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Abstract—A technique for achieving synchronization in wire-
less networks using only existing traffic is developed. Prior work
has either ignored propagation delay, or has required bidirec-
tional messages consisting of explicitly acknowledged unicast
transmissions. We develop an approach using “implicit acknowl-
edgment” that achieves precise consensus synchronization by
exploiting the broadcast nature of the wireless medium. This
significantly reduces the number of transmissions needed for
synchronization throughout the network, and is applicable to
networks with unacknowledged multicast and broadcast traffic.
Results suggest the technique is effective for precise, low-overhead
network synchronization, and numerical results are presented for
two particular network configurations.

I. INTRODUCTION

Synchronization in wireless networks is necessary to enable

coordination among the nodes, thereby facilitating scheduling

of communication resources, interference avoidance, event

detection/ordering, data fusion, and coordinated wake/sleep

cycles [1]. Most modern wireless communication standards,

e.g. 802.11, 802.15, and 802.16, use network synchronization

for various functions including time-slotting and power man-

agement. The synchronization process in a network is almost

always viewed as a separate process from the normal operation

of the network and is typically achieved through a dedicated

synchronization protocol. A classic example is Network Time

Protocol (NTP) [2] which requires the establishment of a

hierarchical structure and the periodic exchange of dedicated

synchronization messages between devices at different layers

in the hierarchy. Over the last 30 years, a variety of dedicated

synchronization protocols have been developed including NTP,

Precision Time Protocol (PTP) [3], the Global Positioning

System (GPS) [4], and several lightweight protocols for sensor

networks, e.g. [1], [5], [6]. These dedicated synchronization

protocols achieve various tradeoffs between overhead, com-

plexity, and accuracy.

In the absence of a dedicated synchronization protocol,

nodes can still learn their relative clock offsets via existing

network traffic. For example, the class of timestamp-free

synchronization techniques which were originally studied in

the context of natural phenomena, e.g. synchronization of the

firing rates of fireflies, led to formal mathematical models for
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systems of pulse-coupled oscillators in [7] and application

of these models to wireless sensor networks in [8], [9].

While these studies represented an exciting paradigm shift

with respect to the prior work, a limitation of the pulse-

coupled oscillator literature is that it is based on unidirectional

transmissions and therefore assumes negligible propagation

delays. This inherently limits the synchronization accuracy of

these methods.

To account for propagation delay, relative clock offsets can

also be gleaned from timestamps in packet traffic or from the

physical layer characteristics of the transmissions. Recently, a

synchronization approach was proposed that operates via a se-

ries of pairwise message exchanges that cause clock drifts and

offsets between pairs of nodes to converge toward a consensus

clock at an exponential rate, without requiring a dedicated

synchronization protocol [10]. However, the approach relies

on the assumption that all network traffic consists of unicast

transmissions that are explicitly acknowledged.

In this paper we propose an enhanced synchronization

scheme which accounts for propagation delay, builds upon

the work in [10], does not require explicit acknowledgments

(ACKs), and exploits the broadcast nature of the wireless

medium to roughly halve the number of transmissions required

to reach a consensus clock. Such a synchronization scheme

is particularly suitable in networks which do not employ

ACKs, for example in networks with multicast and broadcast

traffic or in networks without guaranteed delivery (e.g. when

connectionless transport layer protocols, such as UDP, are

employed).

With the absence of a dedicated synchronization protocol,

we use a probabilistic Markov model of network traffic that

reflects the random nature of transmissions. Our results suggest

that non-hierarchical embedded synchronization techniques

can be effective for low-overhead network synchronization.

Numerical examples showing convergence and divergence of

consensus synchronization in two different network configu-

rations are also provided.

Notation: Vectors and matrices are denoted by boldface

letters. IN denotes the N ×N identity matrix, ‖·‖ represents

the Euclidean norm of the enclosed vector, and we use (·)
⊤

for transposition.



II. SYSTEM MODEL

We assume a time-division duplexed (TDD) network of N
nodes and denote the propagation delay from node i to node j
as ψi,j . Since all of the channels in the system are TDD,

we assume reciprocal propagation delays ψi,j = ψj,i in each

link. Basic electromagnetic principles have long established

that channel reciprocity holds at the antennas when the channel

is accessed at the same frequency in both directions [11].

A. Random Asymmetric Gossip Model

With no dedicated synchronization protocol, we assume the

nodes take turns transmitting in a probabilistic order described

by an irreducible Markov chain. By letting sk ∈ {1, . . . , N}
denote the random index of the node transmitting in the kth

active TDD time slot, we specify a stochastic matrix P with

i, jth entry pi,j corresponding to the probability that sk = j
given that sk−1 = i. While in practice a node may transmit

twice in succession, such repeated transmissions are not useful

to our proposed synchronization protocol and are effectively

nuisance transmissions; thus, for notational simplicity we

assume that pi,i = 0 for all i. Since P is a stochastic matrix,∑
j pi,j = 1 for all i. In the case where all nodes have equal

probability of transmission, P consists of zeros along the

diagonal, and all off-diagonal entries equal to 1/(N − 1).
This framework is flexible enough to accommodate a wide

range of network types, including deterministic schedules of

transmission. For example, a round-robin schedule results if

P is chosen to be a circulant shift of the identity matrix.

This framework can be represented as a random walk on a

weighted directed graph G with vertices V = {1, . . . , N},

edges E ⊆ V × V , edge weight pi,j on edge (j, i), and

adjacency matrix P⊤. Finally, we do not require that the graph

is completely connected, but we do require that the Markov

chain is irreducible, resulting in a strongly connected graph.

In addition, if either pi,j 6= 0 or pj,i 6= 0, we assume nodes i
and j can reliably receive transmissions from one another.

B. Reference Time and Local Time

The nodes in the network do not possess a common notion

of time. We use the notation t to refer to some notion of

reference time, i.e. the “true” time, in the system. All time-

based quantities such as propagation delays and/or frequencies

are specified in reference time unless otherwise noted.

None of the nodes have knowledge of the reference time

t. The local time at node i is modeled as ti = t + ∆i(t)
where ∆i(t) is a non-stationary random process that captures

the effect of clock drift, fixed local time offset, local oscillator

phase noise, and frequency instability [12]. Note that the goal

of consensus synchronization is not to synchronize each node

such that ti → t. Rather, the goal is to synthesize a consensus

clock t̄, which is itself a function of {t1, . . . , tN}, and to

synchronize each node such that ti → t̄.
Over short time periods, a reasonable first-order model of

local time can be written as ti = βit+∆i where βi represents

the nominal relative rate of the clock at node i with respect to

the reference time and ∆i is the local clock offset at t = 0.

None of the nodes have knowledge of βi or ∆i.

III. NETWORK SYNCHRONIZATION

This section describes a network synchronization protocol

that allows each node in the network to arrive at a common

clock drift βi and clock offset ∆i through random pairwise

message exchanges. The goal is not to force βi = 1 and

∆i = 0 or to achieve “average consensus” where the global

average of the drifts and offsets are preserved over time

[13]. Rather, the goal is to drive the clock drifts and offsets

to common values β̄ and ∆̄ across the network. For con-

ceptual simplicity, we describe the network synchronization

protocol as a two-step process: (i) drift compensation and

(ii) offset compensation. In practice, both drift and offset

compensation can be performed simultaneously, since pairwise

drift estimates can be inferred “for free” from physical layer

characteristics of normal network traffic.

We do not restrict ourselves to a particular method for

drift and offset estimation, and we simply assume that when

a random node sk transmits in time slot k, the node sk−1

that transmitted in the previous time slot adjusts its local

clock based on its local estimate of its pairwise drift and

offset with respect to node sk. Due to the broadcast nature

of the wireless medium, each transmission from node sk at

time k effectively serves three purposes: (i) provides inherent

feedback in the form of an implicit acknowledgment which

node sk−1 uses to adjust its clock, (ii) blindly initiates the

next implicit synchronization exchange with whichever node

sk+1 transmits next, and (iii) transmits regular “intended”

traffic to one or more other nodes in the system. The pro-

tocol requires that nodes sk−1 and sk+1 are able to reliably

receive transmissions from node sk, which is guaranteed by

the assumptions in the probabilistic messaging framework of

Section II-A. Even though the transmission from node sk at

time k implicitly provides information to nodes sk−1 and sk+1

as part of the synchronization approach, we reiterate that node

sk’s broadcast transmission may well contain regular traffic

intended for yet another node or nodes besides nodes sk−1 and

sk+1. An example of this sequence of exchanges is shown in

Fig. 1, including the implicit “overheard” message exchanges

used for synchronization, as well as the regular “intended”

network traffic.
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Fig. 1. Implicit message exchanges between nodes 1 and 4, and then nodes
4 and 2.



A. Step 1: Drift Compensation

Since nodes derive their symbol rate and carrier frequency

from the same local oscillator that drives the local clock, any

message between a pair of nodes in the network allows for the

estimation of pairwise clock drift at the physical layer through

carrier frequency or symbol rate offset estimation. Pairwise

clock drift can also be estimated at the MAC layer through

observing multiple timestamped messages from another node

in the network.

We define the drift vector at time k as

β[k] := [β1[k], . . . , βN [k]]⊤ ∈ R
N . (1)

While none of the nodes know their local drift or the drift

of other nodes in the network, they can exchange messages

and estimate their pairwise drifts relative to other nodes in the

network. We define the pairwise drift between nodes i and j
as observed at node i as

βj,i[k] := βj [k]− βi[k] = (ej − ei)
⊤β[k]

where ei ∈ R
N is a vector of all zeros except for a one in

position i.

When random edge (j, i) is activated in timeslot k,

node sk = j transmits and then node sk−1 = i forms the

estimate β̂j,i[k] of the pairwise drift βj,i[k] and subsequently

adjusts its local clock drift through a correction

βi[k + 1] = βi[k] + µβ̂j,i[k]

= βi[k] + µ(ej − ei)
⊤β[k] (2)

where µ > 0 is a stepsize parameter, and the final equality

results from our assumption that estimates are perfect. All

other local clock drifts in the network (including node sk = j)
are not updated, i.e.

βℓ[k + 1] = βℓ[k] ∀ℓ 6= i. (3)

For every (j, i) ∈ E, we can define

Ri,j := ei(ej − ei)
⊤ (4)

and the associated random matrix R[k] having Prob[R[k] =
Ri,j ] = pi,j . Putting (2) and (3) together, we can represent

the drift vector update in timeslot k as

β[k + 1] = β[k] + µei(ej − ei)
⊤β[k]

= (IN + µRi,j)β[k]

given that edge (j, i) is activated. Since the active edge is

random, the drift update vector in the absence of conditioning

becomes

β[k + 1] = W [k]β[k] (5)

where W [k] := IN + µR[k].

B. Step 2: Offset Compensation

While compensating for oscillator drift syntonizes the nodes

in the network, it is not sufficient for synchronization because

the fixed clock offsets among the nodes in the network are not

corrected. The offset vector is defined as

∆[k] := [∆1[k], . . . ,∆N [k]]⊤ ∈ R
N

and the pairwise offset between nodes i and j as observed at

node i is further defined as

∆j,i[k] := ∆j [k]−∆i[k] = (ej − ei)
⊤
∆[k].

To correct these offsets, we assume that the pairwise drift

between nodes i and j is negligible. Again referring to Fig. 1,

we see that the regular network traffic results in an implicit

bidirectional message exchange between node sk−1 = i and

node sk = j. Node sk−1 = i can disambiguate its pairwise

clock offset with node sk = j from the propagation delay

ψi,j = ψj,i. The sender/receiver protocol [14], as shown in

Fig. 2, is one example of how this can be achieved. Given

a packet transmitted by node i in local time t(a)

i , it arrives at

node j in local time t(b)j = t(a)

i +ψi,j+∆j−∆i. The implicit re-

sponse from node j contains the local timestamps t(b)j and t(c)j

and arrives at node i at local time t(d)i = t(c)j +ψi,j+∆i−∆j .

After receiving the response, node i can compute the pairwise

clock offset to node j as

(t(b)j − t(a)

i )− (t(d)i − t(c)j )

2
= ∆j −∆i = ∆j,i.

The timestamp-free synchronization protocol [15] is another

example of how timing offsets can be estimated through bidi-

rectional message exchanges, except through physical layer

characteristics of the transmissions and without the use of

timestamps.

Assuming random edge (j, i) is activated, node i forms the

estimate ∆̂j,i[k] of the pairwise offset ∆j,i[k] and adjusts its

local clock offset

∆i[k + 1] = ∆i[k] + µ∆̂j,i[k] (6)

where ∆i[k] is the offset with respect to reference time of

node i at time k and µ > 0 is a stepsize parameter. All other

local clock offsets in the network are not updated. The offset

vector update then follows as

∆[k + 1] = ∆[k] + µei(ej − ei)
⊤
∆[k]

= (IN + µRi,j)∆[k]

given that edge (j, i) is activated with Ri,j defined in (4). In

the absence of conditioning we replace Ri,j with R[k] giving

∆[k + 1] = W [k]∆[k]

with W [k] := IN + µR[k] and Prob[R[k] = Ri,j ] = pi,j .

In this context, offset compensation is conceptually identical

to drift compensation as discussed in Section III-A. The offset

update equation has the same form as the drift update equation

in (5).
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Fig. 2. Bidirectional message exchange for sk−1 = i, sk = j.

IV. NUMERICAL RESULTS

In this section, we investigate the performance of the

proposed synchronization approach through simulation, and

show that for suitable choice of stepsize, the network exhibits

monotonic mean squared convergence of both drifts and offsets

toward a consensus clock. We use a “distance from consensus”

metric [16]–[18] as a measure of the overall network pairwise

drift and offset alignment at time k. Defining the mean drift at

time k as β̄[k] := 1

N

∑N

i=1
βi[k] the distance from consensus

metric is then defined as

d[k] :=
1

N
‖β[k]− 1N β̄[k]‖

2
2.

Note that smaller values of d[k] correspond to closer overall

synchronization in the network. Also note that the distance

from consensus of the offsets ∆[k] is defined identically with

β[k] replaced by ∆[k].

The numerical results in this section assume a network

with N = 10 nodes, i.i.d. Gaussian distributed initial clock

offsets ∆i[0] with standard deviation 5 ms, and i.i.d. Gaus-

sian distributed initial drifts βi[0] with standard deviation

100 µs/iteration, for i = 1, . . . , N . In iterations k = 0, . . . , 99,

no synchronization updates occur. During this time, the pair-

wise drifts remain constant and the pairwise offsets tend to

grow. For iterations k = 100, . . . , 499, the drift compensation

algorithm runs with randomly transmitting nodes with proba-

bilities specified by the Markov chain P . For iterations k =
500, 501, . . . the offset compensation algorithm runs, also with

randomly transmitting nodes with probabilities specified by P .

In the following, we consider two network configurations: (i) a

fully-connected network where all nodes are equally likely to

transmit and (ii) a network with a deterministic “round-robin”

transmission schedule so that the node transmitting at time k
is given by sk = mod(k,N) + 1 where mod(k,N) denotes

k modulo N . Where relevant, we compare behavior of the

proposed implicitly acknowledged synchronization algorithm

with the explicit acknowledgment algorithm in [10].

A. Equiprobable Transmissions

In this example, pi,j =
1

N−1
= 1

9
for all i 6= j so all nodes

are equally likely to transmit in a given time slot. Fig. 3 shows

the distance from consensus metrics for both drift and offset,

averaged over 1000 Monte-Carlo realizations. In this figure,

solid lines represent the proposed consensus synchronization

algorithm with implict acknowledgment, whereas dotted lines

show the performance of the algorithm presented in [10]

which requires explicit acknowledgment of every transmission

and consequently more overhead. These results numerically

suggest monotonic mean squared convergence of the proposed

synchronization algorithm for fixed stepsizes µ ∈ {0.2, 0.5},

and convergence speed appears to be identical to the algorithm

with explicit acknowledgments for these stepsizes. Since the

proposed algorithm more efficiently exploits the broadcast

nature of the wireless medium and does not require explicit

acknowledgments, however, the proposed scheme converges

twice as fast on a per-transmission basis since the additional

overhead of ACKs is not needed. For fixed stepsizes µ ∈
{1.0, 1.5}, the proposed algorithm diverges; in contrast, the

algorithm with explicit acknowledgment [10] converges for

wider range of stepsizes µ ∈ {0.2, 0.5, 1.0}. This suggests that

in the absence of explicit acknowledgment, smaller stepsizes

are required for algorithm convergence. Finally, the effect

of uncompensated drifts is evident in the first 100 iterations

where we see linearly increasing pairwise offsets.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2
x 10

−8

iteration k

d
[k

] 
d

ri
ft

s

 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

−4

iteration k

d
[k

] 
o

ff
s
e

ts

 

 

mu = 0.2

mu = 0.5

mu = 1

mu = 1.5

mu = 0.2

mu = 0.5

mu = 1

mu = 1.5

Fig. 3. Empirically averaged distance from consensus metrics for N = 10

node synchronization with equiprobable transmit/receive pairs. Solid lines
are consensus synchronization via implicit acknowledgment, dotted lines are
consensus synchronization with explicit acknowledgment [10].

B. Deterministic Round-Robin Transmission Schedule

In this example, the N = 10 node network operates

according to a deterministic round-robin transmission schedule

where in each time slot the transmitting node indices follow

the pattern 1, 2, . . . , N, 1, 2, . . .. In this case, P is then a

circulant shift of the identity matrix so that pi,j = 1 for all



j = i + 1, and pN,1 = 1. This choice of P implies that, at

the very least, node 2 is connected to nodes 1 and 3, node 1

is connected to nodes 2 and N , etc.

Fig. 4 shows the distance from consensus metrics aver-

aged over 1000 Monte-Carlo realizations. We again see lack

of convergence when µ ∈ {1.0, 1.5} and monotonic mean

squared convergence for µ ∈ {0.2, 0.5}. One difference in

this example with respect to the equiprobable case is that the

convergence tends to be slightly slower overall. However, the

proposed implicit ACK scheme appears to converge faster than

the explicit ACK scheme since the solid lines are uniformly

lower than the dotted lines for µ ∈ {0.2, 0.5}.
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Fig. 4. Empirically averaged distance from consensus metrics for N = 10

node synchronization with a deterministic transmission schedule. Solid lines
are consensus synchronization via implicit acknowledgment, dotted lines are
consensus synchronization with explicit acknowledgment [10].

V. CONCLUSIONS AND EXTENSIONS

This paper considers a synchronization algorithm that uses

existing network traffic and exploits the broadcast nature of

the wireless medium to achieve consensus synchronization

in a TDD wireless network. Compared to prior work in this

area, the proposed scheme does not require explicit acknowl-

edgments, and is therefore applicable to a wider range of

network traffic while requiring roughly half the number of

transmissions. Numerical results yield the somewhat surprising

result that network hierarchy is not necessary and that low-

overhead non-hierarchical techniques can exhibit monotonic

mean squared convergence to a consensus clock when the local

drift/offset updates are sufficiently small. Since convergence to

the consensus clock occurs with random node transmissions,

these results show that drift and offset consensus can be

achieved by gleaning timing estimates from existing network

traffic rather than relying on a dedicated synchronization

protocol.

Although we have shown that pairwise drift and offset

compensation allow the nodes in a wireless network to achieve

consensus on the drifts and offsets such that βi → β̄ and

∆i → ∆̄ for all i, it is worth mentioning that the technique

could also be used to synchronize to an external source of

reference time if one or more nodes in the network have access

to reference time (via, e.g. GPS). The nodes that have access

to an external source of reference time simply do not adjust

their clock via (2) and (6). This forces the other nodes in the

network to adapt to the fixed reference time.

Potential extensions of this work include: (i) convergence

analysis for drift and offset compensation, (ii) the development

of explicit bounds on the stepsize µ, and (iii) analysis and

simulation of non-hierarchical synchronization with stochastic

clocks and/or drift and offset estimations errors.
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