows how the other will bargain, each node
can determine the bargaining solution locally without any ad-
ditional communication. The technique of uniquely dividing a
surplus among selfish players is commonly called “bargaining”
in the cooperative game-theory literature, however, and wewill
use this term here for consistency.

Let us define the pair(U , ∆) as the bargaining problem,
where U is the set of all feasible stage-game payoff pairs
and ∆ = (0, 0) is the disagreement payoff. If both sources
fail to reach an agreement, they use direct transmission to
deliver their packets to their intended destinations and receive
the disagreement payoff in the current stage game. Note that∆
is always inU because direct transmission is always feasible.
It is assumed thatU is a convex and closed set, bounded from
above. Given the definition of the bargaining problem and the
set of Pareto-efficient payoff pairŝU , an axiomatic bargaining
solution is a functionB, based on a set of “reasonable”
axioms, that maps every(U , ∆) to a unique member of̂U .
Specifying these axioms serves to characterize the solution
uniquely from among the set of Pareto-efficient points.

The most commonly used axiomatic bargaining solution
is the Nash Bargaining Solution (NBS) which is based on
four simple and well-accepted axioms and has been shown to
have close connections to subgame-perfect equilibria in infinite
horizon games [14]. These axioms can be briefly described as

1) (Pareto-efficiency) the bargaining solutionB(U , ∆)
must be Pareto-efficient

2) (independence of linear transformations) ifT =
ax + b with a > 0, then the bargaining solution
B(T (U), T (∆)) = T (B(U , ∆)), i.e. the bargaining
solution must be independent of the utility scales of the
players

3) (symmetry) the bargaining solutionB(U , ∆) will give
equal payoffs to both players if the setU is symmetric
in the sense that(u1, u2) ∈ U implies (u2, u1) ∈ U

4) (independence of irrelevant alternatives) ifV ⊆ U and
B(U , ∆) ∈ V , then B(V , ∆) = B(U , ∆), i.e. the
addition of irrelevant alternatives does not affect the
bargaining solution

Other axiomatic bargaining solutions based on different sets
of axioms include the Raiffa (Kalai-Smorodinsky) [16] (RBS)
and the Modified Thomson (MTBS) bargaining solutions. A
unified view of all these axiomatic models is presented in [17].

The NBS, RBS, and MTBS bargaining solutions can all be
expressed as

Bβ(U , ∆) = arg max
(w1,w2)∈Û

w1w2 (1)

where β is a scalar parameter specified by the bargaining
solution (β = 0 for NBS, β = 1 for RBS, andβ = −1
for MTBS) and

wi :=
πi

mi
+ β

(

1 −
πj

mj

)

is the preference functionof source nodei, with j ∈ {1, 2},
j 6= i, andmi is the maximum stage-game payoff of source
i over U . The value ofβ in the preference function implies
a tradeoff between a player’s own gain and the other player’s
losses, normalized by each player’s maximum gain. When
players use the NBS (β = 0), the bargaining solution is
such that players only maximize their own payoff without
consideration of the losses incurred by the other player. When
players use the RBS (β = 1), the bargaining solution is
such that each player’s payoff is proportional to its maximum.
Finally, when players use the MTBS (β = −1), each player
has the same preference function and the bargaining solution
is such that the sum of the normalized payoffsπ1/m1+π2/m2

is maximized.
To illustrate the feasible payoff set, the Pareto-efficient

subset, as well as the different bargaining solutions, Figure 3
shows the positive quadrant of the feasible stage-game payoffs
as well as the NBS, RBS, and MTBS for a two-player
relaying game using orthogonal amplify-and-forward (OAF)
cooperation with channel stateH12 = H21 = 5, H13 = 0.5,
H14 = 5, H23 = 3, andH24 = 0.9 and an SNR=10dB QoS
constraint. The maximization in (1) is performed numerically
for β ∈ {−1, 0, 1} to obtain the three different bargaining
solutions. The centrally controlled maximum total payoff
(or, equivalently, minimum total energy), is also plotted for
comparison.
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Fig. 3. Illustration of NBS, RBS, and MTBS two-player bargaining solutions
over the set of feasible stage-game payoffs,U .

As a final comment on the use of bargaining solutions to find
an efficient resource allocation to which both selfish sources
will agree, it should be reiterated any bargaining solutionwill
imply an energy allocation that must satisfy the NE criteria
developed in Proposition 1 (or Lemma 1 in the case of non-
fading channels). If the bargaining solution implies an energy
allocation that does not satisfy the NE criteria, both nodeswill
know this and will use direct transmission to avoid defection
and triggering punishment.



V. K > 2 PLAYER RELAYING GAME

In the case when there areK > 2 source nodes in a
given transmission session, we restrict our attention to the
particular scenario in which the source nodes formfixed two-
player partnershipsfor the duration of a transmission session.
The central problem is then the assignment of partners to
each source node (except one, whenK is odd). Specifically,
we consider the problem of how to form stable partnerships
endogenously by selfish source nodes.

We define apairing instanceP as a set of two-player
partnerships in which all but at most one source nodes are
disjointly paired. It is not difficult to show that each pairing
instance in aK > 2 player relaying game is an equilib-
rium with respect to unilateral deviations when the energy
allocations are determined by a bargaining solution and the
NE conditions are satisfied. Pairing instances may not be an
equilibrium with respect to multi-player deviation, however,
where two or more players leave their current partners and
form different partnerships. As an example, consider a network
with K = 4 source nodes denoted asS = {1, 2, 3, 4} and a
pairing instanceP = {{1, 2}, {3, 4}}. Suppose that all nodes
receive an identical expected payoff ofπP > 0 under this
pairing instance. Suppose further that, under pairing instance
Q = {{1, 3}, {2, 4}}, nodes 1 and 3 each receive a payoff
of πQ > πP while nodes 2 and 4 receive a payoff of zero.
It is clear that nodes 1 and 2 both improve their payoff by
deviating from pairing instanceP to Q, and they can do so
without any consent (or repercussions) from nodes 3 and 4.
Hence, although pairing instanceP is an equilibrium with
respect to unilateral deviation, it is not an equilibrium with
respect to multi-player deviations.

While there are many notions of equilibrium inK > 2
player games, we restrict our attention here to the notion ofa
pairwise-stable network [19]. A pairwise-stable network is a
pairing instance that is immune to any improving two-player
deviations, where an improving two-player deviation in our
context is a deviation in which two players sever their current
partnerships and form a new partnership such that at least
one player in the new partnership receives a strictly greater
expected payoff while the other player in the new partnership
receives an expected payoff no worse than before. The pairing
instanceP in the previous paragraph is clearly not a pairwise
stable.

The problem of how to endogenously form a pairwise-stable
network among selfish nodes has been studied extensively
under the title of stable matching problems[11]. Stable
matching problems are generally divided into two categories:
two-sided matching and one-sided matching. In a two-sided
matching problem, also referred to as themarriage problem,
there are two sets of participants and the matching is a one-
to-one mapping between the two sets. This is the classic
matching problem discussed in [11], where it is shown that
every instance of the two-sided matching problem always
admits at least one stable solution. In the one-sided matching
problem, a matching results in a partition of the single set of

participants into disjoint pairs. This is a generalizationof the
marriage problem and is known as theroommateproblem. A
major difference between a two-sided (marriage) problem and
a one-sided (roommate) problem is that the roommate problem
may not necessarily have a stable matching.

In the context of aK > 2 player relaying game, the
matching problem is one-sided since the source nodes are
homogeneous. In the absence of central control, the source
nodes can endogenously attempt to form a stable matching
by first computing the bargaining payoffs (and checking the
NE conditions) for each of theK − 1 possible partners in
the network. These payoffs then imply a preference table,
known to each node, that is used as the input to the Stable
Roommate (SR) algorithm [12] computed locally at each node
to determine a pairwise-stable matching, if one exists. If a
pairwise-stable matching exists, the nodes then cooperatein
the transmission session with these pairings using transmis-
sion/relaying energies specified by the appropriate bargaining
solution (or direct transmission if the bargaining solution does
not satisfy the NE conditions). If a pair-wise stable matching
does not exist, one approach is to resort to direct transmission
in the current transmission session. Another approach is to
locally compute the centrally controlled pairings and form
partnerships based on these pairing. Both of these approaches
are demonstrated in the numerical results in the following
section.

VI. N UMERICAL RESULTS

To demonstrate the energy efficiency of wireless networks
with selfish energy allocation and selfish partner selection,
this section provides a numerical example for a wireless
network with non-fading path-loss channels using orthogo-
nal amplify-and-forward (OAF) cooperative relaying. In each
transmission session,K source andK destination nodes
are randomly placed on a disk of radiusR = 10 meters
(with uniform distribution). The squared channel magnitude
between each node pairi and j is then calculated asHij =
(

(xi − xj)
2 + (yi − yj)

2
)−γ/2

where γ = 4 is the path-
loss parameter and(xi, yi) is the cartesian coordinate pair of
nodei. The relative energy efficiency of several schemes, aver-
aged over the random node positions, are compared in Figure 4
with respect to a system with centrally controlled (CC) energy
allocations and CC pairing assignments. In Figure 4, a relative
energy efficiency of one corresponds to the minimum total
network transmission energy (obtained through CC energy
allocations and CC pairing assignments) and a relative energy
efficiency of zero corresponds to direct transmission.

The results in Figure 4 show that a system with purely
selfish energy allocations (NBS/NE) and endogenously formed
node pairings (SR) can achieve a relative energy efficiency of
approximately half of that of a system with centrally controlled
energy allocations and pairings for values ofK ≥ 10. Since
a stable roommate node pairing solution does not always
exist, we provide “optimistic” and “pessimistic” bounds onthe
relative energy efficiency of NBS/NE energy allocations with



SR pairings by using the centrally controlled pairing assign-
ment and direct transmission, respectively, when a SR pairing
solution is not found. Note that the results corresponding to
CC energy allocations are not stable with respect to unilateral
deviations in the sense of an NE. This is because some nodes
may receive negative payoffs under CC energy allocation and
these nodes would rationally choose defection. Also note that
all of the results corresponding to NBS/NE energy allocations
are stable with respect to unilateral deviations in the sense
that no single node can improve its payoff by defecting. The
NBS/NE results with SR pairings are stable with respect to
bilateral (pairwise) deviations when the SR pairing solution
exists, whereas CC and random pairings are not, in general,
stable with respect to bilateral deviations.

This numerical example confirms that, in the absence of
central control in a wireless ad hoc network, sources can
endogenously form cooperative pairs and selfishly allocate
their transmission/relaying energies to improve the overall
network energy efficiency with respect to direct transmission.
The results also suggest that SR pairings are significantly more
efficient than random pairings and only suffer a small loss with
respect to CC pairings.
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Fig. 4. Relative energy efficiency of a wireless network using OAF cooper-
ative relaying with centrally controlled (CC) or selfish (NBS/NE) energy al-
location and with random, centrally controlled (CC), or optimistic/pessimistic
stable roommates (SR) partner assignments.

VII. C ONCLUSION

This paper employs both non-cooperative and coopera-
tive game theoretic tools to analyze the energy efficiency
of wireless ad hoc networks with selfish energy allocation
and endogenous partner selection. The novelty of this study
is that cooperation is established without the added com-
plexity of extrinsic incentive mechanisms, altruistic nodes,
and/or community enforcement. We first described a two-
player repeated relaying game and developed the necessary
and sufficient conditions under which “natural” cooperation is
possible. These conditions were derived for both fading and

non-fading channels. By incorporating axiomatic bargaining
models, we then showed how to calculate a unique Pareto-
efficient cooperative energy allocation that can be locally
computed and agreed upon by selfish nodes without central
authority. We then extended the two-player model to networks
with K > 2 players and proposed a technique to endogenously
form cooperative partnerships without central control through
the stable roommate algorithm. Finally, we provided numerical
results based on OAF relaying and quantified the energy
efficiency of an ad hoc wireless network with selfish sources
with respect to a network with centrally optimized energy
allocations and pairings.
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