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Abstract

This paper provides a tutorial introduction to the constant modulus (CM) criterion for blind
fractionally-spaced equalizer (FSE) design via a (stochastic) gradient descent algorithm such as the Constant Mod-
ulus Algorithm. The topical divisions utilized in this tutorial can be used to help catalog the emerging literature on the
CM criterion and on the behavior of (stochastic) gradient descent algorithms used to minimize it.
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I. INTRODUCTION

Information bearing signals transmitted between remote locations often encounter a signal altering
physical channel. Examples of common physical channels include coaxial, fiber optic, or twisted-pair
cable in wired communications, and the atmosphere or ocean in wireless communications. Each of
these physical channels may cause signal distortion, including echoes and frequency-selective filtering
of the transmitted signal. In digital communications, a critical manifestation of distortion is inter-
symbol interference (ISI), whereby symbols transmitted before and after a given symbol corrupt the
detection of that symbol. All physical channels (at high enough data rates) tend to exhibit ISI. The
presence of ISI is readily observable in the sampled impulse response of a channel; an impulse response
corresponding to a lack of ISI contains a single spike of width less than the time between symbols. An
example of a terrestrial microwave channel impulse response (obtained from the SPIB! database) is
shown in Figure 1.

Linear channel equalization, an approach commonly used to counter the effects of linear channel
distortion, can be viewed as the application of a linear filter (i.e. the equalizer) to the received signal.
The equalizer attempts to extract the transmitted symbol sequence by counteracting the effects of ISI,
thus improving the probability of correct symbol detection.

Since it is common for the channel characteristics to be unknown (e.g. at startup) or to change over
time, the preferred embodiment of the equalizer is a structure adaptive in nature. Classical equaliza-
tion techniques employ a time-slot (recurring periodically for time-varying situations) during which a
training signal, known in advance by the receiver, is transmitted. The receiver adapts the equalizer
(e.g. via LMS [Haykin Book 96], [ Widrow Book 85]) so that its output closely matches the known ref-
erence training signal. As the inclusion of such signals sacrifices valuable channel capacity, adaptation
without resort to training, i.e. blind adaptation, is preferred. The most studied and implemented blind
adaptation algorithm of the 1990s is the Constant Modulus Algorithm (CMA).
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Fig. 1. Terrestrial microwave channel impulse response magnitude, 1/7" = 30 x 10% symbols/sec (SPIB Channel #3).

CMA seeks to minimize a cost defined by the Constant Modulus (CM) criterion. The CM criterion
penalizes deviations in the modulus (i.e. magnitude) of the equalized signal away from a fixed value.

'The Rice University Signal Processing Information Base (SPIB) microwave channel database resides at
http://spib.rice.edu/spib/microwave.html



In certain ideal conditions, minimizing the CM cost can be shown to result in perfect (zero-forcing)
equalization of the received signal. Remarkably, the CM criterion can successfully equalize signals
characterized by source alphabets not possessing a constant modulus (e.g. 16-QAM), as well as those
possessing a constant modulus (e.g. 8-PSK). (See Figure 2.) This paper attempts to explore the
behavior of CMA by consideration of similarities between the CM and mean-squared error (MSE)
criteria. This relationship is important because of well-known connections between MSE and the

actual quantity we desire to minimize, probability of bit error (see, e.g., the discussion in [Gitlin Book
92]).
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Fig. 2. Non-constant modulus source constellation (16-QAM) versus constant modulus source constellation (8-PSK).

Plotting the CM cost versus the equalizer coefficients results in a surface referred to as the CM cost
surface. Stochastic gradient descent algorithms (SGD) [Luenberger Book 90|, [Haykin Book 96] attempt
to minimize the CM cost by starting at some location on the surface and following the trajectory of
steepest descent. The CM cost surface characteristics are important because they can be used to
understand the behavior of any SGD attempting to minimize the CM cost, such as CMA. Specifically,
these characteristics lend insight into the channel, equalizer, and source properties which affect SGD
behavior.

The success of a stochastic gradient descent equalizer adaptation algorithm is dependent on a certain
amount of stationarity in the received process. Thus, throughout the paper, we restrict our focus to
stationary source and noise processes, and to channels whose impulse response is fixed or slowly?
time-varying.

History

In the literature, blind equalization algorithms blossomed in the 1980s. The two principal precursors
are Lucky’s blind decision-direction algorithm [Lucky BSTJ 66] and Sato’s algorithm [Sato TCOM
75]. What we term the CM criterion was introduced for blind equalization of QAM signals in [Godard
TCOM 80] and of PAM and FM signals in [Treichler TASSP 83]. By the end of the 1980s blind
equalizers were commercialized for microwave radio [Larimore ASIL 85]. By the mid 1990s, blind
equalizers were realized in VLSI for HDTV set-top cable demodulators | Treichler SPM 96]. The current
explosion of interest in the constant modulus (CM) criterion stems from blind processing applications
in emerging wireless communication technology (e.g., blind equalization, blind source separation, and
blind antenna steering) and from CMA’s record of practical success.

Our Mission

This paper is intended to be a resource both to readers experienced in blind equalization as well
as those new to the subject. In a tutorial style, Section I-A provides background in fractionally-

*Here “slow” is considered relative to the tracking speed of the SGD algorithm.
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spaced equalizer (FSE) modeling and design. (For baud-spaced equalizer (BSE) design, we refer the
interested reader to a variety of classical references, e.g. [Gitlin Book 92|, [Haykin Book 96|, |[Lee Book
94], and [Proakis Book 95]). Section II then illustrates several low-dimensional examples that help to
characterize the behavior of FSEs adapted under the constant modulus criterion.

In Section III, we construct a categorization of literature focusing on the application of the CM
criterion to blind equalization. The annotated bibliography in Section V catalogs the existing literature
according to the classifications of Section ITI, providing the reader with a valuable tool for further
research. Our attempt to be exhaustive is justified only by the relative infancy of the subfield; evidence
of the emerging status of this literature is seen in the wealth of conference papers in the bibliography
of Section V.

Following the introductory FSE tutorial, Section I-C presents a novel view of classical non-blind
adaptive equalization that illuminates the connection between the MSE and CM criteria. Specifically,
the LMS-with-training strategy requires pre-selection of a design variable, namely training sequence
delay, that may lead to a potentially suboptimal solution. The delay-optimized MSE, a function of
equalizer parameters only, yields a cost surface (see Figure 7) for which a simple LMS-like parameter
update algorithm is not known to exist. Remarkably, the CM criterion offers a proxy for this surface
for which there exists a (blind) parameter update algorithm, CMA.

A. Fractionally-Spaced Linear Equalization

In this section we describe the fractionally-spaced equalization scenario and present some funda-
mental results regarding minimum mean squared error (i.e. Wiener [Haykin Book 96]) equalizers. This
material is primarily intended to provide background and context. For simplicity, our focus is restricted
to a T /2-spaced FSE, where T denotes the baud, or symbol, duration. All results are extendible to
the more general T /N-spaced case. Examples of seminal work on fractionally-spaced equalization in-
clude [Lucky ALL 69|, [Macchi ANT 75|, [Ungerboeck TCOM 76] and [Gitlin BSTJ 81], while more
comprehensive references are [Qureshi PROC 85] and [Gitlin Book 92).
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Fig. 3. Baseband model of single-channel communication system with T'/2-spaced receiver.
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Fig. 4. Multirate system model.

A.1 Multirate and Multichannel System Models

Consider the single-channel model illustrated in Figure 3. A (possibly complex-valued) T-spaced
symbol sequence {s,} is transmitted through a pulse shaping filter, modulated onto a propagation
channel, and demodulated. We assume all processing between the transmitter and receiver is linear
and time invariant (LTI) and can thus be described by the continuous-time impulse response ¢(t). The
received signal r(t) is also corrupted by additive channel noise, whose baseband equivalent we denote
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Fig. 5. Multichannel system model.

by w(t). The received signal is then sampled at T'/2-spaced intervals and filtered by a T'/2-spaced finite
impulse response (FIR) equalizer of length 2/N. (An even length is chosen for notational simplicity.)
This filtering can be regarded as a convolution of the sampled received sequence with the equalizer
coefficients fi. Finally, the FSE output {z;} is decimated by a factor of 2 to create the T-spaced
output sequence {y,}. Decimation is accomplished by disregarding alternate samples, thus producing
the baud-spaced “soft decisions” y,. We note that, in general, all quantities are complex-valued.
For clarity, we reserve the index n for baud-spaced quantities and the index k for fractionally-spaced
quantities throughout the paper.

Appendix A derives the equivalence between the continuous-time model in Figure 3 and the discrete
time models in Figures 4 and 5, both constructed using 7'/2-spaced samples of ¢(t) and w(t). Figure 4
depicts the “multirate” model while Figure 5 depicts the “multichannel” model. Though our derivation
of the discrete-time models is based on the single-channel system in Fig. 3, the equivalence between
the multirate and multichannel models suggests that we could have based our model on a two-sensor
(T-sampled) communication system instead. For a concise discussion on the equivalence between
temporal and spatial diversity, see [Moulines TSP 95).

The multirate model of Figure 4 uses the discrete-time fractionally-spaced channel coefficients
¢k = c(k%) and the discrete-time random process wy = w(k%). The multichannel model of Fig-
ure 5 subdivides these sample sequences into even and odd baud—spaced counterparts (of relative delay
T/2), so that ¢ = ¢y, and 0% = ¢y, 41 for n =0,1,2,.... In a similar manner, the FSE coefficients
are partltloned as foen = fo, and fodd = fo 1.

Given a fractionally-spaced channel of finite®> and (even) length 2M, we can collect the even and
odd sets of equalizer and channel coefficients into column vectors

fe — [an f27 f4; . f2N—2]t — [ even feven even’ even]t

fO = [flaf37f5>"'af2N—1]t = [ded ded ded Od—d] ) (1)
Ce = [COa €2, Cay e, C2M_2]t — [ even even gven’ . ce])\\/}enl]t

C, = [Cla C3,C5,- -, CZM—l]t - [ Odd Odda Odd Ctj)\gdl]t'

It is possible to form the (baud-spaced) impulse response of the linear system relating s, to y, using

3In practice, we would consider the F'S channel to be of “finite length” M if the response magnitude can be said to decay below
some sufficiently small threshold for all time ¢t > MZ.



a pair of Px N baud-spaced convolution matrices C, and C,, where P = M+ N —1.

[ _even T [ odd
CO codd dd
even even 0 0
1 Co 51 Co
C(iven Ccl)dd
= even : .. even = odd : .. odd . 2
Ce CM_l . . CO Y CO cM—l C-ld . COdd ( )
even even 0 0
Cp=t €1 Cym=1 €1
even odd
| Crr—1 | | Cpm—1 |

Convolution matrices are constructed so that, for example, the vector Cyf, is composed of coefficients

from the convolution 294 x feven,

Defining the compound matrix and vector quantities

f.
c=[C, C.]. f_[fo}. 3)
we can rewrite the noise-free multichannel convolution equation (39) compactly in terms of the P
(baud-spaced) system impulse response coefficients, h = [hg, hy, ..., hp_1]":
h = Cf. (4)

Equation (4) indicates that C maps the FSE coefficient vector to its corresponding system response.
Note that C is a Sylvester matrix [Kailath Book 80).

A different (though essentially equivalent) construction of C and f deserves mention. First consider
the fractionally-spaced convolution matrix Cps constructed as in either C, or C, in (2), but from a

vector of fractionally-spaced channel coefficients crps = [co, ¢1, Co, - - -, Conr—1]%:
- -
C1 Co
Co C1
3 02 . . CO
Crs = _ ' ) (5)
CoM—1 : ‘- C1
Com—1 Co
| Com—1

The product of Crg with FSE coefficient vector £ = [fy, fi, f2, . - -, fox—1]* yields the fractionally-spaced
impulse response between the upsampler and downsampler in Figure 4, i.e. hpg = Cpgf, just as in
(4). (See (47) in Appendix A-B.) Since the baud-spaced impulse response h is formed using the odd
coefficients of hyg, we reason that h can be constructed from the product of f and a row-decimated



version of Cps. In other words, h = Cf where C is formed from the odd* rows of Cgs:

C1 Co
C3 Co (&1 Co
C3 Co
C = CoM-1 CoM—2 : : " Co (6)
ComM—-1 Com-—2 &)
Com—2 |

Notice that C is a column reordering of C and f is a row reordering of f. Thus, we consider the
alternate formulation of the “decimated fractionally-spaced convolution matrix” C in (6) as essentially
equivalent to C in (3).

The convention we adopt in constructing C and C, sometimes referred to as “odd-sampled” decima-
tion, connects the odd subchannel output to the even subequalizer input and vice versa (see Figure 5).
Appendix A discusses the implications of this choice.

In the baud-spaced equalization context [Proakis Book 95|, [Lee Book 94], the convolution matrix
Cgs relating the equalizer coefficient vector to the baud-spaced impulse response does not have the
compound form of (3) or (6). Instead it appears like C, (or C,) in (2), but with columns constructed
from the T-spaced samples of the channel response. In the absence of channel noise, this construction
of Cgs yields the BSE design equation

h = Cgsfps, (7)
where fgg is the baud-spaced equalizer coefficient vector.

A.2 Requirements for Perfect Source Recovery

Equation (4) leads to what are commonly referred to as the “length and zero” conditions for perfect
fractionally-spaced equalization. We use the term perfect equalization interchangeably with perfect
source recovery (PSR), i.e., when y, = s, s for some fixed delay § and any source sequence {s,}. In
addition to the absence of noise, PSR requires the “zero-forcing” system impulse response

h; = [0...0,1,0...0], (8)

where the nonzero coefficient is in the §* position (and § must satisfy 0 < § < P — 1). This response
characterizes a system which merely delays the transmitted symbols by § baud intervals. In order
to achieve this particular response, the system of linear equations described by hy; = Cf must have
a solution. For PSR under arbitrary ¢°, C must be full row rank [Tong TIT 95]. This condition is
sometimes referred to as strong perfect equalization.

The full-rank requirement implies that C must have at least as many columns as rows, which, in
the T'/2-spaced case, results in the following equalizer length requirement:

IN>M+(N-1) = N>M-1. 9)

“Throughout, we assume a vector/matrix indexing that starts with zero rather than one, so that the first row is considered
“even” and the second “odd.”

5A necessary and sufficient condition on perfect equalization (in the absence of noise) is that there exist a & for which hy lies in
the column space of C. Hence, there exist channels that do not result in full row-rank convolution matrices but that do satisfy
hs = Cf for particular 6. Though we acknowledge the existence of such channels, we consider them to be trivial in the physical
sense.



Applying the same argument to (7) reveals the reason that no FIR BSE can perfectly equalize a
nontrivial FIR channel: the row dimension of Cgg always exceeds the column dimension. The 7°/2-
spaced full rank requirement also implies that the polynomials specified by the coefficients ¢, and c,
share no common roots (i.e., the polynomials are coprime). Appendix A-C discusses this common-root
condition in more detail.

B. Mean-Square Error Criterion
In the presence of noise, we desire to minimize the expected squared magnitude of the recovery error
€n = Yn — Spn—¢ (10)

for a particular choice of delay (6). We will see that this criterion can be interpreted as the best
compromise between inter-symbol interference and noise amplification in a minimum mean-squared
error (MMSE) sense.

To formulate this error criterion more precisely, we collect the P previous T-spaced elements of the
source sequence into the vector

s(n) = [Sn, Sn_1, Sn_2, - - .,sn_(p_l)]t, (11)
and the last 2N fractionally-sampled values of noise into vector w(n),
w(n) = [Wn_1, Wn_3, Wn_s, .. - Wpn—(2N-1); Wn, Wn-2, Wn—4,- - - awn—(QN—Q)]t; (12)

where the collection of even noise samples follows the collection of odd noise samples, to be consistent
with our definitions of C and f in (3). (Note, however, that this particular ordering of samples in
the noise vector is inconsequential when assuming an independent identically-distributed (i.i.d.) noise
process.) With these quantities, the n'* equalizer output, y, = y(nT + %), can be written compactly
as

yn = s'(n)Cf+w'(n)f, (13)
yielding an expression for the recovery error
en = s'(n)(Cf—h;) +w'(n)f. (14)

Under the assumption that the noise and source processes are i.i.d. and jointly uncorrelated, with
respective variances o2, and o2, the expected value of the magnitude-squared recovery error becomes

E{le,2} = (Cf — hy)" (Cf — hy)o? + £7f02. (15)

(Appendix A-D discusses the independence assumption regarding fractionally-sampled channel noise.)
Note that (15) is proportional to the source-power-normalized MSE cost function:

Juse = (Cf — hg)?(Cf — hy) + AT, (16)
where A = 02 /o2. In terms of A = C¥C + A, the technique of “completing the square” yields
Juse = (f— A 'C”hs)?A(f — A'C”h;) — h/CA'C”hs + hfh;. (17)

Note that A is positive definite for A > 0.
Equation (17) indicates that the equalizer parameter vector minimizing Jysg is

fi = A7'C"hy, (18)

8



and it follows that the f-optimal mean squared error
= hi (I-CA~'C")hy (20)

remains a function of system delay 6. We make this property explicit by adopting the notation
Jusg(f, ). It follows from (20) and (8) that the optimum delay &' corresponds to the index of the
minimum diagonal element of I — CA™'CH [Johnson ASIL 95]. This is written formally below:

o' = argmin{[I- C(C*C+A)~'C"], ], (21)

For a T'/2-spaced FSE with 300 taps and a SNR (= 1/)) of 30 dB Figure 6 plots Jysg(ff, §) versus ¢ for
the “typical” impulse response of Figure 1. Note the degree to which ¢ can affect MSE performance.

0

10 T

10’4 L L L L L
0 50 100 150 200 250 300

delta

Fig. 6. f-optimal MSE, Jysg(ff, d), versus T-spaced delay d for the channel of Figure 1 and 30 dB SNR using 300-tap
FSE.

We conclude that proper pre-selection of ¢ is important for equalizer-based minimization of Jysg (f, ).
This idea of fixed-§ optimization is of particular relevance because it describes the typical adaptive
equalization scenario when a training signal is available [Qureshi TCOM 73).

C. An Amalgamated MSE Cost Function

When the source is differentially encoded [Gitlin Book 92|, knowledge of absolute phase is not
required for symbol detection. For example, either y, = s, 5 or y, = —s, s (for all n) would form
an acceptable output sequence for differentially-encoded BPSK. (For complex-valued source alphabets
such as QAM, we allow 4, = e/2™s,_s for fixed m € {0,1,2,3}.) Therefore, an acceptable system
impulse response can include a fixed phase shift in addition to a bulk system delay §. With this in
mind, we construct a phase- and delay-optimized amalgamated cost function Jy (f):

JA(f) = min {(Cf — phs)"(Cf — ph;) + Af7f}, (22)
P
where p is one of the set of allowable phase shifts (e.g., {+1, —1} for real-valued PAM).

9



Ja is a multimodal fabrication, bearing similarity to an (2N +1)-dimensional egg carton. A surface
plot appears in Figure 7 for well-behaved T'/2-spaced channel ¢; defined in Table I. By “well-behaved”
we mean that c; has no common or nearly-common subchannel roots. Figure 7 indicates that if we
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Fig. 7. Ja for well-behaved channel ¢; and no noise, in equalizer (f) space.

minimize Ju (f) by a gradient descent strategy, then the initial value of f will determine the values of
0 and p to which the descent scheme will asymptotically converge. In other words, optimization of
Ja(f) by gradient descent accomplishes pre-selection of § via choice of f-initialization.

The following section attests to the claim that
The CM criterion serves as a close proxy to Ja which is robust under typical operating conditions.
For a preview, compare the CM cost surface in Figure 8 to the amalgamated MSE surface in Figure 7
for the same channel, c;. As such, the CM criterion offers a performance metric that bears many
similarities to MSE but which is capable of minimization by (stochastic) gradient descent schemes
conducted blindly with respect to the transmitted symbols.

With our tutorial orientation, Section II restricts focus to a two-tap FSE design task that permits
visualization of equalizer-parameter-space cost-contour plots illustrating various properties of the CM
cost function Jeoy. In particular, we can isolate an “ideal, zero-cost” situation where the stationary
points in Joy and Ja match exactly and where the minima achieve zero cost. This special case
requires several assumptions not often satisfied in practice. We will examine examples of CM-adapted
FSE behavior conducted under violations of these requirements for ideal zero-cost equalization. This
implicit taxonomy will be used in Section III to provide an overview of the literature citations in the
annotated bibliography of Section V.

II. TwoO-TAP ILLUSTRATIVE EXAMPLES

The shape of the cost surface defining a particular stochastic gradient algorithm often lends great
insight into the expected behavior of that algorithm. With this in mind, we embark on a tutorial study
of the cost surface defined by the CM criterion and descended by CMA. First, however, consider the
following list of features characterizing a generic (stochastic) gradient descent algorithm:

o Far from a stationary point, the gradient (i.e. first derivative) of the cost surface determines local
convergence rate.

« Near a stationary point, the local curvature (i.e. second derivative) of the cost surface determines
local convergence rate.

10



o Local minima with non-zero cost induce excess steady-state error in stochastic gradient descent
algorithms with non-vanishing step-sizes.

« Multimodal surfaces may exhibit local minima of varying cost, thus linking initialization to achievable
asymptotic performance.

« “Poor” initialization on a multimodal surface can lead a trajectory into temporary capture by (one
or more) saddle points, resulting in arbitrarily slow convergence to a minimum.

« Nontrivial deformations of a multimodal surface relocate each saddle point and alter the region of
attraction associated with each local minima.

The following sections combine low-dimensional examples with the well-known characteristics above
to formulate an intuitive understanding of the CM criterion and its connection to the MSE criterion.

A. Two-Tap Equalizer Design Equations

As discussed in Section I-A, satisfaction of the “length and zero” conditions ensures an exact solution
to the zero-forcing equation hs = Cf. For a two-tap T'/2-spaced FSE, the length condition is satisfied
for channels with impulse responses [cg, c1, 2, c3] and shorter. For a length-four channel, the root
condition is satisfied when the even and odd subchannel polynomials, Ceyen(27!) = ¢y + 227! and
Coada(27) = ¢1 + 3271, have distinct roots.

In this case, (3) specifies that the FSE design quantities take the following form:

1 G Jo
C= , f= . 23
[ €3 ] [ h } (22)
Since hs has one nonzero coefficient, the zero-forcing equalizer will be proportional to either the first

or the second column of C!. Thus, all four channel parameters enter into the design of f; the
sub-equalizers of Figure 5 are not simply inverses of their respective subchannels.

B. Introduction to the CM Cost Function

The CM cost function can be motivated using the temporary assumption that the source is binary
valued (&1). In this case, s, has a constant squared-modulus of one (|s,|? = 1). Under perfect symbol
recovery, we know that the output y, has the same constant-modulus property, and can thus imagine
a cost that penalizes deviations from this output condition. This, in fact, defines the CM cost function
for a BPSK source:

Jom|spsk = E{(l— |yn|2)2}

Appendix B presents more general versions of the CM cost function and derives expressions for Jcy
in terms of channel parameters, particular source and noise statistics, and equalizer coefficients.

The leap of faith, first espoused by [Godard TCOM 80|, is the application of Joy to a multilevel
(i.e. non-constant modulus) source. [Godard TCOM 80|, which addressed baud-spaced blind equal-
ization via minimization of Jcy, makes the first observation concerning the proximity of the Jey and
Ja minima:

“It should also be noted that the equalizer coefficients minimizing the dispersion functions closely
approximate those which minimize the mean squared error.”

This is remarkable because an approximation of Jcy can be formed solely from the equalizer output y,,;
no training signal is required to compose an accurate gradient approximation for use in a stochastic
gradient minimization algorithm such as CMA [Treichler TASSP 83]. It is worth noting that the
phase-independent nature of Jcy has its own advantages in modem design [ Treichler PROC 98).

11



TABLE I
SUMMARY OF CHANNELS USED FOR Two-TAP FSE EXAMPLES.

| Name | T/2-spaced Impulse Response | Classification |
¢, | [-0.0901, 0.6853, 0.7170, -0.0901] well-behaved”
Co [1.0, -0.5, 0.2, 0.3] well-behaved
c3 [-0.0086, 0.0101, 0.9999, -0.0086] | nearly-common subchannel roots
C4 [1.0, -0.5, 0.2, 0.3, -0.2, -0.15] undermodelled

C. Illustrative Cost Surface Examples

The following subsections present mesh and contour plots of the CM cost surface for a two-tap
T /2-spaced FSE under various operating conditions. Refer to Table I for definitions of the various
channels used in our experiments. In all contour plots, the asterisks () indicate the locations of global
MSE (i.e. J5) minima while the crosses (x) indicate the locations of local MSE minima. Recall that
different pairs of MSE minima (reflected through the origin) correspond to different values of system
delay, while the two elements composing each pair correspond to the two choices of system polarity®.
Thus, the asterisks mark the MMSE equalizers of optimum system delay. The “MSE ellipse axes”
appearing in the upper left corner of each contour plot indicate the orientation and eccentricity of the
elliptical MSE contours (see Figure 9).

All quantities in the experiments are real-valued. Unless otherwise noted, the source used was
zero-mean and i.i.d. with alphabet {—1,1}.
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Fig. 8. Jcowm for well-behaved channel ¢; and no noise, in equalizer (f) space.

C.1 Ideal Zero-Cost Equalization

For well-behaved channel c¢; in the absence of channel noise, Figure 8 plots Joy in equalizer space.
Recall that Figure 7 plots Ja for the same noiseless channel. For a different well-behaved and noiseless
channel, ¢y, Figure 9 superimposes the corresponding Jcy and Ja cost contours. Note the symmetry
(with respect to the origin) exhibited by both Jcy and Ju cost surfaces.

5We note that in the complex-valued CM criterion, each pair of minima would be replaced by a continuum of minima spanning

the full range (0 — 27) of allowable system phase.
7“Well-behaved” indicates the absence of common or nearly-common subchannel roots.
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Fig. 9. Jowm contours (solid) for well-behaved channel ¢, and no noise, with Ja overlay (dashed) and global MSE

minima marked by “¥”, in equalizer (f) space.

MSE ellipse axes

Fig. 10. Jom contours for well-behaved channel ¢y and no noise in combined channel-equalizer (h) space.

In these ideal situations, all MSE and CM minima attain costs of zero (see Figures 7 and 8). In
addition, it can be seen that the locations of the Jcy and J, minima coincide. (The Joy minima
locations can be inferred from the Jcy cost contours.) Figure 9 also indicates that the curvatures of
CM and MSE cost surfaces in the neighborhoods of local minima are closely related.

C.2 Combined Channel-Equalizer Space

The behavior of a gradient descent of Joy is sometimes studied in the (downsampled) combined
channel-equalizer space (i.e. h from Section I-A). The appeal of studying Jcy in h-space follows
from the normalization and alignment of Joy with the coordinate axes. These features are clear in a
comparison of Figure 10 to Figure 9, both constructed from the same noiseless channel. Equation (4)
implies that a unique reversible mapping (i.e. an isomorphism) exists between points on the Jom
surfaces in h- and f- spaces when C is invertible, as it is here in our 2-tap example.
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Fig. 12. Jom contours for nearly-common subchannel-roots channel ¢3 and no noise. Note axis scaling.

C.3 Additive White Channel Noise

As channel noise is introduced, Figure 11 indicates that the MSE and CM minima both move towards
the origin in f-space. The Jn and Jey minima move by different amounts, though, destroying the
equivalence that existed between them in the ideal case of Figure 9. However, the relative proximity
of Jo and Jcy minima, evident in Figure 11, still prompts consideration of Jcy as a close proxy for
the amalgamated MSE cost J5 even when in the presence of channel noise.

C.4 Common Subchannel Roots

As evidenced by the expression we derived for MSE minima,
fl = (CHC + A\I)"'C"hy,

when CHC has a large condition number, modest values of A can have significant consequences on ff
(and thus on the Jy cost surface). If the two subchannels (cy + coz! and ¢; + c327!) have a nearly-
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Fig. 13. Jowm contours for nearly-common subchannel-roots channel ¢z and 20 dB SNR. Note axis scaling.
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Fig. 14. Jcwm for undermodelled channel ¢4 and no noise.

common root (c3/c; & ¢2/¢y) then (23) indicates that the column space of C collapses, and thus we
expect that one eigenvalue of C” C will be near zero [Strang Book 88]. Figures 12 and 13 use channel
c3 to demonstrate the cost surface sensitivity to noise in the presence of nearly-common subchannel
roots. Even under such severe surface deformation, we note that the global Jcyy minima remain in the
vicinity of global Jp minima. This further demonstrates the robustness of the relationship between
JCM and J, A-

C.5 Channel Undermodelling

In general, under violation of the length condition (discussed in Section I-A), no equalizer settings
are capable of achieving zero MSE or CM cost. This can be confirmed by extending the length of
impulse response ¢y by two samples, thus forming the “undermodelled” channel cs. (Note that the
two extra coefficients forming c, are no larger than any of the coefficients in cy.) Figure 14 shows
the CM cost surface for this undermodelled channel. Large differences in the heights of local minima
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Fig. 16. Effect of source shaping (ks = 1.8) on Jom for channel ¢; in equalizer space with no noise.

demonstrate that the CM cost surface can indeed be significantly multimodal.

Elongating the channel impulse response adds another possibility for the system delay ¢ and thus
increases the number of J, minima (see Figure 15). Note, however, that the number of CM minima

have not changed. More importantly, note that the global CM minima remain close to their MSE
counterparts under violations of the length condition.

C.6 Non-CM Source

The constant-modulus source property leading to the ideal zero-cost situation in Figures 8, 9, and
10 is violated in constructing the cost surface in Figure 16. Here, the source is real-valued 32-PAM,
which is far from constant-modulus. The non-CM property increases the source kurtosis x5 (defined
in (50)) and increases the minimum CM cost relative to that of a CM source. Notice also that the CM

cost surface has become “flattened” in the parameter plane. However, as the CM surface deforms due
to a non-CM source, the minima locations remain unchanged.
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D. Summary

Our investigations of low-dimensional examples under the following “ideal, zero-cost” conditions:
« 1o channel noise (i.e. A =0),
« no common subchannel roots (i.e. avoidance of ¢3/cy = c3/¢1),
« sufficient equalizer length (i.e. N > M — 1 for T//2-spaced FSEs),
e i.i.d., zero-mean, constant-modulus source (circularly-symmetric when complex),
showed that, under such conditions, the J, and Jcy minima coincide and achieve zero respective cost.
Our other examples suggest that modest deviations from the ideal conditions can be tolerated in the
following sense: under suitable choice of initialization, a stochastic-gradient minimization of Joy will
approximate the performance achieved by the same minimization of J,. We did find, however, that
the deformations caused by various violations of the ideal zero-cost conditions are different. In fact,
substantial effort has been expended to characterize the performance robustness properties of the CM
criterion (as descended by popular gradient descent strategies). Section III catalogs much of this effort.
The previous examples can be used to illustrate and interpret the following observations:
o Channel noise: CMA-based blind equalization is typically successful in common noise environments
(ie.,, 2 > o2 > 0). Under modest noise levels, relocation of global minima toward the origin is
typically more severe than changes in surface curvature around such minima.
o Undermodelling of channel length: Given hardware constraints on equalizer length, residual ISI is
unavoidable in practice. Mild contributions from uncompensated portion of channel response typically
result in mild surface deformation.
o Nearly-common subchannel roots: These seem quite likely as channel length increases. (See Fig-
ure 18.) Nearly common subchannel roots increase sensitivity to other violations from ideal conditions,
but only for sub-optimal CM solutions; global CM minima still exhibit robust performance.
« Source kurtosis: Non-uniform (i.e. shaped) symbol distributions often leads to increased source
kurtosis. As source kurtosis approaches Gaussian®, the surface lifts and flattens. Lifting increases
the excess error of stochastic adaptation (e.g. CMA), while flattening reduces its convergence rate.
If the source exhibits a Gaussian kurtosis, the minima and saddle points vanish along a rim of the
CM surface so that the gradient has solely a radial component. In this case, convergence to desirable
settings is practically impossible.
o Source correlation: This may occur, e.g., as a result of differential encoding. Small amounts result in
slight cost surface deformation. Large amounts cause major problems, such as additional local minima
with terrible performance.
o Non-CM source: This property is unavoidable in communication systems using multi-level constel-
lations. Though non-CM sources do not alter the minima locations, they raise and flatten the CM
surface (as a consequence of increased source kurtosis — see above).
o Initialization: The CM surface is unavoidably multimodal. Choice of initialization affects both time-
to-convergence and steady-state performance. One approach referred to in the literature suggests
initializing the equalizer with a single spike® time-aligned with the channel response’s center of mass.
In this way, crude knowledge of the channel impulse response envelope can be used to aid initialization.
o Channel time-variation: We proceed under the global assumption that the channel varies slowly
enough in time to be tracked by the CM-minimizing gradient descent algorithm. In the vicinity of a
local minimum, the tracking capabilities of any gradient descent scheme can be related to the local
curvature.
o Equalizer tap-spacing: Fractionally-spaced equalizers have the ability to perfectly cancel ISI caused
by a finite-length channel impulse response. In contrast, a baud-spaced equalizer requires an infinite
number of taps for the same capability. Though we admit that this noiseless FIR channel model is
8Table II presents the values of normalized kurtosis for various sources.

9The single spike initialization has its origins in baud-spaced equalization. Fractionally-spaced counterparts are discussed in
Section III-B.3.
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rather academic, practical experience offers much evidence for the superiority of fractionally-spaced
equalization [Gitlin Book 92].

o Transient versus steady-state performance: Dynamic system design is often a tradeoff between tran-
sient and steady-state performance. Convergence rate is a transient behavior descriptor; slow conver-
gence is undesired. Excess error (due to a non-vanishing step-size and a nonzero local minimum) is a
steady-state feature; abundance of excess error is undesired.

III. CM-MINIMIZING EQUALIZATION LITERATURE CATEGORIZATION

The last section presented a tutorial view of the linear equalizer design task and related the minimiza-
tion of the delay-optimized and phase-indifferent mean-squared recovery error (J4) to minimization
of the CM criterion (Jcy). Section V presents a bibliography of the literature dealing with the CM
criterion and its optimization via steepest gradient descent (such as with CMA). Each entry in the
bibliography is annotated with boldface letters that indicate the classification of its content. The
purpose of this section is to describe our classification scheme in terms of the problem formulation
and the examples of the preceding section. We also take this opportunity to cite certain papers as
recommended reading on particular topics.

In addition to the birth of the CM criterion in the early 1980s, highlights in its analytical history
include:

« establishment of “perfect” conditions under which a gradient descent of the CM cost surface results
in asymptotically perfect symbol recovery, i.e. “global convergence,”

« confirmation that, under slightly imperfect conditions, the CM minima remain in the vicinity of the
MSE minima for various choices of delay and sign,

« recognition that, due to performance differences between CM minima under less-than-perfect condi-
tions, initialization may be critical to acceptable transient and steady-state behavior.

The “perfect” global-convergence conditions referred to in these statements differ in detail between
the baud- and fractionally-spaced cases. As discussed in Section I-A, achievement of perfect source
recovery devolves into exact solution of a set of simultaneous linear equations when channel noise
is absent. Solution of these equations ensures that the transfer function characterizing the baud-
spaced system (relating source symbols to equalized soft decisions) achieves that of a pure delay.
One requirement, on the existence of this perfectly-equalizing solution is that the equalizer must have
enough degrees of freedom. For a baud-spaced equalizer and a FIR channel, this latter requirement
necessitates an equalizer with infinite impulse response (IIR) [Foschini ATT 85]. For T'/2-spaced FSEs,
on the other hand, an equalizer response length matching (or exceeding) that of the channel proves
sufficient [Tong CISS 92]. The other requirement for the existence of a perfectly-equalizing solution
is that the system of equations be well-posed. We mean, in an algebraic sense, that the matrix
characterizing the linear system of equations must be non-singular. For baud-spaced equalizers, this
non-singularity condition prohibits nulls in the channel frequency response (which implies, for example,
that no FIR channel zeros are tolerated on the unit circle). We henceforth refer to satisfaction of this
baud-spaced condition as “invertibility.” For T'/2-spaced FSEs, this non-singularity translates into a
lack of common subchannel roots (see Appendix A-C) and is commonly referred to as “subchannel
disparity.”

If conditions on the source (e.g., zero-mean, circularly-symmetric, white, and sub-Gaussian) are
added onto the perfect equalization requirements described in the last paragraph, a gradient descent
of the CM criterion will provide asymptotically perfect source recovery from any baud- or fractionally-
spaced equalizer initialization. In this case, the multiple CM minima all have the same depth — like
an egg carton. The distinctions in global convergence conditions between the baud- and fractionally-
spaced cases prompt our separation of these two cases. We note that, while analysis of CM-minimizing
baud-spaced equalizers has been published since their introduction in 1980, very little analysis of CM-
minimizing fractionally-spaced equalizers was published before 1990.
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The stringency of the global convergence requirements has prompted theoreticians to examine the
impact of their violation. For example, what if the FSE length is less than the total channel response
but greater than the “significant” portion of the channel response? How are prominent features of the
CM cost surface (e.g., stationary point locations, regions of attraction, and heights of local minima)
altered as the source is shaped or correlated and/or channel noise power increases and/or channel
disparity is lost? While engineering practice desires answers about simultaneous dissatisfaction of
all global convergence conditions, theoretical analysis is more likely to move forward by studying
individual (or possibly pairwise) violation of these conditions. Therefore, we are encouraged to adopt
a set of literature categorizations concerning studies of robustness to violations in each of the four
global-convergence conditions (i.e., absence of channel noise, sufficient length, adequate disparity, and
use of a zero-mean, white, circular, sub-Gaussian source process).

In Section II-C we noted that the CM and MSE error surfaces are quite similar in the vicinity of
the CM local minima. This relationship implies that the local behaviors of their stochastic gradient
descent minimizers (e.g. CMA and LMS, respectively) should be closely related. As a result, we are
encouraged to use key behavioral descriptors associated with “classical” trained-LMS equalization
theory as further categories for our literature classification. In particular, we borrow excess mean-
squared error (i.e. misadjustment'®) and convergence rate.

While the CM and MSE criterion are comparable in a local context, their global characteristics are
strikingly different. Recall the multimodality of the CM cost surface (see, e.g., Figures 8 and 14). As
noted earlier, a good gradient-descent initialization may be necessary to ensure convergence to a “good”
local minimum as well as to avoid temporary local capture by saddle points. In contrast, consider the
trained-LMS cost surface: a unimodal elliptical hyper-paraboloid. Its unimodality obviates the need
for a clever initialization strategy (assuming the training delay has been chosen). In fact, the LMS
equalizer is often initialized by zeroing the parameters'’. If we consider delay-selection as part of
the “initialization” of trained LMS, however, we find many similarities with the equalizer parameter
initialization of CMA. Specifically, the choice of training delay bounds asymptotic LMS performance,
and, in conjunction with the equalizer initialization, LMS time-to-convergence. Conversely, CMA
equalizer initialization determines (asymptotic) system delay. With these thoughts in mind, we add
surface topology and initialization strategy as literature categories under the heading of gradient
descent behavior.

Summarizing, the classification scheme we adopt for our literature review uses a total of 11 labels
within the three main categories discussed above:

1. Equalizer Tap-Spacing:

« (B) Baud-spaced

« (F) Fractionally-spaced

2. Global Convergence Criteria Dissatisfaction:

o (P) Perfect: no noise, sufficient length, adequate disparity/invertibility, and zero-mean, white,
circular sub-Gaussian source

« (IN) Noise present

« (L) Equalizer length inadequate

« (D) Disparity/Invertibility lost or threatened

« (S) Source shaped or correlated

3. Gradient Descent Algorithm Behavior:

« (E) Excess error (due to non-vanishing step-size)
« (R) Rate of convergence

« (T) Topology of cost surface

o (I) Initialization strategy

10Misadjustment is defined as the ratio of excess MSE to minimum MSE.
"Tnitializing CMA at the origin proves bovine (i.e., slow and unwise) due to the zero-valued CM-cost gradient there.
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The remainder of this section is organized by the categorization above; each of the 11 labels is
discussed using selected citations drawn from the bibliography.

Because the focus of this paper is the CM criterion in a blind linear equalizer application, we have
not considered work that
1. principally deals with algorithm modifications (e.g. normalized, least-squares, Newton-based, block,
anchored, or signed CMA) that may alter the (effective) cost function surface shape,
2. infers behavior principally from simulation studies with no connection made to the CM cost function,
or
3. principally addresses applications other than linear equalization (e.g. beamforming, source sepa-
ration, interference cancellation, channel identification, depolarization, or decision-feedback equaliza-
tion).
Though some of our citations do involve the categories above, we have chosen to include them because
they contain a substantial amount of directly relevant material as well.

We do not provide a synopsis of each citation in the bibliography. Rather, we propose the abstracts
of each paper as a source for synopses and provide a postscript bibliography that includes abstracts
at http://backhoe.ee.cornell.edu/BERG/bib/CM_bib.ps.

A. Equalizer Tap-Spacing

Practically speaking, the equalizer tap-spacing refers to the rate at which the received signal is
sampled and processed by the equalizer. In creating a discrete linear system model, the tap-spacing
determines the delay time of the equalizer difference equation. Using 7' to denote the source symbol
interval, baud- or T-spaced FIR equalizers use a unit delay of 7" seconds in their tapped delay line.
Fractionally-spaced equalizers use a tap-spacing less than 7". The most common fractional tap-spacing
is T'/2 seconds. In the bibliography in Section V, approximately two-thirds of the citations cover
baud-spaced equalization, while the remaining one-third cover fractionally-spaced equalization.

A.1 Baud-Spaced Equalization

The pioneering paper introducing the CM criterion for a complex-valued source [Godard TCOM 80)]

considers baud-spaced equalization only.
Conditions assuring global convergence of a baud-spaced equalizer updated via CMA: (i) no channel
noise, (ii) infinite impulse response equalizer, (iii) no nulls in channel frequency response (i.e. no
FIR channel zeros on the unit circle), and (iv) a zero-mean, independent (and circularly-symmetric if
complex-valued) finite-alphabet source with sub-Gaussian kurtosis.

The first proof of global convergence for CMA in adapting a baud-spaced equalizer relied on a doubly-
infinite equalizer parameterization which allowed any combined channel-equalizer impulse response
[Foschini ATT 85]. This allows convergence study in the combined channel-equalizer space, which has
analytical advantages.

A.2 Fractionally-Spaced Equalization

Original motivations for the use of fractional- rather than baud-spacing included: insensitivity to
sampling phase, ability to function as a matched filter, ability to compensate for severe band-edge
delay distortion, and reduced noise enhancement [Gitlin Book 92]. Fractionally-spaced equalizers have
nearly dominated practice since the 1980s [ Wolff MIL 88]. One feature of fractionally-spaced equalizers
— virtually unnoticed until the 1990s — was the possibility that under ideal conditions a fractionally-
spaced equalizer of finite time-span could perfectly equalize a FIR channel [Bergmans PJR 87]. As
noted in [Tong CISS 92], this suggests the same connection of equalizer parameters to the combined
channel-equalizer parameters exploited in [Foschini ATT 85] and therefore confirms the potential for
global convergence of a CM-minimizing fractionally-spaced equalizer.
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Conditions assuring global convergence of a T /2-spaced FSE updated each baud interval via CMA: (i)
no channel noise, (ii) equalizer time span matching or exceeding that of the FIR channel, (iii) no
reflected zeros in the T/2-sampled FIR channel transfer function, and (iv) a zero-mean, independent
(and circularly-symmetric if complez-valued) finite-alphabet source with sub-Gaussian kurtosis.
These global convergence inducing conditions do not include restriction to a constant modulus source,
which was included among the “ideal zero-cost” conditions of Section II-D.

The first global convergence proofs for fractionally-spaced CMA not simply relying on the extension
of the baud-spaced arguments in [Foschini ATT 85] appears in [Li TSP 96a).

B. Gradient Descent Algorithm Behavior Theory

The algorithm that performs a stochastic gradient descent of Jcy is often referred to as the Constant
Modulus Algorithm or CMA:

foir = ot prnya(y = |yal?)- (24)
Equation (24) is written in terms of the (fractionally-sampled) regressor vector at time n:

r, = [rodd e e e ] (25)
the equalizer parameter vector f, at time index n, the equalizer output y,, a step-size u, and the
squared source-modulus 7 (also referred to as the dispersion constant).

The study of dynamic systems, such as CMA, is often divided into transient and steady-state
stages. Convergence rate is the dominant transient performance descriptor in classical LMS theory.
Minimum MSE and excess MSE (and their dimensionless ratio, misadjustment = EMSE/MMSE) are
the dominant steady-state performance descriptors. Therefore, we consider their CM counterparts
here.

Though initialization is not a major concern for the unimodal cost functions of MSE-minimizing
equalizers (with preselected delay and phase), it is an unavoidable issue for CM-minimizing equalizers
due to the multimodal topology of their associated cost surface. Though initialization strategies exist,
none have been proven 100% successful in practice.

B.1 Convergence Rate

For trained LMS, the convergence rate (or geometric decay factor) of the sum-squared parameter
error (and squared recovery error) is approximately bounded above and below by one minus twice
the product of the step-size and the smallest and largest eigenvalues, respectively, of the received-
signal’s autocovariance matrix (i.e., 1 — 2uApin > % > 1 — 20 Amax)- This arises because the underlying
quadratic cost function has the same Hessian, or curvature, across its entire surface. In contrast,
the multimodal CM cost function has a Hessian that varies across its surface. Early convergence
rate studies addressed this variation in convergence rate across the CM cost surface by focusing on
convergence rate descriptors in various regions, such as far from minima and near minima [Larimore
ICASSP 83].

Referring to Figure 9, initialization near [fy, fi] = [2.5,0] will lead to a small-stepsize gradient-
descent trajectory that passes through the neighborhood of a saddle point. An example displaying
multiple temporary saddle-captures appears in [Lambotharan SP 97]. We believe this saddle capture
phenomenon to be the source of the folklore that considers CMA to be “slow converging.”

A lower bound on the initialization-independent convergence rate is impossible with the multimodal CM
surface due to potential of indefinite-term capture by saddle points.

In the neighborhood of a local minimum, the curvature of CMA’s cost surface can be directly related
to that of trained-LMS [Touzni EUSIPCO 96]. Thus, the LMS convergence rate expression can be
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used in a traditional manner (e.g. [Treichler SPM 96]) to provide limits on the channel tracking'?
capabilities of CMA.

B.2 Excess Cost at Convergence

In realistic situations, it is impossible to zero the update of a non-vanishing-stepsize stochastic
gradient descent algorithm, even at the optimum solution. With trained LMS or CMA, this undying
perturbation may be a result of channel noise or residual ISI. With CMA, the non-zero update may
also be the result of a non-CM source. The effect of a non-vanishing equalizer update is an asymptotic
mean-squared error level higher than that attained by the optimum fixed equalizer. This is directly
related to the lifting effect that a non-CM source has on the CM cost surface, evident in Figure 16.
In addition to the factors determining the excess MSE of trained LMS (i.e., stepsize, minimum achiev-
able cost, equalizer length, and received signal power) CMA also has a term dependent on the source
kurtosis.

Excess MSE of fixed (small) step-size CMA due to a non-CM source is analyzed in [Fijalkow TSP 98].

Figures 8 and 16 show the effect of changing the source from constant to non-constant modulus
while simultaneously satisfying all of the global convergence conditions. Though the CM minima rise
in height, they remain in the same locations in the equalizer parameter plane. As long as the source is
kept sub-Gaussian, a (pure) gradient descent algorithm would be still able to asymptotically achieve
perfect symbol recovery.

B.3 Initialization

As noted in the examples of Section II-C and illustrated in Figures 11 and 15, the presence of noise
or channel undermodelling causes some CM minima to achieve better performance than others.
Under wviolation of the conditions ensuring global convergence, choice of initialization determines
asymptotic performance.

Two initialization strategies are common in the literature and in practice: spike-based or matched
filter. The “single-spike” initialization, promoted in [Godard TCOM 80] for baud-spaced CMA, is
characterized by one non-zero equalizer tap, usually located somewhere in the central portion of the
equalizer tapped-delay line. For T'/2-spaced CMA, a suitable extension of the single-spike idea might
be a “double-spike” initialization, whereby two adjacent taps are initialized non-zero. In the frequency
domain, double-spike initialization has a lowpass characteristic, a property also shared by the trans-
mitter’s pulse-shaping filter. In a mild-ISI environment, one might even consider initializing the FSE
with an impulse response matching the pulse-shaping filter itself, as (in this mild case) this response
is close to the expected steady-state equalizer solution (assuming that the FSE is used to accomplish
matched filtering at the receiver.)

All of the initialization techniques above still require a selection of delay, i.e. spike positioning within
the equalizer time span. This delay choice is intimately connected to the delay-choice in trained-LMS
equalization in the following way: CMA tends to converge to minima with the same group delay as
its initialization. Figure 17 provides evidence for this claim using double-spike initializations of T'/2-
spaced CMA on the SPIB microwave channel shown in Figure 1 under 50 dB SNR and a QPSK
source. Note the (affine) linear correspondence between double-spike position and asymptotically
achieved system delay. Another interesting characteristic of Figure 17, seen after comparing sub-plots
(d)-(f) to Figure 6, is its suggestion that the set of system delays reachable by CMA are best in an
MMSE sense. We offer these last two statements as educated conjectures, as no theoretical proofs yet
exist to verify them.

12In many practical implementations, such as those with low ambient noise levels, CMA lowers the symbol error rate to level
suitable for decision-directed LMS (DD-LMS) to take over. Due to its lower excess error, DD-LMS is preferred for tracking the
slow channel variations. In low-SNR situations, however, such as those that may arise with a coded system, the tracking ability
of CMA might prove important due to the potential infeasibility of DD-LMS.
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Fig. 17. (a)-(c) CMA’s achieved system delay as a function of double-spike location and (d)-(f) CMA’s asymptotic
MSE performance (solid) compared to same-delay MMSE performance (dashed).

The aforementioned relationship between initialization and channel group delays suggests that a
priori information about the channel may aid in selection of initialization delay choice. The bibliogra-
phy notes the existence of other, more complicated, off-line initialization schemes that leverage such
notions.

B.4 Surface Topology

Refer to Figures 8 and 14. The “molar” shape of the CM cost surface in two-tap real-valued
equalizer space was used in Section II-C to aid in an understanding of CMA’s transient and asymptotic
performance as well as to motivate the importance of initialization. Section II-C also described how
deformation of this molar shape occurs with violation of the various ideal zero-cost conditions, and it
used this surface-centric view to predict the pertinent effects of these violations.

The three-dimensional “molar” shape typical of the real-valued 2-tap-equalizer CM cost surface offers
a compact visualization of virtually all of the major features of CMA behavior theory, applicable even
to longer equalizers.

Surface characterization via gradient and Hessian formulas is provided in [Johnson IJACSP 95]
for baud-spaced equalizers. [LeBlanc IJACSP 98] offers a more developed topological study of the
fractionally-spaced CM criterion.

C. Violation of Conditions Ensuring Global Convergence
C.1 Perfect: All Conditions Satisfied

While Sections ITI-A.1 and III-A.2 listed conditions ensuring the global convergence of CMA, their
violation is unavoidable in practice.
There exists a set of conditions under which an arbitrarily-initialized gradient-descent minimization of
the CM criterion results in perfect symbol recovery. These “global convergence” inducing conditions,
however, are unconditionally violated — if only modestly — in practice.
Our claim is that modest violation of the global convergence conditions does not destroy the utility of
the CM criterion.
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(.2 Channel Noise Present

CM-based blind equalization typically remains successful in common noise environments (i.e., 02 >
02 > 0). To recall the cost surface deformations due to noise, compare Figure 11 to Figure 9.

When the presence of (modest) channel noise is the only violation of the global convergence conditions,
the locations of global CM minima shift toward the origin in equalizer parameter space and the minimum
achievable CM cost is increased.

This behavior is strikingly similar to the behavior of the MSE criterion in the presence of channel
noise. In fact, under modest amounts of noise, the CM minima remain near the MSE minima [Zeng
TIT 98], [Fijalkow TSP 97].

At extremely high noise levels (i.e. 62 > ¢2), the two criteria differ in the following manner: the
MSE minima continue to move towards the origin, while the CM minima remain within an annulus
outside the origin. This behavior is attributed to the so-called “CMA power constraint” [Zeng TIT
98].

We have also observed the disappearance of local minima under modest-to-high noise levels [Chung
ICASSP 98|, especially for channels without much disparity (see Figure 13).

C.3 Insufficient Equalizer Length

In order to completely cancel the ISI induced by an arbitrary FIR channel, one requires an IIR baud-
spaced equalizer or a sufficiently long FIR fractionally-spaced equalizer. In the presence of channel
noise, the MSE-optimal equalizer makes a compromise between ISI cancellation and noise gain, and the
resulting equalizer impulse response is no longer finite-length, even for fractionally-spaced equalizers
[Gitlin Book 92].

In the presence of noise, the (baud- and fractionally-spaced) MMSE equalizers have an infinite impulse
response, implying that the length of an FIR equalizer should be chosen to capture “enough” of the
desired response.

Studies on the effect of violations in the equalizer length condition include [Li TSP 96¢] in a baud-
spaced context, and [Endres ICASSP 97], [Endres SPAWC 97] in a fractionally-spaced context. The
latter provide evidence of CMA robustness to modest channel undermodelling and include approximate
bounds on performance.

As hardware advances permit increased baud-rate, yet physical channel delay-spreads remain un-
changed, the relative length of the channel impulse response grows proportionally. To combat ISI,
there is a corresponding need to increase equalizer length. Therefore, the desire for higher communi-
cation rates will always stress the equalization task. This is a primary justification for the continued
development/study of truly simple adaptive equalization algorithms like LMS and CMA.

C.4 Disparity/Invertibility Lost

As discussed earlier, the set of zero-forcing equalizer design equations becomes poorly conditioned
in the presence of deep spectral nulls for baud-spaced equalizers or the presence of nearly-common
subchannel roots for fractionally-spaced equalizers. Poor conditioning implies an increased parameter
sensitivity to noise and other violations of the global convergence conditions. Fortunately, this param-
eter sensitivity does not imply a performance sensitivity. In other words, global CMA minima remain
robust under a loss of disparity. We note that the same is true for the delay-optimal MMSE solutions.
A near-loss of disparity (for FSEs) or invertibility (for BSEs) dramatically increases the sensitivity of
suboptimal CM (and MSE) minima to other violations in the global convergence conditions. However,
global CM (and MSE) minima remain robust under these conditions.

The behavior of fractionally-spaced CM (and MSE) minima under loss of disparity is explained
through the following design procedure. For simplicity, let us assume the absence of noise. (1) Factor
the common root(s) out of the subchannels in Figure 5 and form a new system composed of the
common root(s) component and what remains of the multichannel component, connected in series. (2)
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Design the subequalizers so that the remaining multichannel component approximates the inverse of
the common root(s) component. At this point, the cascaded system should approximate a pure delay.
This procedure closely describes the construction of the MMSE or CM-optimal equalizers under a loss
of disparity [Fijalkow TSP 97]. We describe this idea more formally in Appendix A-C.

There are a number of reasons that we expect the presence of nearly-common subchannel roots,
i.e. nearly-reflected'® T'/2-spaced roots, in realistic situations. Looking at Figure 18, which portrays
the roots of the length 300 7'/2-sampled SPIB channel whose impulse response appears in Figure 1
and whose response we consider to be “typical,” one notices the apparent plethora of nearly-reflected
roots. Similarly, one might realize that a long FIR approximation to a pole'® in the physical channel
would also generate nearly-reflected roots. All of these reasons suggest the likelihood of nearly-common
subchannel roots in realistic situations. See [Ding SPL 96] for further discussion on the existence of
reflected roots in physical systems (and its negative implications on second-order-statistics based blind
equalization).

Im
o

Fig. 18. Roots of T/2-sampled SPIB terrestrial microwave Channel #3.

C.5 Shaped or Correlated Source

Source shaping, encouraged by a potential increase in coding gain (see, e.g. [Forney CM 96)), has the
effect of making the source symbol distribution more Gaussian. As far as our problem is concerned,
it has the practical effect of raising the kurtosis. Increases in source kurtosis, as long as they remain
sub-Gaussian, do not affect the locations of CM local minima. However, they are known to flatten the
CM cost surface in all but the radial direction, making CMA’s convergence to the minima slower (and
in the limiting Gaussian case, impossible). In addition, increases in source kurtosis have been shown
to raise the CM surface (see Figure 16), thus increasing the excess asymptotic error levels achieved by
non-vanishing-step-size stochastic gradient algorithms.

Recall that non-CM sources also have kurtoses greater than one. To put source shaping in per-
spective, Table II presents the kurtosis of popular source alphabets along with the limiting Gaussian

13Common subchannel roots have been shown to be identical to 7'/2-spaced channel roots reflected across the origin [ Tugnait
TIT 95).

A d]egree-N polynomial forming a close approximation to a single pole can be constructed using N roots on a ring in the

complex plane with a radius equal to the pole magnitude. The roots are spaced at N + 1 equal intervals on the ring with the
exception that there exists no root at the location of the approximated pole.
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TABLE II
NORMALIZED KURTOSES FOR VARIOUS SOURCE DISTRIBUTIONS.

| real-valued alphabet | kurtosis | complex-valued alphabet | kurtosis |

uniform BPSK 1 uniform M-PSK 1
uniform 4-PAM 1.64 uniform 16-QAM 1.32
uniform 8-PAM 1.762 uniform 64-QAM 1.381
uniform 16-PAM 1.791 uniform 256-QAM 1.395
uniform 32-PAM 1.798 uniform 1024-QAM 1.399

Gaussian 3 Gaussian 2

values. Note that a shaped source has the potential for raising the kurtosis far past that of a dense
(uniform) constellation like 1024-QAM.
For shaped sources with near-Gaussian kurtoses, the CM cost surface is raised and flattened, therefore
unsuited to stochastic gradient descent.

Source correlation results from the use of certain types of coding (e.g. differential encoding) or
under particular operational circumstances [Treichler ASIL 91], [Axford TSP 98]. Moderate amounts
of source correlation may shift the locations of local minima. Large amounts of correlation may
even cause additional (false) minima to appear in the CM cost surface. Recall that any amount of
source correlation violates the CM global convergence requirements. The most thorough studies on
the effects of shaped and/or correlated sources appear in the works of LeBlanc, e.g. [LeBlanc Thesis
95] and [LeBlanc IJACSP 98].

As a final note, we point out that the global convergence conditions for complex-valued implemen-
tations of the CM criterion specify a circularly-symmetric source, i.e. E{si} = 0. Studies have shown
that violations of this requirement (e.g. from the use of a real-valued source with a complex-valued
channel and/or equalizer) can result in the appearance of undesired CM minima [Papadias ICASSP
97].

D. Enjoy

With these descriptions of the literature categorization, you are now equipped to utilize the anno-
tated bibliography in Section V to guide your own descent into the constant modulus literature. A
postscript  file containing the abstracts of papers in this list 1is provided at
http://backhoe.ee.cornell.edu/BERG/bib/CM_bib.ps.

We take this opportunity to advertise THE BERGULATOR, a public-domain MATLAB-5 based
software environment allowing experimentation with the CM criterion and various implementations of
CMA. It can be used, for example, to generate all contour plots in this paper. THE BERGULATOR was
written by Phil Schniter of Cornell University’s Blind Equalization Research Group (CU-BERG), one of
the primary authors of this paper. It is available from our web site:
http://backhoe.ee.cornell.edu/BERG/.
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TABLE III
ANNOTATIONS USED IN THE BIBLIOGRAPHY AND THEIR INTPRETATIONS

| Symbol || Meaning | Comments

P Perfect Equalization | Addresses the case where any pure delay is achievable;
global convergence

N Noise Addresses the effects of noise

L Length Addresses the effects of equalizer length

D Disparity Addresses the effects of channel disparity

S Source Addresses the effects of sources that are
shaped, non-constant modulus or correlated

F FSE Fractionally-spaced equalization context

B BSE Baud-spaced equalization context

I Initialization Discusses initialization procedures for adaptive implementations

E Excess error Discusses sources of excess error in adaptive
implementations due to nonvanishing stepsize

R Convergence Rate Discusses convergence rate of adaptive implementations

T Surface Topology Studies topology of error surface

V. ANNOTATED BIBLIOGRAPHY

The symbols in Table III are used in the annotated bibliography to classify papers consistent with
our partitioning of the literature. Tables IV and V list the abbreviations used to reference journal and
conference publications throughout this document.

Note that two reference lists are provided. The first list consists of the categorized CM-criterion
literature, while the second list contains supportive material not directly focused on blind CM equal-
ization. Citations from the first list in the text are typeset in Roman font, while citations from the
second list appear in Italics.

A. CM-Minimizing Equalization Literature

REFERENCES

[Axford MIL 94] R.A. Axford, Jr., L.B. Milstein, and J.R. Zeidler, “On the misconvergence of CMA blind equalizers in the
reception of PN sequences,” in Proc. IEEE Military Communications Conference (Fort Monmouth, NJ), pp. 281-6, 2-5 Oct.
1994.

Categories: B, S, R

[Axford Thesis 95] R.A. Axford, Jr., “Refined techniques for blind equalization of phase-shift keyed (PSK) and quadrature am-
plitude modulated QAM digital communications signals,” Ph.D. dissertation, University of California, San Diego, CA, 1995.
Categories: B, S, E

[Axford TSP 98] R.A. Axford, Jr., L.B. Milstein, and J.R. Zeidler, “The effects on PN sequences on the misconvergence of the
constant modulus algorithm,” IEEE Transactions on Signal Processing, vol. 46, no. 2, pp. 519-523, Feb. 1998.

Categories: B, S, R

[Bershad ICASSP 90] N.J. Bershad and S. Roy, “Performance of the 2-2 constant modulus (CM) adaptive algorithm for Rayleigh
fading sinusoids in Gaussian noise,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(Albuquerque, NM), pp. 1675-1678, Apr. 1990.

Categories: B, N

[Chan TASSP 90] C.K. Chan and J.J. Shynk, “Stationary points of the constant modulus algorithm for real Gaussian signals,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38 no. 12, pp. 2176-2181, Dec. 1990.

Categories: B, S, T

[Chung ICASSP 98] W. Chung and J.P. LeBlanc, “The local minima of fractionally-spaced CMA blind equalizer cost function in
the presence of channel noise,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (Seattle,
WA), pp. 3345-8, May 1998.

Categories: F, T, N

[Cusani ETTRT 95] R. Cusani and A. Laurenti, “Evaluation of the constant modulus algorithm in blind equalization of three
ray multipath fading channels,” European Transactions on Telecommunications and Related Technologies, vol. 6, no.2, pp.
187-90, Feb.-Apr. 1995.

27



TABLE IV
JOURNAL ABBREVIATIONS USED IN THE BIBLIOGRAPHY

| Abbreviation [| Journal Name

ANT
ATT
AUTOM
BSTJ
CM
CSM
ETTRT
TASSP
TCS
TCOM
TIT
TSP
IJACSP
MAROC
PJR
PROC
SP

SPM
SPL

Annales des Telecommunications

AT&T Technical Journal

Automatica

Bell System Technical Journal

IEEE Communications Magazine

IEEE Control Systems Magazine

European Transactions on Telecommunications and Related Technologies
IEEE Transactions on Acoustics, Speech, and Signal Processing

IEEE Transactions on Circuits and Systems

IEEE Transactions on Communications

IEEE Transactions on Information Theory

IEEE Transactions on Signal Processing

International Journal of Adaptive Control & Signal Processing

Journal Marocain d’ Automatique, d’Informatique et de Traitment du Signal
Philips Journal of Research

Proceedings of the IEEE

Signal Processing

IEEE Signal Processing Magazine

IEEE Signal Processing Letters

TABLE V
CONFERENCE ABBREVIATIONS USED IN THE BIBLIOGRAPHY

| Abbreviation || Conference Name

ALL
ASIL
CDC
CISS
COST
EUSIPCO
ISCS
GLOBE
GRETSI
MIL
SPW
ICASSP
ICC
ICDSP
SPAWC

SPWSSAP
SSST
SPIE

Allerton Conference on Ciruits and System Theory

Asilomar Conference on Signals, Systems and Computers

IEEE Conference on Decision and Control

Conference on Information Science and Systems

COST 229 Workshop on Adaptive Algorithms in Communications
European Signal Processing Conference

IEEE International Symposium on Circuits and Systems

IEEE Global Telecommunications Conference

Colloque GRETSI sur le Traitement du Signal et des Images

IEEE Military Communications Conference

IEEE Signal Processing Workshop

IEEE International Conference on Acoustics, Speech and Signal Processing
IEEE International Conference on Communications

International Conference on Digital Signal Processing

IEEE Signal Processing Workshop on Signal Processing Advances in
Wireless Communications

IEEE Signal Processing Workshop on Statistical Signal and Array Processing
Southeastern Symposium on System Theory

The International Society for Optical Engineering
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APPENDIX
I. FRACTIONALLY-SPACED SYSTEM MODEL

We denote the combined (LTI) channel and pulse-shape impulse response by ¢(¢) and the baseband
additive channel noise process by w(t). The continuous-time baseband representation of the waveform
seen by the receiver can then be described by

o0

r(t) = > sac(t—nT —to) +w(t) (26)

n=—oo

for symbol sequence {s,}, baud interval T, and arbitrary time delay #,. Sampling!® the received signal
every T/2 seconds at the receiver, we denote the sampled received sequence by

o

r(k3) = > sac(kd —nT —to) + w(kT). (27)

n=—oo

The output zj, of a length 2N FIR fractionally-spaced equalizer (FSE) with tap spacing of 7/2 can
be written as a 7'/2-rate convolution with the sampled received sequence:

2N-1

Z fir((k—0)%). (28)

The choice of an even number of equalizer taps is chosen for notational simplicity. Now suppose
that only the “odd” fractionally-spaced equalizer output samples are retained in a decimation by two
(i.e. k=2n+1 for n=0,1,2,...). The decimated equalized output sequence 2% then becomes

yzdd = Ton+1 (29)

2N—-1

= Zfz nT—Z— —) (30)

-1

= (fair((n = )T + %) + fairar((n —0)T)) . (31)

1=0

O

Note that a similar procedure can be carried out for even-indexed output sampling (i.e. £ =2n and

YV = 19,). An illustration of the setup described above appears in Figure 3.

A. Multichannel Model

From (31) we observe that the decimated output 2% can be considered the sum of two baud-spaced
convolutions:
N-1
y;)ldd — Z ( Zeven odd Ly fodd even) , (32)
i=0
where
FEN = fou, O = fongr, 150 =r(nT), and 18 =r(nT + 1) (33)

'5The noise and channel are considered band-limited assuming antialias filtering is done prior to T'/2-spaced sampling at the
receiver.
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We refer to r¢°" and r2%4 as the “even” and “odd” received sequences and to f&'°" and f°% as the

“even” and “odd” sub-equalizers.
Defining the even and odd baud-rate channel response samples

czven — c(nT _ tO) and czdd = C(’I’LT + % - tO)a (34)

and channel noise samples wg'" = w(2nT) and w3 = w((2n+1)T) (for non-negative integers n), we

can confirm that they are related to the received subsequences in a straightforward manner:

even - even even
re = E sp e+ wpren, (35)
!
odd __ odd odd
roct = E 5o 4+ wpte. (36)
!

These expressions allow us to rewrite the decimated equalizer output in terms of the baud-spaced
symbol sequence.

It is important to note that the arbitrary delay ¢y has been incorporated into our definitions of
the channel response samples. This implies that the “even” and “odd” subchannel classifications are
merely notational and have no real physical significance. Furthermore, the inclusion of arbitrary delay
implies that our convention of retaining the odd-indexed (as opposed to the even-indexed) decimated
equalizer output samples also lacks practical significance. In this spirit, we drop the “odd” notation
on y°% and simply refer to the baud-spaced system output samples as y,. Here we are seeing evidence
for the inherent baud-synchronization capabilities of a FSE (not characteristic of BSEs).

Substituting the received subsequence expressions (35) and (36) into (32),

N-1 N-1
_ even odd odd odd even even
Yn = E Ji E s el wpti | + E Ji E 51 Ch Wy (37)
_ even odd odd even even odd odd even
= Sk (S kM H 2 ) + Y x w20 e wl (38)

where the “x” indicates convolution. The relationships between the source, noise, sub-equalizers, and
subchannels described above appears in the multichannel model of Figure 5.

Consider for a moment the noiseless case. The impulse response h, from transmitted source to
baud-spaced equalizer output follows immediately from consideration of s, as the Kronecker delta
sequence 0,. Thus we conclude that

hn — fsven *cgdd + f’r(l)dd*c%ven_ (39)

This impulse response leads directly to a transfer function H(z™!) with unit delay (z7!) of duration
T

H(z™) = Fuen(z7H)Coaa(z7) + Foga(27H) Coven(27h). (40)

Note that the perfect zero-forcing system H(z) = 2z~ (with non-negative integer delay &), leads to the
Bezout relationship [Kailath Book 80):

2_6 = Feven(z_l)codd(z_l) + Fodd(z_l)ceven(z_l)- (41)
B. Multirate Model

To show that the multirate model of Figure 4 also originates from the fractionally-spaced communi-
cation system of Figure 3, we show that the fractionally-spaced equalizer output {z;} in (28) can be
written in terms of a zero-filled version of the source sequence, {a},

o — {8'5 for k even, (49)

0 for k£ odd.
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as depicted in Figure 4. Rewriting (27) as

r(k%) = D ae((k—DE —to) + wy, (43)
I=—0
we see upon its substitution into (28) that
2N—1
w o= ) i (Z ae((k—i—1)5 —to) + wk—i) (44)
i=0 I
2N—-1
= Z Ji (Z ay Cy—i—1 + wk—i) (45)
i=0 I
= frx(ax*cx +wg), (46)

where the fractionally-spaced channel response samples ¢, are defined such that ¢, = c(k% — tp).
At this point we can observe that, in the noiseless case, the fractionally-spaced system impulse
response hi> becomes

RS = fikcp. (47)

Note from (39) that only half of the terms in the fractionally-spaced impulse response (47) are directly
relevant to the system output since the fractionally-spaced output, {z}, is later decimated by two.

C. The Subchannel Disparity Condition

The Bezout equation (41) leads directly to the perfect equalization requirement concerning sub-
channel roots. Specifically, for the existence of a (finite-length) zero-forcing equalizer, the subchannel
polynomials, Ceyen(27!) and Cogq(2'), must not share a common root.

The existence of perfectly equalizing sub-equalizer polynomials Fuen(27') and F,qq(z7') implies
that (41) can be satisfied. For example, if the subchannels share one root, a common polynomial
G(z7Y) = go + g1z~ " can be factored out of both Ceven(271) and Coqq(z7?), leaving Ceven(z7) and

Coaa(z 1), respectively. The perfect equalization relationship would then become
Z_(S = G(Z_l) (Feven(z_l)éodd(z_l) + Fodd(z_l)c_'even(z_l)) ) (48)

but this is contradicted by the fact that there is no finite-length polynomial Fiyyen(27)Cogq(271) +
F4d(271)Ceven(271) that when multiplied by G(27!) results in the delay operator z7°.

However, Fyen(27!) and Foqq(27") can be chosen so that (48) is approximated, in which case the
following relationship is satisfied:

z_dG_l(z_l) ~ Fuen(27H)Coga(271) + Foqa (271 Coven(27h). (49)

In other words, the FSE combines with the non-common-root component of the channel to approximate
the (IIR) inverse of the (T-spaced) common root component.

D. On The Independence of Fractionally-Sampled Channel Noise

A typical assumption on the (baseband equivalent) channel noise w(t) is that it is well modeled by
a zero-mean, circularly-symmetric Gaussian process [Lee Book 94]. In many situations, w(t) is also
assumed to have a flat wideband power spectrum. Does this imply that the fractionally-sampled noise
process {wy} will also be white? Under these conditions, {wy} will only be white when the anti-alias
filters prior to T'/2-spaced sampling satisfy a rate 2/7 Nyquist criterion. In practice, this criterion is
satisfied by anti-alias filters that are power-symmetric about the frequency 1/7 Hz. If, for example,
the filtering prior to equalization is matched to the pulse shape of the transmitted signal, then {wy}
will not be white.
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II. THE CONSTANT MoDULUS CosT FUNCTION

Below, we provide the general formulation of the CM cost function for a complex i.i.d. zero-mean
source and complex baseband channel in additive white zero-mean noise. We will assume that each
member of the symbol alphabet is equi-probable in the source sequence. Furthermore, we also assume
that the receiver sampling clock is frequency synchronous (a fixed time offset is allowed) with the
source symbol clock. In practice, this is a reasonable assumption since the symbol clock can often be
extracted by computing the square magnitude of the received signal (commonly known as envelope
detection). Given these assumptions, we follow the general formulation of the CM cost function with
expressions for the specific cases of PAM, PSK, and QAM input signals.

In addition to the previously introduced notation we will use the following definitions.

E{lsnl'}

ks = —————, the normalized kurtosis of {s,}, (50)
(BE{lsn[*})?
_ E{|5n| s N
vy = the dispersion constant of {s,}, (51)
|h|? = Z |hn|?>,  the squared fy-norm of h. (52)

Note that v = o2k,. Following the presentation of the F'S system model in Section I-A and Appendix A,
we can redefine the equalizer output using (4) and (13). This results in

yn = h's(n) + f'w(n). (53)

The Constant Modulus (CM) cost function is

Jom = E{ ‘yn } (54)
= E{[pnl'} — 29E{lpnl} +*
E{|yn|4} — 20§K3E{|yn\2} + otK,>. (55)

In order to analyze Joy, we will first expand |y,|?, using equation (53). For convenience we will

temporarily let A,, = h's(n) and B, = f'w(n), where y,, = A,+ B,. Using the assumptions of mutually
independent zero-mean noise and source sequences, we note that A, and B, are also independent and
zero-mean, i.e.:

E{A,} =hW'E{s(n)} =0, E{B,} =f'E{w(n)} =0, and E{A,B,} = E{A,}E{B,}.
With these assumptions, we arrive at:

E{|ly.|*} = E{|4A.)*} +E{4,}E{B,*} + E{A,*}E{B,} + E{|B.|*}
= E{|A.)*} + E{|B.*}. (56)

Expanding |A,|? and |B,|?, we have that
E{lyl’} = o7 |Ihl[3 + o5 [If[l5. (57)
The same approach can be used to examine E{\yn\‘l}, which leads to the following equation.

E{lyal'} = E{|4A.'} + E{4.2}E{(B,*)*} + 4E{|A.|*}E{|B.|*} (58)
+ E{B,”}E{(A.*)*} + E{|B,[*}. (59)
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Due to space limitations, we omit the details of the derivation of E{ |yn\4} but mention the following
properties used in the derivation.

« The second order terms are relatively easy to compute; they involve summations of source (and
noise) terms of the form E{sn_isn_l} , E{sn_is;_l}, or E{S:L_is;;_l}.

« The fourth order terms are more difficult to compute, but each of the source (and noise) terms are
of the form E{sn_is;‘klsn_ms;_j}.

Any of the expectations not involving an even power (2 or 4) will vanish because the source and noise are
both zero-mean and white. After a considerable amount of algebra we arrive at the following expression
for E{ \yn|4}. Noting that E{si} and E{wz} are independent of n, we will denote expectations of this

form by E{s?} and E{w?}, respectively.

P-1 — P-1 P-1
E{lya|'} = ko 4Z|h |4+204Z Z |hil? | P |2+|E{82}\22 Z 2 ( h*
1=0 m=0,m#1 1=0 j=0,j#1:
2N—-1 2N-1 2N-1 2N—-1 2N-1
oy DI 20L 30 30 AU+ IB() P 3 30 R,
1=0 m=0,m%#1 1=0 ;5=0,5#1
2N—1
E{82}2h2 (B{ufy 3 2"+ dolon Il eI
2N-1

E{s?}Zh2 (E{w?} Z ) (60)

We define the noise kurtosis k., analogous to the source kurtosis &, in (50). Substituting (57) and (60)
into (55) we have the final expansion of the cost function.

P—-1 P-1
Jom = Ko 4Z|h|4+2042 Z il [hen* + [B{s*}2 D 0 D B (R3)?
1=0 m=0,m#1 =0 j=0,j#1%
2N—-1 2N—-1 2N-1 2N—1 2N-1
+ Ko, Z | fil* + 20y, Z Z |fil? |fm|2+|E{w2}|2 Z Z f2
1=0 m=0,m#1 1=0 j5=0,j#1
2N—-1
E{sﬂZhZ (E{w?} Z 2" + 40202 ||h|I3 | £
2N—1
+ (E{s?} Zh? (E{w?} Z 12 = 202k,(0? |||2 + o2 ||f]|2) + otk (61)

We will now consider how various restrictions on the source and noise simplify this equation.

A. PAM source, real-valued channel

For PAM, the source symbols s, are real-valued, so that E{|s,[*} = E{s2} = o2. Furthermore, if w,,
f and h are real-valued, we have E{|w,[*} = E{w2} =02, f? = (f7)* = |fi]* and h? = (h})? = ||
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Thus, we have that, for a real-valued source and real-valued channel, Equation (61) reduces to

JCM'PAM = K0, Zh4+30' Z Z h2h2

1=0 m=0,m=#1
2N-1 2N—-1 2N-1

+K)w0'wa +3awz Z f2r

1=0 m=0,m#1:
+ ojoy, ||h||z||f||z+40§0i Ih[[3 [[£113 + 020y, [R5 €113
— 203 (0 |[B[[3 + o, [[£]13) + o k™.

Noting that

P-1
Z Z hehy, = |h[3 =) A,
1=0

=0 m=0,m#:

and summing like terms, we arrive at:

P-1 2N-1
Jemlpan = 0i(ks —3) Y hi + 308 ||h|3 + o (s Z FA 4 30t |I1£]14
1=0
+ 60y0y, b5 [IE]l; — 207k, (0F 1R[] + oF ||f||2) + ok (62)

Note that if the noise is Gaussian, &, = 3, and the third term in (62) is zero.

A.1 BPSK Source, real-valued channel

Considering the sub-case of a BPSK source in a real-valued channel results in further simplifications.

For BPSK, , = 0% = 1, which implies that equation (62) reduces to:

P-1 aN—1
Jomppsx = —22h4+3||h||2+0 Z fit + 30y [Ifll2
1=0

+ 607, | BII3 [I£]]3 — 2([Ih[|3 + o3, ||f||2)
In the absence of noise, (63) is the equation given in [Johnson IJACSP 95].

A.2 Complex-valued rotationally invariant noise

(63)

If we make the assumption that the (complex) noise is rotationally invariant, i.e. p(w = pe’®) =
p(Jw| = p)/2 for all 6 € [0,27], then we have that E{w"} = E{p"}E{e} =0, for n = 1,2,....

Using this assumption the cost function reduces to (64).

P-1 — P-1 P-1
JCM‘r.i.noise = K0 4Z‘h|4+20—4z Z ‘h‘ ‘h ‘2 |E{$2}‘2Z Z h?(hj)z
1=0 m=0,m#1 1=0 5=0,5#1¢
2N-1 2N—-1 2N-1
+ Fy0y, Z it 200 > > APl
1=0 m=0,m##:
+ dojoy, ||h||2 €113 — 205k (07 |[B]]3 + oF, I]3) + o5ks”. (64)

For the remaining derivations we will make the assumption of rotationally invariant noise.
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A.3 PSK Source

For PSK symbols, s, € {e/2™/2"} m e {0,1,...,2 —1} (where j = v/—1), we note that o2 =
E{|s|*} = k, = 0% = 1. Thus, (64) simplifies to

P—-1 — P-1 P-1
Jomlpsk = Z |l * +22 Z il o |* + ‘E{SQ}FZ Z i (R5)°
1=0 m=0,m=#1 1=0 7=0,5#1

2N—-1 2N—-1 2N-1

+ Kol Z fil* 200 Y DY Pl

1=0 m=0,m#1:

+ doy, ||h||2 €115 — 2 [R5 + o5, I£113) + 1. (65)

A4 QAM Source

For 90 degree rotationally invariant QAM (i.e. for every member ¢, in the QAM alphabet,
{4m: —Gm, —jgm} are equally likely members of the alphabet), we have that E{s?} = 0 and equation
(64) reduces to

Jomlam = Ks0 Z‘h|4+20 Z Z || P |
1=0 m=0,m=#i
2N-—1 2N—-1 2N-1

+ Ky Z it 200 > D P lfal

1=0 m=0,m#1i

+dojo,, ||h||2 I£15 — 20355(o7 IB]I3 + oy, [[£5) + o5ms". (6)

40



C. Richard Johnson, Jr. was born in Macon, GA in 1950. He received the Ph.D. in electrical engineer-
ing with minors in engineering-economic systems and art history from Stanford University in 1977. He is
currently a Professor of Electrical Engineering and a member of the Graduate Field of Applied Mathematics
at Cornell University, Ithaca, NY. His research in adaptive parameter estimation theory with applications in
digital control and signal processing has been supported by the National Science Foundation, the Engineer-
ing Foundation, the National Aeronautics and Space Administration, Tellabs Research Laboratory, MOOG
Technology Center, United Technologies Research Center, and Applied Signal Technology. Dr. Johnson’s
current research interest is in adaptive parameter estimation theory useful in applications of digital signal
processing to telecommunication systems. His principal focus in the 1990s has been blind linear equalization
for intersymbol interference removal from received QAM sources.

Philip Schniter was born in Evanston, IL in 1970. He received the B.S. and M.S. degrees in electrical and
computer engineering from the University of Illinois at Urbana-Champaign in 1992 and 1993, respectively,
and in 1993 he formed the band “Backhoe.” From 1993 to 1996 he was employed by Tektronix, Inc., in
Beaverton, OR, as a systems engineer. There he worked on signal processing aspects of video and communi-
cations instrumentation design, including algorithms, software, and hardware architectures.

Since 1996 he has been working toward the Ph.D. degree in electrical engineering at Cornell University,
Ithaca, NY, and in 1998 he received the Schlumberger Fellowship. His research interests are in signal pro-
cessing, communications, and control, and include blind adaptive equalization.

Thomas J. Endres received the B.S. from Cornell University (Ithaca, NY) in 1990, M.S. from the University
of Southern California in (Los Angeles, CA) 1994, and the Ph.D. from Cornell University in 1997, all in
Electrical Engineering. From 1990 to 1994 he was employed by Hughes Space and Communications, Los
Angeles, CA.

Since 1997 he has been a founding member of Sarnoff Digital Communications, Newtown, PA. His current
research interests include blind equalization, adaptive systems, and fast Harley-Davidsons with big flywheels.

James D. Behm received a M.S. in Mathematics in 1975 from the University of Arizona, Tucson, AZ and
a M.S. in Computer Science in 1986 from Johns Hopkins Whiting School of Engineering, Laurel, MD. Since
1975 he has been a mathematician with the Department of Defense, Ft. Meade, MD.

His current research interests include signal processing and communications, and he spent the spring 1997
semester as a visiting researcher at Cornell University, Ithaca, NY.

Donald R. Brown received B.S. and M.S. degrees in electrical engineering from the University of Connecti-
cut, Storrs, CT, in 1992 and 1996. While pursuing his Masters degree, he worked for the General Electric
Company from 1992 to 1997 as a Development Engineer. He is currently a graduate student at Cornell
University and his research interests include adaptive signal processing and communications.

Raiil A. Casas was born in Denver, CO in 1972. He received a B.S. degree (1994) in electrical engineering
from Cornell University. Continuing at the Cornell University electrical engineering department with the
support from a National Science Foundation Minorities Fellowship, he received a M.S. degree (1996) and is
now working towards a Ph.D. degree. His thesis work is a result of collaborative research with the United
Technologies Research Center on identification and control of nonlinear combustion chamber dynamics.

His current research interests include the analysis of signal processing, communications and control related
applications from a nonlinear dynamical systems perspective. Right on!

41



