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Abstract—This paper considers the problem of achieving
global channel knowledge throughout a fully-connected
packetized wireless network with time-varying channels.
While the value of channel state information at the trans-
mitter (CSIT) is now well-known, there are many scenarios
in which it is helpful to have additional channel knowledge
beyond conventional CSIT, e.g., cooperative communication
systems. The overhead required for global CSI knowledge
can be significant, particularly in time-varying channels
where the quality of channel estimates is dominated by the
“staleness” of the CSI. Nevertheless, the fundamental limits
and feasibility of tracking global CSI throughout a network
have not been sufficiently studied. This paper presents a
framework for analyzing the staleness of protocols that
estimate and disseminate CSI to all nodes in a fully-
connected network. Fundamental bounds on achievable
staleness are derived, and efficient dissemination protocols
are developed which achieve these limits. The results
provide engineering guidelines on the feasibility of tracking
global CSI as a function of network size, the size and
composition of the packets, packet error rate, and channel
coherence time.

Index Terms—Age of information, global channel state
information (CSI), optimal scheduling, data dissemination
protocols.

I. INTRODUCTION

IN wireless networks, knowledge of channel state
information (CSI) by the nodes in the network can

often be used to improve one or more performance char-
acteristics of the network, e.g., increase data rates, reduce
interference, and/or improve energy efficiency. In point-
to-point links, knowledge of the channel state informa-
tion at the transmitter (CSIT) can improve performance
through techniques such as Tomlinson-Harashima pre-
coding [1], waterfilling [2], [3], and/or adaptive transmis-
sion over fading channels [4]. In multiple-input multiple-
output (MIMO) channels, CSIT allows for coherent
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transmission techniques like beamforming and can also
provide multiplexing gains [5]–[7]. CSIT can also be
used in MIMO systems for interference mitigation, e.g.,
zero-forcing beamforming [7], nullforming [8], and in-
terference alignment [9].

While the value of CSIT is well-established in the
literature, there are also many examples of systems
where the nodes in the wireless network benefit from
having a more comprehensive view of the channel states
in the network beyond just CSIT. For example:

1) Cooperative relaying. Optimum power allocation
and/or relay selection strategies generally require
the source to know the magnitude of the relay-
destination channels [10]–[12]. In multi-relay sys-
tems, optimum transmission schemes may require
the relays to know all source-relay and relay-
destination channels [13]. In cooperative networks
with dynamic relay pairing, stable matchings re-
quire global channel state knowledge [14].

2) Distributed communication systems. While dis-
tributed beamforming can be achieved with CSIT
[15], [16], more general distributed transmission
schemes such as zero-forcing beamforming [17],
nullforming [18], and interference alignment [19],
[20] require each transmitting node to know all
source-destination channels to be able to com-
pute the desired precoding vector. Similarly, opti-
mum combining in distributed reception systems
requires the fusion center to know all source-
destination channels [21], [22].

3) Cross-layer design for multihop networks. Opti-
mization of the end-to-end data rate and scheduling
in multihop wireless networks generally requires
global CSI [23], [24]. Routing performance in
multihop networks is also significantly improved
with global CSI [25], [26].

Global knowledge of CSI also permits nodes to oppor-
tunistically determine an appropriate network structure
and communication strategy for efficient operation under
the current channel state. Furthermore, availability of
global CSI allows nodes to change roles over time,
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perhaps participating in a coherent transmit cluster at one
point in time, then serving as a relay at another point in
time, with the current role dynamically determined by
the evolving global channel state.

This paper considers theoretical bounds and efficient
protocols for estimation and dissemination of global CSI
in N -node wireless networks with reciprocal channels.
By “global CSI”, we mean that each node maintains its
own table of estimates for all L = N(N−1)

2 reciprocal
channels in the network, not just the N − 1 channels
to which a given node is directly connected. Nodes
obtain estimates of channels to which they are not
directly connected via CSI “dissemination”. Specifically,
nodes disseminate CSI by embedding one or more CSI
estimate(s) in each transmission so other nodes can learn
the states of channels to which they are not directly
connected. Over time, each node in the network directly
estimates the N −1 channels to which it is directly con-
nected and “indirectly estimates” the remaining L−N+1
channels in the network by collecting disseminated CSI.
While some recent studies have considered the problem
of estimating and tracking so-called “global CSI”, e.g.,
[27]–[29], the notion of global CSI in these papers is
not the same as the notion of global CSI considered
here. In that prior work, the roles of the nodes are fixed
and the focus is on providing estimates of all transmit-
receive channels to all transmit nodes in the network,
i.e., global CSIT. We emphasize that our notion of global
CSI does not presume roles for the nodes in the network
and allows nodes to dynamically adapt their roles by
estimating and tracking all of the L reciprocal channels
in the network.

The focus of this paper is on wireless networks
with reciprocal channels. In this setting, there are two
sources of error in the global CSI at each node in the
network: (i) channel estimation error, typically governed
by fundamental bounds such as the Cramer-Rao lower
bound (CRLB) and (ii) error caused by time-variation
and staleness, i.e., the delay from when the time-varying
channel was estimated and the current time n. In this
paper, and as in the recent work on “age of information”
[30]–[32], we assume the type (ii) error is dominant. The
value of stale (sometimes called delayed or outdated)
CSIT has been considered only recently in [33]–[35].
While it was shown that even completely stale CSIT can
still be useful in certain scenarios [33], there is generally
a loss of performance with respect to perfect CSI knowl-
edge as CSI becomes more stale [35]. Moreover, the
focus of these staleness studies has been on maximizing
degrees of freedom in conventional MIMO channels with
delayed CSIT, and not on cooperative, distributed, or
multihop scenarios where a more comprehensive knowl-
edge of CSI is necessary. In these types of scenarios,
performance can be highly sensitive to the accuracy of
the CSI, which is directly related to its staleness [12],

[30], [36], [37].
The main contributions of this paper are as follows.

First, we develop a new and general framework for
quantifying the staleness of global CSI in packetized
wireless networks. This framework accounts for the
number of channel states disseminated in each packet
as well as the additional data and overhead in each
packet which contribute to the staleness of the CSI. We
then develop bounds on the minimum achievable CSI
staleness throughout a network (Theorems 1, 2, 4, and 5).
Subsequently, we develop CSI dissemination protocols
and quantify the maximum and average staleness of
these protocols as a function of the number of nodes
in the network and composition of each packet. We
show these protocols are efficient in the sense that they
achieve maximum and average staleness within a small,
constant gap of the explicit lower bounds (Theorems
3 and 6). We compare our results with other, recently
reported results on “random” or opportunistic CSI dis-
semination protocols [38] as well, and the results in this
paper provide an explicit characterization of the staleness
penalty of using opportunistic protocols with respect to
the “best case” CSI dissemination protocols developed
here. The results in this paper provide explicit efficient
protocols for disseminating CSI in wireless networks
as well as engineering guidelines on the feasibility of
tracking global CSI in terms of the network size, packet
size and composition, and channel coherence time. While
the case of partial network connectivity is an important
future extension of this work, the fully-connected case
considered here is a canonical network topology for
developing the staleness framework, and serves as a
reference with which future work can be compared.
Since the total number of channels in fully-connected
network is L = N(N−1)

2 and each one of the N nodes
maintains its own table of L CSI estimates, the total
number of CSI estimates throughout a fully-connected
network is equal to LN = N3−N2

2 . Since this quantity
scales as O(N3), the cost of estimating global CSI
can be prohibitive for large N . Nevertheless, there is a
gap in solidly understanding the overhead and tradeoffs
involved in tracking global CSI throughout a network,
particularly in cases where N is small and global CSI
may be feasible.

Table I summarizes the achievable staleness for the
deterministic protocols presented here, as well as the
random/opportunistic protocols presented in [38], and
includes both the case where a single CSI estimate is
disseminated in each packet, as well as the case where
a node’s entire table of N − 1 direct channel estimates
is disseminated in each packet. The staleness units are
in number of words, where it is assumed each packet
consists of D words of overhead and data, and a single
disseminated channel estimate requires one word.

The rest of this paper is organized as follows. Sec-
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TABLE I
ACHIEVABLE STALENESS METRICS

protocol type estimates disseminated per packet maximum staleness average staleness

deterministic
1 N2−N+2

2
(D + 1) N3−4N2+13N−14

4(N−1)
(D + 1)

N − 1 (N − 1)(D +N − 1) 2N2−2N−1
3N

(D +N − 1)

random [38]
1 - N(N−1)

2
(D + 1)

N − 1 - 3N−4
2

(D +N − 1)

tion II describes the system model and provides defini-
tions and examples of the maximum and average stale-
ness metrics considered in this paper. Section III derives
lower bounds on the maximum and average staleness,
develops efficient deterministic CSI dissemination pro-
tocols that achieve these bounds within a small, constant
gap, and presents several extensions to the model as well
as suggestions for potential future studies. Section IV
provides numerical results demonstrating the staleness
of the CSI dissemination protocols, while Section V
provides conclusions. Proofs of the major theorems are
provided in the Appendices.

Notation: We adopt the notation used in the graph
theory literature, letting KN denote the complete graph
with N vertices, and when N is even we let KN −
I denote the complete graph with a 1-factor removed.
We use standard cycle notation to describe permutations
[39], where each number in parentheses is sent to the
one immediately following it, and the last number in
parentheses is sent back to the first. For the permutation
σ = (1, 2, 3)(4), for example, σ(1) = 2, σ(2) = 3,
σ(3) = 1, and σ(4) = 4. In addition, σn(·) permutes the
input n times, so for example σ2(1) = 3. For a sequence
in indexed by integer n, the shorthand in1:n2

denotes the
sequence in1

, in1+1, . . . , in2
where n1 ≤ n2. If jn is also

a sequence indexed by n, then (i, j)n is shorthand for
the pair (in, jn).

II. SYSTEM MODEL

We consider a system model consisting of a cluster of
N connected wireless nodes communicating over a time-
varying channel. For simplicity we focus on the case
where each node has a single antenna, and we denote
the complex channel gain between nodes i and j at
time n as hi,j [n]. We assume time-division duplexing
(TDD) and therefore the channels between all nodes are
reciprocal so hi,j [n] = hj,i[n]; with this assumption,
the network consists of L , (N2 − N)/2 complex
channel gains between all pairs of nodes. We assume
that, due to the choice of underlying communication
scheme (e.g., interference alignment, distributed MIMO,
etc.), each of the N nodes in the network requires global
channel state information, and therefore each requires
knowledge of all L complex channel gains. Estimating

and disseminating these channel gains throughout the
network is the problem of interest here.

We assume fixed-length packet transmissions between
the nodes in the network of the form shown in Fig. 1.
Each packet is assumed to contain overhead, data, and
disseminated CSI corresponding to M channel estimates
that the transmitting node disseminates to the other nodes
in the network. In general, the CSI dissemination portion
of the packet provides a means for node k to receive an
estimate of the (i, j) channel when i 6= j 6= k since
node k has no means for directly estimating channels
to which it is not connected. Each disseminated channel
estimate is assumed to have a length of one word, where
we define a word as a general time unit representing
the amount of time required to transmit a single CSI
estimate. By adopting words as the basic time unit,
the staleness framework developed in this paper can
be applied to a wide range of wireless communication
settings and standards, with widely different choices of
system parameters, packet structures, and data rates. The
data and overhead are assumed to have a length of D
words, hence the total packet length is P = M + D
words. While Fig. 1 shows a particular packet structure,
the position of the overhead, data, and disseminated CSI
within any packet is not consequential in our analysis.

Fig. 1. Example fixed-length packet showing overhead, data, and CSI
dissemination. The CSI dissemination consists of M ∈ {1, . . . , N−1}
channel estimates where the length of each channel estimate is one
word. The data and overhead consist of D words. The total packet
length is P = M +D words.

Under the fully-connected network assumption, when
node i transmits a packet at time n, all other nodes j 6= i
receive the packet1 similar to the model in [41], and so
only one node can transmit at a time. Each node j 6= i

1The packet from node i may have encrypted data directed to a
particular node but we assume all nodes can receive the packet due
to the broadcast nature of the wireless network. To mitigate possible
erroneous dissemination of CSI by adversarial nodes, the transmitters
can cryptographically sign the CSI with a private key such that each
receiver can verify the CSI is transmitted by a trusted node using a
known public key [40].
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is assumed to receive the packet reliably, and each node
subsequently does two things:

1) Estimates the channel hi,j [n], which can be ob-
tained via a known training sequence in the packet,
e.g., a known preamble embedded in the over-
head, and/or through blind channel estimation
techniques.

2) Extracts disseminated CSI and uses it to replace
any CSI in its local table that is “staler”.

Each node maintains its own table of estimates of the
current state of all L channels in the network. We denote
the kth node’s estimate of the (i, j) channel during the
packet transmitted at time n as ĥ(k)

i,j [n]. Note that N − 1
of a node’s estimates are directly obtained via channel
estimation in step 1 above (for i = k or j = k). The
remaining L − N + 1 estimates are indirectly obtained
via disseminated CSI in step 2 above (for i, j 6= k). Thus,
the network contains a total of N(N − 1) = 2L directly
estimated parameters, and N(L −N + 1) = L(N − 2)
indirectly estimated parameters.

To illustrate the basic concepts, consider an N = 3
node network and assume each node disseminates a sin-
gle CSI estimate per packet (M = 1) with no overhead
or data (D = 0). We refer the reader to Table II as well
as Fig. 2 for a graphical representation of this example.
The following is a description of a deterministic packet
transmission sequence and the resulting CSI estimates at
each node in the network:
n = 0:

Suppose the first packet is transmitted by
node 1. Prior to the first packet transmission,
there is no knowledge of CSI anywhere in the
network. As such, the first packet (n = 0) can
only be used for estimation, and not dissemi-
nation. In this case, node 2 directly estimates
the channel h1,2[0] (computing the estimate
ĥ

(2)
1,2[0]) and node 3 directly estimates the chan-

nel h1,3[0] (computing the estimate ĥ
(3)
1,3[0]).

The staleness of both of these estimates is
zero since they were obtained directly from the
current packet.

n = 1:
Suppose this packet is transmitted by node 2.
Since node 2 now has an estimate of the (1, 2)

channel, it disseminates ĥ(2)
1,2[0] in its packet.

Node 1 directly estimates the channel h1,2[1]

(computing the estimate ĥ
(1)
1,2[1]) and node 3

directly estimates the channel h2,3[1] (comput-
ing the estimate ĥ(3)

2,3[1]). Additionally, node 3
extracts the disseminated CSI ĥ(2)

1,2[0] since it
does not have a prior estimate of the (1, 2)
channel. Node 1 does not use the disseminated
CSI since it is staler than the direct estimate
ĥ

(1)
1,2[1]. To summarize, and as shown in Fig. 2,

after node 2 transmits its packet, node 1 has a
current estimate of the (1, 2) channel, node 2
has a stale estimate of the (1, 2) channel, and
node 3 has stale estimates of the (1, 2) and
(1, 3) channels as well as a current estimate of
the (2, 3) channel. Estimates of all channels in
the network now exist at node 3, but two more
packets are required for node 1 and node 2 to
each have complete CSI tables.

n = 2:
Assume this packet is transmitted by node 3
and that node 3 disseminates ĥ(3)

2,3[1]. Node 1
directly estimates the channel h1,3[1] (comput-
ing the estimate ĥ

(1)
1,3[2]) and node 2 directly

estimates the channel h2,3[2] (computing the
estimate ĥ(2)

2,3[2]). Additionally, node 1 extracts
the disseminated CSI ĥ(3)

2,3[1]. Node 1 now has
a complete CSI table.

n = 3, . . . :
Assume the nodes repeat this same sequence
of steps which are summarized in the 3-round
protocol shown in Table II. This periodic 3-
round protocol is shown in Fig. 2, where the
time of the most recent information is indicated
locally on each of the figures for each node.

TABLE II
3-NODE DETERMINISTIC PROTOCOL

time transmitting node disseminated channel
n = 0, 3, 6, . . . 1 (1,3)
n = 1, 4, 7, . . . 2 (1,2)
n = 2, 5, 8, . . . 3 (2,3)

While the previous example considered the M = 1
case where each node disseminates a single channel
state, this framework also allows for multiple CSI es-
timates to be disseminated per packet. It is important to
note, however, that nodes should only disseminate di-
rectly estimated channels since any indirectly estimated
channel, i.e., a channel learned via dissemination, is
at least as stale as the CSI at all other nodes in the
fully-connected network. Hence, we restrict attention to
protocols with M ∈ {1, . . . , N − 1}.

The following definitions formalize the staleness met-
rics considered in the remainder of this paper.

Definition 1 (Staleness). The staleness s(k)
i,j [n] of the CSI

estimate ĥ(k)
i,j [n′] at time n ≥ n′ is (n− n′)P words.

In the three-node example at time n = 5, node 2 has
the CSI estimate ĥ(2)

1,2[3]. Hence, the staleness of node 2’s
estimate of the (1, 2) channel at time n = 5 is s(2)

1,2[5] =
(5 − 3)P = 2 since the packet length P = 1 in this
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n = 0
1 transmits

n = 1
2 transmits (1,2)

n = 2
3 transmits (2,3)

n = 3
1 transmits (1,3)

Smax[n] = 3

Savg[n] = 4/3

n = 4
2 transmits (1,2)

Smax[n] = 3

Savg[n] = 4/3

n = 5
3 transmits (2,3)

Smax[n] = 3

Savg[n] = 4/3
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Fig. 2. Operation of protocol for 3 node case. Numbers on edges indicate staleness of each channel estimate locally at each node; red numbers
indicate CSI estimates have been refreshed through direct estimation, blue numbers indicate CSI refreshed through dissemination, and black
numbers indicate no update to CSI since the last packet.

example. In general, the staleness obeys

s
(k)
i,j [n] =


0 direct estimate is made
s

(k′)
i,j [n] (i, j) estimate disseminated

by node k′, where k 6= k′

s
(k)
i,j [n− 1] + P otherwise.

Recall that a node cannot make observations while trans-
mitting. Hence, direct estimation of the (i, j) channel
occurs at node k for k = i when node j transmits
(indicated by red numbers in Fig. 2), indirect estimation
of the (i, j) channel occurs at node k when the (i, j)
channel is disseminated by node k′ 6= k for i, j 6= k
(indicated by blue numbers in Fig. 2), and CSI estimates
simply grow staler by one packet when no estimates of
the (i, j) channel are made (indicated by black numbers
in Fig. 2).

We define a protocol as a sequence of transmitting
nodes and the channel indexes they disseminate, as
shown by the example periodic 3-round protocol in Table
II. In general, protocols can be deterministic or random,
periodic or aperiodic. For deterministic protocols con-
sidered in this paper, we define a maximum staleness
metric.

Definition 2 (Maximum staleness). The maximum stal-
eness Smax of a deterministic protocol is defined as

Smax = max
i,j,k,n≥n̄

s
(k)
i,j [n] (1)

for n̄ sufficiently large such that all nodes have complete
CSI tables.

In the three node example, note that all nodes have
complete CSI tables at n̄ = 3. Observe that the stalest
individual CSI value is always 3 for all n ≥ n̄. Hence,
the maximum staleness is Smax = 3 for the three-node
example.

The tolerable maximum staleness can be related to
the channel coherence time. For example, if a particular
communication system requires T seconds to transmit
one word (and PT seconds to transmit one packet), then
TSmax would need to be less than the channel coherence

time in order for all disseminated CSI in the network to
be accurate at all times.

Finally, we define an average staleness metric. This
metric applies not only to deterministic periodic proto-
cols but also random protocols satisfying certain mild
conditions [38].

Definition 3 (Average staleness). The average staleness
Savg of a protocol is defined as

Savg =
1

LN
E

∑
i,j,k

s
(k)
i,j [n]

 (2)

where the expectation is over n ≥ n̄ for n̄ sufficiently
large such that all nodes have complete CSI tables.

At times, it is convenient to consider the instantaneous
maximum and average staleness, denoted Smax[n] and
Savg[n], respectively, which have the same definitions as
(1) and (2), but without taking the maximum or average
over time n. In addition, we use the subscript direct or
indirect to distinguish between the staleness of those 2L

parameters which are directly estimated (i.e., s(k)
i,j [n] for

i = k or j = k), and those L(N − 2) parameters which
are indirectly estimated (i.e., s(k)

i,j [n] for i, j 6= k).
In the three node example, for n̄ = 3, observe that the

average staleness is Savg = 4
3 . In fact, the instantaneous

average staleness Savg[n] is constant for all n ≥ n̄. We
claim the deterministic periodic protocol in Table II is
an efficient deterministic protocol for the 3-node case in
terms of minimizing maximum staleness and minimizing
average staleness. The next section formalizes this claim
and generalizes the design of efficient deterministic
protocols to KN .

III. DETERMINISTIC CSI DISSEMINATION
PROTOCOLS

In this section we develop theoretical staleness bounds
and explicit deterministic protocols for efficient dis-
semination of global CSI. The deterministic protocols
developed in this section specify a specific order of
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node transmission and CSI dissemination. Hence, in
contrast to the random protocols considered in [38], these
protocols are effectively driven by the CSI dissemination
process.

We say that a deterministic protocol is a valid protocol
if the deterministic sequence of CSI dissemination results
in a state where every node eventually has a complete
CSI table. Clearly, there are an infinite number of such
protocols, but we observe there are two conditions which
must be met for a protocol to be valid:

1) Each node must transmit at least once.
2) Each of the L channel gains in the network must

be disseminated at least once.

If either of these two conditions are not met, the network
cannot have a complete CSI table and the protocol cannot
be valid. For example, if node i never transmitted, then
any other node j 6= i would not be able to estimate
(or receive through dissemination) the (i, j) channel.
Similarly, if the (i, j) channel was never disseminated,
then node k 6= i 6= j would not have an estimate of the
(i, j) channel.

Recall that M ∈ {1, . . . , N − 1} denotes the number
of CSI parameters disseminated in a given packet. We
analyze CSI dissemination protocols in the two extremes:
(i) the M = 1 case where a single CSI parameter is
disseminated in each packet, and (ii) the M = N −
1 case where all directly estimated CSI parameters are
disseminated in each packet.

A. Transmitting Node Disseminates a Single CSI Esti-
mate

The following two theorems establish lower bounds
on the maximum and average staleness of valid protocols
for the case when a single CSI estimate is disseminated
in each packet.

Theorem 1 (Lower bound on maximum staleness for
M = 1). For M = 1, the maximum staleness Smax of
any valid protocol is lower bounded by Smax ≥ S∗max =

L(D + 1) = N(N−1)
2 (D + 1). Moreover, any protocol

which achieves this bound must be L-periodic.

Proof: Recall that disseminated estimates are al-
ways at least 1 packet old (i.e., have staleness ≥ P ).
Every one of the L channel gains must be indirectly
estimated by some nodes. Since it requires L pack-
ets to disseminate all L channel gains, and they each
have staleness at least P at the time of dissemination,
Smax ≥ S∗max = LP = L(D + 1).

To see that any protocol achieving this bound must
be L-periodic, assume that at time n = n0 we have
Smax[n0] = S∗max. This implies that the last L packets
must have each disseminated the L distinct channel
gains, each estimate having staleness P (i.e., the freshest

possible staleness of a disseminated estimate). To main-
tain maximum staleness Smax[n0 + 1] = S∗max at time
n0 + 1, the channel estimate which was disseminated at
time n0 −L (i.e., the stalest CSI) must be disseminated
next; otherwise, we would have Smax[n] = S∗max + P .
Continuing this argument at time n0 +2, we see that the
protocol repeats and has period L.

Theorem 2 (Lower bound on average staleness for
M = 1). For M = 1, the average staleness Savg of
any valid protocol is lower bounded by Savg ≥ S∗avg =
N3−3N2+8N−8

4N (D + 1).

Proof: Recall that disseminated estimates are al-
ways at least 1 packet old (i.e., have staleness ≥ P ).
When node i disseminates the (i, j) channel to all nodes,
the N − 1 other nodes refresh their direct estimates of
the channel between themselves and node i, yielding a
staleness of zero for those N−1 direct channel estimates.
These N − 1 other nodes also refresh their indirect
estimates of the disseminated (i, j) channel to have a
staleness of at least P . Node j prefers the fresher, direct
estimate during i’s transmission since it has staleness
zero; thus, after any packet transmission, only N − 2
of the estimates are refreshed due to dissemination. In
summary, any transmission in the network results in
N − 1 of the LN channel estimates being refreshed
to have staleness zero, and N − 2 of the LN channel
estimates being refreshed to have staleness at least P .

Consider just the L(N −2) indirect channel estimates
which must be updated through dissemination. Recall
that with M = 1, only a single CSI estimate can be
disseminated in each packet. Thus, at any given state,
there are N −2 of them with at least staleness P , N −2
of them with staleness 2P , . . . , and N − 2 of them with
staleness LP and so Savg,indirect ≥ (L+ 1)P/2.

From Lemma 2, the average staleness of the 2L
direct channel estimates which can be directly estimated
satisfies Savg,direct ≥ (N −1)P/2. Hence, the weighted
average gives us a bound on the average staleness as

Savg ≥
L(N − 2)Savg,indirect + 2LSavg,direct

LN

=
(N3 − 3N2 + 8N − 8)

4N
P.

To facilitate the development of deterministic CSI
protocols that achieve or approach these lower bounds
within a constant gap, we adopt the following definition
of an efficient protocol.

Definition 4 (Efficient protocol). An efficient determin-
istic protocol is a valid protocol that simultaneously
achieves maximum staleness S∗max + kmaxP , while also
achieving an average staleness of at most S∗avg +kavgP
for constants kmax, kavg and all N .
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While ideally we would employ protocols with
kmax = kavg = 0 that achieve the staleness lower
bounds with equality, such protocols do not exist for
all choices of N as we will see. In such cases, the best
we can do is to be within a constant that is independent
of N .

Since nodes only disseminate directly estimated chan-
nels, we can represent any valid protocol for M = 1 as
traveling along edges of the complete graph KN . That
is, traveling along the edge from vertex i to j represents
dissemination of the (i, j) channel estimate by node j.
The conditions above for a protocol to be valid can be
rewritten, respectively, in terms of a sequence of edge
traversals of KN :

1) Each vertex must be traveled to at least once.
2) Each edge of the graph must be traversed at least

once.
Since the problem of finding efficient deterministic pro-
tocols relies heavily on traversals of KN , it is convenient
to divide the efficient deterministic protocol design con-
struction into two cases: (1) N is odd, (2) N is even.

1) When N is Odd: To achieve the bound of Theorem
1, an approach suggested by the proof is to always
disseminate the freshest CSI. This is equivalent to stating
the edge activations in KN must be adjacent, so the
sequence is a walk. Over any sequence of L dissemi-
nations, an efficient protocol would not disseminate the
same channel estimate twice, which suggests we seek a
walk on KN that visits every edge exactly once. Such
a walk is called an Eulerian tour [42], and such tours
provide a method for constructing protocols that achieve
the bound of Theorem 1, as we will show in Theorem
3 below. Since Eulerian tours can be constructed quite
readily using, for example, Fleury’s algorithm [43], we
have an explicit construction for valid protocols that
achieve the maximum staleness lower bound of Theo-
rem 1.

Turning attention to the average staleness lower bound
in Theorem 2, we note that an arbitrary Eulerian tour
found by applying Fleury’s algorithm does not neces-
sarily result in a protocol with average staleness close
to the bound. In each L-period (corresponding to one
Eulerian tour), each of the N nodes transmits (N−1)/2
times. If, for example, a node’s (N−1)/2 transmissions
are all clustered at the beginning of the L-period, the
node will subsequently not transmit for a long period
of time. During that node’s period of silence, all other
nodes’ direct estimates to that silent node become quite
stale, thereby resulting in poor average staleness. Intu-
itively, average staleness is improved by finding Eulerian
tours that uniformly distribute every node’s transmissions
throughout the L-periodic transmission sequence. The
following explicit L-periodic protocol realizes this idea
through the use of the Lucas-Walecki construction [44],
[45] for odd N , which guarantees the L-periodic Eule-

rian tour on KN has the additional structure that every
node transmits exactly once in each block of N packets.

Protocol 1 (M = 1 and N odd).
Node transmission order follows an Eulerian tour

composed of (N − 1)/2 edge-disjoint Hamiltonian
cycles of KN . Let H0 be the length N zig-zag
Hamiltonian cycle

H0 =

{
1, N − 1, 2, N − 2, ..,

N − 1

2
,
N + 1

2
, N

}
and let σ be the permutation whose disjoint cycle
decomposition is

σ = (1, 2, . . . , N − 1)(N).

Let Hm = σm(H0) which forms a Hamiltonian
cycle decomposition of KN for m = 0, 1, . . . , (N−
3)/2.

Since the protocol repeats with period L, con-
sider only times 0 ≤ n ≤ L − 1. At time n, node
in disseminates its estimate of the (in, jn) channel.
Let jn = in−1 so node in always disseminates
the freshest CSI, i.e. an estimate of the channel
between itself and the last node that transmitted.
The transmitting node at each time n is given by

imN :mN+N−1 = σm(H0).

For example, if node in disseminates its estimate of the
(in, jn) channel at time n, the length L = 21 periodic
protocol for N = 7 is given by

i0:L−1 = 1, 6, 2, 5, 3, 4, 7 | 2, 1, 3, 6, 4, 5, 7 | 3, 2, 4, 1, 5, 6, 7
j0:L−1 = 7, 1, 6, 2, 5, 3, 4 | 7, 2, 1, 3, 6, 4, 5 | 7, 3, 2, 4, 1, 5, 6

where we note that each node transmits (N − 1)/2 = 3
times, and each node transmits once per N -block. The
efficiency of Protocol 1 is established below in Theorem
3.

2) When N is Even: Recall that a connected graph
admits an Eulerian tour if and only if every vertex has
even degree [42]. When N is even, all vertices in the
complete graph KN have odd degree, hence an Eulerian
tour does not exist and always disseminating the freshest
CSI is not possible. As such, the maximum and average
staleness bounds in Theorems 1 and 2 are not achievable
when N is even.

Nevertheless, an efficient protocol can be constructed
by permitting dissemination of CSI that was estimated
two packets ago. Specifically, for one period of an
L-periodic protocol, dissemination of “less-fresh” CSI
is only needed for N/2 of the L transmissions. To
formalize this notion on the graph, we observe that by
subtracting a 1-factor (corresponding to any N/2 edges
between distinct pairs of vertices) from KN , the degree
of each vertex of the resulting subgraph KN − I is
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even. Thus, similar to KN for odd N , the subgraph
KN − I for even N admits an Eulerian tour composed
of edge-disjoint Hamiltonian cycle decompositions and
L − N/2 channel estimates can be disseminated with
staleness P . The N/2 missing edges from the 1-factor
I , however, also need to be disseminated; inserting
them back into the sequence disrupts the Eulerian tour,
requiring dissemination of N/2 estimates with staleness
2P . An example subgraph KN − I with missing edges

1

2

3

5

6

4

1

2

3

5

6

4

KN − I I

Fig. 3. Partition of KN into KN − I and I for N = 6.

of the 1-factor is shown in Fig. 3 for N = 6, where one
of the two edge-distinct Hamiltonian cycles of KN − I
is indicated by the solid lines, and the other by dashed
lines.

Based on these ideas, we now give a formal descrip-
tion of an efficient protocol for the case where N is
even.

Protocol 2 (M = 1 and N even).
Step 1: Construct Eulerian tour of KN − I com-
posed of edge-disjoint Hamiltonian cycle decompo-
sitions.

Let H0 be the length N zig-zag Hamiltonian
cycle

H0 =

{
1, 2, 3, N, 4, N − 1, ..,

N

2
+ 3,

N

2
+ 1,

N

2
+ 2

}
and let σ be the permutation whose disjoint cycle
decomposition is

σ = (1)(2, . . . , N).

Let Hm = σm(H0) which forms a Hamilto-
nian cycle decomposition of KN − I for m =
0, 1, . . . , N/2− 2.

Construct an intermediate periodic protocol that
disseminates channel estimates corresponding to
edges of KN−I , and therefore has period L−N/2.
The sequence i′n is given by

i′mN :mN+N−1 = σm(H0)

where i′k(L−N/2):k(L−N/2)+L−N/2−1 =
i′0:L−N/2−1 for any k.

Step 2: Insert edges from 1-factor to complete KN .

For m = 0, 1, . . . , N/2− 2, the edges

(em, fm) =

(
N + 2− σ2m+3

(
N

2

)
, σ2m+3

(
N

2

))
and (N/2+1, 1) form a 1-factor and do not appear
in any of the Hamiltonian cycles from step 1. To
complete the graph KN , insert edges of the 1-
factor as follows. For the first Hamiltonian cycle
H0, insert two edges via

(i, j)0 = (i′, j′)0

(i, j)1 = (N/2 + 1, 1)

(i, j)2:N−2 = (i′, j′)1:N−3

(i, j)N−1 = (e0, f0)

(i, j)N :N+1 = (i′, j′)N−2:N−1

where node in disseminates its estimate of the
(in, jn) channel at time n. For m = 1, . . . , N/2−2,
insert one edge into each of the other Hamiltonian
cycles Hm via

(i, j)m(N+1)+1:m(N+1)+` = (i′, j′)mN :mN+`−1

(i, j)m(N+1)+`+1 = (em, fm)

(i, j)m(N+1)+`+2:m(N+1)+N+1 = (i′, j′)mN+`:mN+N−1

where ` = N − 2− 2m.

As an example, if node in disseminates its estimate of
the (in, jn) channel at time n, the length L = 15 periodic
protocol for N = 6 is given by

i0:L−1 = 1,4, 2, 3, 6,2, 4, 5 | 1, 3,5, 4, 2, 5, 6
j0:L−1 = 6,1, 1, 2, 3,6, 6, 4 | 5, 1,3, 3, 4, 2, 5

where the bold numbers indicate insertions, and we see
that the freshest CSI is disseminated except at times n =
2, 6, 11 where the staleness of disseminated estimates is
2P .

The following theorem establishes the efficiency of
Protocol 1 and Protocol 2.

Theorem 3 (Existence of Efficient Protocols for
M = 1). For M = 1 and any N ≥ 3, there exist efficient
protocols with maximum staleness Smax ≤ S∗max + P
and average staleness Savg ≤ S∗avg + 2P/3. Moreover,
Protocol 1 and Protocol 2 achieve these bounds for odd
and even N , respectively.

Proof: See Appendix B.
Figure 4 shows the achieved staleness for Protocol 2

at each time instant when N = 4 and D = 0.
We see that over one period of the protocol (i.e., for
6 ≤ n ≤ 11), the instantaneous maximum staleness is
equal to L in L−N/2 of the time periods, and is equal
to L+ 1 in N/2 of the time periods, thus achieving the
maximum staleness bound of Theorem 3 with equality.
Also, Theorem 2 gives S∗avg = 2.5, and we see that



1536-1276 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2715020, IEEE
Transactions on Wireless Communications

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, JANUARY 2017 9

n = 0
1 transmits

n = 1
3 transmits (1,3)

n = 2
2 transmits (1,2)

n = 3
4 transmits (2,4)

n = 4
3 transmits (2,3)

n = 5
4 transmits (3,4)

n = 6
1 transmits (1,4)

Smax[n] = 6

Savg[n] = 2.7917

n = 7
3 transmits (1,3)

Smax[n] = 7

Savg[n] = 2.9167

n = 8
2 transmits (1,2)

Smax[n] = 6

Savg[n] = 2.6667

n = 9
4 transmits (2,4)

Smax[n] = 7

Savg[n] = 2.6667

n = 10
3 transmits (2,3)

Smax[n] = 6

Savg[n] = 2.7917

n = 11
4 transmits (3,4)

Smax[n] = 6

Savg[n] = 3.0417

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2
2

2

2

2

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3
3

3
3

3

3

3

3

3
3

3

3

3

3

4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4

4

4

5

5

5

5
5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5
5

5

5

5

5

6

6

6

6

6

6

6

6

6 6

6

6
7

7
7

7

0
0

0

0

0
0

0

0

0

0

0
0

0

0

0

0

0
00

0

0

0

0
00

0

0

0

0

00
0

0

0
0

0

1 1

11

1

1

1

1

1 1

1 1

1

1

2

2

2

2

2

2

2

2

Fig. 4. Efficient CSI dissemination protocol for 4 node case. Numbers on edges indicate staleness of CSI estimates locally at each node; red
numbers indicate CSI estimates have been refreshed through direct estimation, blue numbers indicate CSI refreshed through dissemination, and
black numbers indicate no update to CSI since the last packet.

Savg = 1
L

∑11
n=6 Savg[n] = 2.8125 ≤ S∗avg + 2/3. Thus,

Fig. 4 shows the protocol is efficient.
Figure 5 shows a numerical example of the gap

between the achieved average staleness of the efficient
deterministic protocols with single CSI dissemination
(M = 1) and the lower bound on the average stale-
ness from Theorem 2. These results show the different
behavior of the efficient deterministic protocol when
N is odd or even. These results also demonstrate the
2P
3 = 2(D+1)

3 achievability of the efficient deterministic
protocols from Theorem 3 is conservative. In the results
shown in Figure 5, the actual gaps between the achieved
staleness and the lower bound appear to be better than
5(D+1)

16 . We conjecture the protocols from Theorem 3
are optimal in the sense that no other deterministic
protocol yields better average staleness, but this requires
additional combinatorial arguments beyond the scope of
this work.

B. Transmitting Node Disseminates All Directly Esti-
mated CSI

Now, we consider the other regime where in each
packet the transmitting node disseminates its entire table
of N−1 direct channel estimates. As before, we begin by
presenting lower bounds on the maximum and average
staleness.

Theorem 4 (Lower bound on maximum staleness for
M = N − 1). For M = N − 1, the maximum staleness
Smax of any valid protocol is lower bounded by S∗max =
(N − 1)(D +N − 1).

Proof: To arrive at this bound, we consider just

number of nodes (N)
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Fig. 5. Gap between the achieved average staleness of the efficient
deterministic protocols with single CSI dissemination (M = 1) and
the lower bound in Theorem 2.

the 2L estimates in the network that are estimated
directly, and we ignore the indirect estimates. From
Lemma 2 in Appendix A, it follows immediately that
Smax ≥ S∗max = (N − 1)P = (N − 1)(D+N − 1).

Theorem 5 (Lower bound on average staleness for
M = N − 1). For M = N − 1, the average stale-
ness Savg of any valid protocol is lower bounded by
S∗avg = 2N2−2N−1

3N (D +N − 1).

Proof: From Lemma 3, the (L − N + 1)N =
L(N − 2) indirect channel estimates which must be
updated through dissemination have average staleness at
least Savg,indirect ≥ (2N − 1)P/3. From Lemma 2, the
2L direct channel estimates have average staleness at
least Savg,direct ≥ (N − 1)P/2. Hence, the weighted
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average then gives us a bound on the average staleness
as

Savg =
L(N − 2)Savg,indirect + 2LSavg,direct

LN

≥ (2N2 − 2N − 1)

3N
P

In this case, the efficient protocol is straightforward.
There is no choice of which CSI to disseminate since
each node always disseminates its entire table of directly
estimated CSI. Once again, a periodic protocol achieves
the minimum staleness bound, though as opposed to the
M = 1 case where the period was L, the period is N in
this case of M = N − 1.

Protocol 3 (M = N − 1).
Node transmission order follows a round-robbin

schedule, and the protocol has period N . That is,
the transmitting node at time n is given by in = n+
1 for 0 ≤ n ≤ N − 1, and each node disseminates
its N − 1 direct estimates. Due to the periodicity,
it follows that ikN :kN+N−1 = i0:N−1 for any k.

As the following theorem shows, this N -periodic
protocol is efficient.

Theorem 6 (Existence of Efficient Protocols for
M = N − 1). For M = N − 1 and N ≥ 3,
there exists an efficient protocol with maximum staleness
Smax = S∗max and average staleness Savg = S∗avg .
Moreover, Protocol 3 achieves this bounds with equality
and is therefore an efficient protocol.

Proof: All nodes transmit in round-robbin fashion
so at any time n0, all N nodes have transmitted in the
last N packets. It follows immediately from Lemmas 2
and 3 that Smax = S∗max = (N − 1)P and

Savg =
L(N − 2)Savg,indirect + 2LSavg,direct

LN

=
2N2 − 2N − 1

3N
P

= S∗avg.

Since the protocol achieves both the lower bounds on
maximum and average staleness with equality, the de-
terministic round-robbin protocol is efficient for M =
N − 1.

C. Extensions to the Staleness Framework

While the staleness framework developed in this paper
is general, our analysis and protocols focus specifically
on the case of fully-connected wireless networks with
reciprocal channels, and is most applicable to small
networks where dissemination of O(N2) channel gains
is feasible. An interesting direction for future studies is to

consider partially-connected wireless networks, i.e., in-
complete (but connected) graphs. In this case, the amount
of CSI to track will be less than the fully-connected
scenario but some CSI may need to be disseminated
over multiple hops to provide global CSI awareness to
all nodes in the network, as we have shown in recent
results on ring networks [46]. Related to this is the
idea of encoding the disseminated CSI at higher rates,
which poses an interesting tradeoff due to two competing
effects: encoding at higher rates reduces transmission
time which leads to more frequent CSI updates, but
encoding at higher rates may reduce the connectivity of
the network, requiring multiple hops to achieve global
CSI. As such, the analysis of how changing the rate
effects the staleness would depend heavily on the fading
statistics and quality of channels between nodes.

The staleness framework developed in this paper as-
sumes a uniform staleness weighting such that the stal-
eness of each link is equally important in the maximum
and average staleness metrics developed in Section II.
In networks where the staleness of some links is more
important than others, we can modify our definitions of
maximum and average staleness to include non-negative
staleness weights w(k)

i,j , i.e.,

Smax = max
i,j,k,n≥n̄

w
(k)
i,j s

(k)
i,j [n] and Savg =

1

LN
E

∑
i,j,k

w
(k)
i,j s

(k)
i,j [n]

 .
The development of non-uniform staleness guarantees
and efficient protocols for the weighted staleness metrics
may be desirable when the channels have very differ-
ent coherence times. Such an extension with weighted
staleness metrics could also be used to model the fact
that some CSI may simply be more valuable than other
CSI for a given application. Further extensions to the
framework might analyze yet more complex scenarios
where the nodes themselves have differing, and possibly
time-varying CSI requirements and priorities, or where
trusted nodes are compromised and subsequently dissem-
inate malicious CSI.

IV. NUMERICAL EXAMPLES

This section provides a numerical example of the
achieved maximum and average staleness of the efficient
deterministic CSI dissemination protocols developed and
analyzed in Section III, and it compares the achieved
staleness with the random CSI dissemination protocols
considered in [38]. These examples verify the analytical
results and also allow for comparisons between the vari-
ous CSI dissemination protocols in terms of the achieved
maximum and average staleness. In addition, this section
considers use of an alternate “greedy” protocol to assess
how the staleness changes when the amount of CSI is
varied between 1 ≤ M ≤ N − 1. Finally, an example
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using the staleness bounds to assess the feasibility of
global CSI in practical wireless networks is provided.

A. Comparison of achieved staleness and lower bounds

Figure 6 plots the maximum and average staleness
of the efficient deterministic protocols developed in
Section III and the random CSI dissemination protocols
developed in [38] versus the packet data and overhead D
for N ∈ {5, 25}. The D = 0 case can be considered a
protocol with no data or overhead where each packet
is dedicated solely to disseminating CSI. These results
show that the single-CSI dissemination protocols tend be
more efficient only for very small values of D, especially
in the N = 25 case. Intuitively, when the amount of data
and overhead in each packet is large, it is more efficient
to disseminate M = N−1 channel states in each packet
since the additional staleness caused by disseminating
this CSI is relatively small.
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Fig. 6. Maximum and average staleness of efficient deterministic and
random CSI dissemination protocols versus packet data and overhead
D.

B. Staleness for intermediate choices of M

While the protocols presented in Section III analyze
the two extremes where M = 1 CSI parameter is dissem-
inated in each packet, and M = N − 1 CSI parameters
are disseminated in each packet, it is interesting to con-
sider the staleness performance for intermediate choices
of M . Derivation of bounds and efficient protocols for
arbitrary M is beyond the scope of the present work,
but here we present numerical results using a “greedy”
protocol that, while not necessarily efficient, generates
protocols for any choice of M . The greedy protocol oper-
ates by assuming, at each time instant, that an omniscient
genie decides which node to transmit and which M CSI
estimates should be disseminated. The genie chooses
the node and CSI that minimizes instantaneous average
staleness throughout the network. For N = 5 and two

choices of D, Fig. 7 shows the simulated staleness as a
function of M . Through experimentation, we have found
that the greedy protocol is very sensitive to initialization
of the staleness values throughout the network, so the
results are averaged over 1000 random initial conditions.
The points corresponding to the maximum and average
lower bounds for M = 1 and M = N − 1 are also
shown (i.e., the lower bounds from Theorems 1, 2, 4,
and 5), and it is apparent that the staleness of the greedy
protocol approaches these lower bounds for the chosen
parameters. Again, we observe the general trend that in
networks with small packet sizes, smaller values of M
are preferable; on the other hand, in networks with larger
packet sizes, larger values of M are preferable.
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Fig. 7. Maximum and average staleness of greedy CSI dissemination
protocol versus amount of CSI disseminated per packet M , for two
choices of D and N = 5.

C. Comparison of staleness with channel coherence time

Finally, we consider an example applying the derived
staleness bounds to a practical wireless setting. For
global CSI to be useful at all nodes, the maximum
staleness lower bound in seconds must be less than the
coherence time of the channel. Words can be converted
to seconds via

staleness in seconds = (staleness in words) · bcsi
Rb

where bcsi is the number of bits per CSI estimate (i.e.,
bits per word) and Rb is the bit rate at which CSI
estimates are transmitted. For a carrier frequency of fc
and an average relative speed of nodes equal to v, the re-
sulting Doppler spread is fD = vfc

c where c is the speed
of light, and the coherence time is Tc = 0.423

fD
= 0.423c

vfc
[47]. If bdata bits of data and overhead are transmitted
in each packet, and with each word being represented
by bcsi bits, there are D = bdata/bcsi words of data
plus overhead per packet. For the maximum staleness



1536-1276 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2715020, IEEE
Transactions on Wireless Communications

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, JANUARY 2017 12

lower bounds in Theorems 1 and 4 to be less than the
coherence time, we therefore require

N(N − 1)(bdata + bcsi)

2Rb
<

0.423c

vfc
for M = 1

(N − 1)[bdata + (N − 1)bcsi]

Rb
<

0.423c

vfc
for M = N − 1.

Consider mobile transmission of voice using LTE [48],
for example, with a data rate of Rb = 25 Mbps,
bdata = 1200 bits of data plus overhead per packet,
bcsi = 32 bits per CSI estimate, a cluster of N = 5 fully-
connected nodes, a carrier frequency of fc = 1900 MHz,
and M = N − 1 CSI estimates per packet. The bound
tells us, for example, that if the speed of mobiles exceeds
v > 310 m/s, global CSI dissemination is infeasible.
Similarly, fixing v = 100 m/s, the bounds tell us that
if the node cluster size exceeds N > 11, global CSI
dissemination is again infeasible. The derived bounds
can be used to conduct a similar feasibility analysis
for communication systems with vastly different system
parameters, such as 802.11 wireless local area networks.

D. Effect of imperfect packet reception on average stal-
eness

We consider the impact of dropped packets on the
average staleness for M = 1. Indirectly estimated CSI
acquired through dissemination requires decoding the
packet contents, though CSI acquired through direct
estimation can be performed without decoding the packet
contents. As such, we assume that only the CSI acquired
indirectly through dissemination is dropped with packet
error probability p, independent over all nodes. Thus, the
probability distribution of the number of disseminations
needed to successfully refresh an indirectly estimated
CSI parameter obeys a geometric distribution with mean

1
1−p . Averaging over time gives that the average stale-
ness of indirectly estimated CSI is E[Savg,indirect] =
LP/(1 − p) − P (L − 1)/2. Weighting this quantity by
the fraction of CSI that is indirectly estimated gives the
total effect on average staleness due to dropped packets
as

E[Savg] = S∗avg +

(
LPp

1− p

)(
N − 2

N

)
︸ ︷︷ ︸

staleness penalty
due to dropped packets

(3)

for M = 1, and where S∗avg is the average staleness
under the assumption of perfect packet reception. This
result is confirmed by simulation in Fig. 8, where in-
deed the simulated staleness penalty obeys the behavior
described in (3).
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Fig. 8. Comparison of average staleness as a function of D for various
packet error probabilities p, with M = 1, N = 5

E. Extension of framework to case of non-reciprocal
channels

An interesting extension of this framework concerns
global CSI estimation and tracking for wireless networks
with non-reciprocal channels, where the (i, j) channel
gain is not assumed equal to the (j, i) channel gain. In
such a case, the number of parameter estimates in the
network doubles, and it is reasonable to expect the max-
imum and average staleness to also double with respect
to the case of reciprocal channels. Indeed, the protocols
presented in this paper for M = 1 can be extended for
use with non-reciprocal channels by using the protocols
as they are here for the first phase, and then in the second
phase using a “reversed” version of the protocol where
the sequence of node transmissions arises by traversing
the Hamiltonian path in the opposite direction, which
has the effect of doubling the protocol schedule length,
and hence the staleness. The protocols for M = N − 1
need no modification, as all directly estimated CSI is
disseminated by each node; the staleness doubles in
this case as well with respect to the case of reciprocal
channels since each non-reciprocal CSI estimate is only
updated once in each N transmissions (rather than twice
for each reciprocal CSI estimate). As an example, the
protocol for N = 3 and M = 1 described in Table
II would become that shown in Table III. Simulations
with non-reciprocal channels for all of the cases treated
in Fig. 6 were repeated, and yielded an exact doubling
of maximum and average staleness, though we omit the
figure due to lack of space and for its similarity to Fig. 6.

V. CONCLUSION

This paper developed a novel framework for analyzing
the staleness of CSI, including staleness lower bounds,
achievable upper bounds, and efficient protocols for
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TABLE III
3-NODE DETERMINISTIC PROTOCOL FOR NON-RECIPROCAL

CHANNELS
time transmitting node disseminated channel

n = 0, 6, 12, . . . 1 (3,1)
n = 1, 7, 13, . . . 2 (1,2)
n = 2, 8, 14, . . . 3 (2,3)
n = 3, 9, 15, . . . 2 (3,2)
n = 4, 10, 16, . . . 1 (2,1)
n = 5, 11, 17, . . . 3 (1,3)

global channel state estimation and dissemination in
fully-connected wireless networks with packetized trans-
missions. The deterministic protocols developed in this
paper were shown to be efficient in the sense that they
minimize the maximum staleness across the network
and also achieve a lower bound on average staleness
to within a small, constant gap. The results provide
engineering guidelines on the feasibility of tracking
global CSI as a function of network size, the packet
size and composition, packet error rate, and channel
coherence time.

APPENDIX A
LEMMAS USED IN THEOREM PROOFS

Lemma 1. Disseminated CSI never replaces CSI that
can be directly estimated.

Proof: Consider node i’s estimate of the (i, j) chan-
nel, which is a channel gain that can be directly estimated
by node i. The only other node that can make a direct
estimate of this channel is node j. If node j disseminates
its estimate of the (i, j) channel, node i would discard
the indirect estimate from node j (which has non-zero
staleness), and would instead form a direct estimate
based on node j’s transmission since it would have
staleness zero. If a node other than i or j disseminates
the (i, j) channel, that node must have learned the CSI
indirectly from previous CSI dissemination by either
node i or node j, so such a transmission is effectively
re-disseminating old information. Hence, node i ignores
all disseminated estimates of the (i, j) channel since the
staleness of a node’s directly estimated CSI can never
be improved via other nodes’ disseminated estimates.

Lemma 2. If at time n = n0, all N nodes
have each transmitted once in the last N packets,
Smax,direct[n0] = (N − 1)P and Savg,direct[n0] =
(N − 1)P/2. Furthermore, if at time n = n0 one
or more of the N nodes have not transmitted in the
last N packets, Smax,direct[n0] > (N − 1)P and
Savg,direct[n0] > (N − 1)P/2.

Proof: From Lemma 1, we can ignore the effect of
dissemination on directly estimated CSI. Transmission of
a single packet generates N − 1 fresh, direct estimates
throughout the network. Thus, if the N nodes have
each transmitted in the last N packets, there are N − 1
estimates with staleness 0, N − 1 with staleness P ,
N − 1 with staleness 2P , . . . , and N − 1 with staleness

(N − 1)P . It then follows trivially that the maximum
staleness is (N − 1)P and the average is (N − 1)P/2.
If any node has not transmitted in the last N packets,
there must be at least one group of N−1 direct estimates
with staleness greater than (N−1)P , resulting in a larger
maximum and a larger average.

Lemma 3. Let M = N − 1. If at time n = n0, all N
nodes have each transmitted once in the last N packets,
Smax,indirect[n0] = (N − 1)P and Savg,indirect[n0] =
(2N − 1)P/3. Furthermore, if at time n = n0 one
or more of the N nodes have not transmitted in the
last N packets, Smax,indirect[n0] > (N − 1)P and
Savg,indirect[n0] > (2N − 1)P/3.

Proof: Assume without loss of generality that nodes
1, 2, . . . , N transmit at times n = n0 − N + 1, n0 −
N + 2, . . . , n0, respectively, so at time n = n0 each of
the N − 1 nodes have transmitted once in the previous
N − 1 packets. At time n = n0, node N ’s table of
N − 1 direct channel estimates has staleness P , 2P ,
. . . , (N − 1)P since these direct estimates were made
during the transmissions of each of the other (N − 1)
nodes. Recall that a single disseminated estimate is only
used by N − 2 receiving nodes since, from Lemma
1, nodes which can make direct estimates of a given
channel ignore disseminated estimates. Thus, node’s N
transmission at time n0 refreshes the indirect estimates
throughout the network so there are N − 2 indirect
estimates with staleness P , N−2 indirect estimates with
staleness 2P , . . . , N−2 indirect estimates with staleness
(N − 1)P .

Consider node i’s table of directly estimated CSI at
time n = n0 − N + i. Since node i’s direct estimates
of channels between itself and nodes i+ 1, i+ 2, . . . , N
will be overwritten by later, fresher direct estimates in
subsequent packets at times n0 −N + i+ 1 < n ≤ n0,
consider just the (i − 1) direct estimates between node
i and nodes 1, 2, . . . , i− 1 that will not be refreshed or
overwritten by time n = n0. When node i disseminates
its direct channel estimates at time n = n0 −N + i, its
transmission refreshes the indirect estimates throughout
the network so (of those that will not be overwritten)
there are N−2 indirect estimates with staleness P , N−2
indirect estimates with staleness 2P , . . . , N − 2 indirect
estimates with staleness (i − 1)P . By time n = n0,
these estimates are still present throughout the network
since no fresher estimates of these (i−1) channels have
been disseminated; however, they have grown staler by
(N − i) packets so there are N − 2 indirect estimates
with staleness (N − i + 1)P , N − 2 indirect estimates
with staleness (N−i+2)P , . . . , N−2 indirect estimates
with staleness (N − 1)P .

Summing for i over all N nodes, then, we see that at
time n = n0, the whole network has 1(N − 2) indirect
estimates with staleness 1P , 2(N −2) indirect estimates
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with staleness 2P , . . . , (N−1)(N−2) indirect estimates
with staleness (N − 1)P . The average staleness of these
L(N − 2) indirect estimates is then

1

L(N − 2)

N−1∑
k=1

k(N−2)kP =
P

L

N−1∑
k=1

k2 =
(2N − 1)P

3
.

If at least one node has transmitted more than once
during the last N transmissions so at least one node has
not transmitted in the last N transmission, then there will
be at least one channel estimate with staleness greater
than (N − 1)P . To see this, assume that node i does
not transmit in any of the most recent N packets. In
this case, node j’s estimate of the (i, j) channel will be
greater than (N−1)P for any j. In addition, with a single
stale direct estimate of the (i, j), the indirect estimates
of the (i, j) channel throughout the network will be yet
more stale, resulting in a larger average staleness.

APPENDIX B
PROOF OF THEOREM 3

Proof: Again, due to the lack of Eulerian tours
on KN when N is even, we have different protocols
for the case of N odd and even. First, we prove the
theorem for the case when N is odd, and then the case
of N even. In each case, we will prove achievability of
maximum staleness first, and then the achievability of
average staleness.

Achievable Maximum Staleness of Protocol 1 for odd N
First, note that an Eulerian tour on KN exists in this
case. Since an Eulerian tour is a walk, a node always
disseminates the direct estimate it formed during the
previous packet, which has staleness P . Since all edges
in an Eulerian tour are visited exactly once, all channel
gains are disseminated exactly once per tour, in L
packets. In addition, each vertex is visited (N − 1)/2
times in an Eulerian tour of KN , so each node transmits
(N − 1)/2 times, and therefore both conditions for
valid protocols are satisfied. After a sequence of L
transmissions corresponding to one Eulerian tour of KN ,
the stalest CSI in the network (having staleness LP )
will be indirect estimates of the channel corresponding
to the first edge traversed in the Eulerian tour. Since an
Eulerian tour starts and ends at the same vertex, the node
corresponding to the starting vertex has a fresh estimate
of the stalest channel, and it must be disseminated in the
next time slot to maintain minimum maximum staleness
LP . Thus, if the Eulerian tour repeats, the instantaneous
maximum staleness remains constant at Smax[n] = LP ,
and therefore Smax = S∗max.

Achievable Average Staleness of Protocol 1 for odd N
The sequence of transmitting nodes in Protocol 1 is
exactly the “zig-zag” Hamiltonian cycle decomposition

of KN from the Lucas-Walecki construction [44], [45],
and it is L-periodic since it is a repetitive Eulerian tour.
Consider just the L(N − 2) indirect channel estimates
which must be updated through dissemination. Since
the protocol corresponds to an Eulerian tour, at any
time n = n0 each of the L distinct channel gains
were disseminated in the last L packets. Since each
node always disseminates the freshest information, at
any time n = n0 there are N − 2 indirect estimates
with staleness P , N − 2 of them with staleness 2P ,
. . . , and N − 2 of them with staleness LP . Thus,
the average staleness of the indirectly estimated CSI is
always Savg,indirect[n] = (L+ 1)P/2.

Next, consider the 2L channel estimates which can
be directly estimated. Because the protocol consists of
Hamiltonian cycle decompositions, at every time n =
n0 that is a multiple of N , the last N packets were
all transmitted by distinct nodes. Thus, at times which
are a multiple of N , Lemma 2 applies, and the average
staleness of the directly estimated CSI is (N − 1)P/2.
However, for times that are not a multiple of N , the last
N packets cross a N -block boundary, and the average
staleness will be higher since the last N packets are not
necessarily transmitted by all N distinct nodes. However,
at time n = mN+k for appropriate integers m and 1 ≤
k ≤ N−1, the last k packets were transmitted by distinct
nodes. In the worst case, the previous k packets before
n = mN from the previous N -block were transmitted by
the same k nodes, which provides an upper bound on the
average staleness of the directly estimated CSI. Thus, the
average staleness of the k direct estimates made in the
current N -block is (k− 1)/2, and the average staleness
of the N − k direct estimates made during the previous
N -block is upper bounded by (2k+N+k−1)/2, giving

Savg,direct[mN + k] ≤
k k−1

2 + (N − k)N+3k−1
2

N
P

where the first term in the numerator represents the
weighted average staleness of the k direct estimates in
the current N -block, and the second term represents the
average staleness of the N − k direct estimates made
during the previous N -block. This expression achieves
its maximum when k = N/2, and results in average
staleness of the directly estimated CSI as

Savg,direct[n] ≤ 3N − 2

4
P (4)

for all n. Finally, the weighted average gives us an upper
bound on the average staleness of this protocol as

Savg =
L(N − 2)Savg,indirect + 2LSavg,direct

LN

≤ (N3 − 3N2 + 10N − 8)

4N
P

= S∗avg +
P

2
.
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Since the maximum staleness of Protocol 1 is equal
S∗max, and the average staleness is within a constant gap
of the lower bound S∗avg , the protocol is efficient for odd
N .

Achievable Maximum Staleness of Protocol 2 for even
N
The sequence i′n of transmitting nodes developed in step
1 of Protocol 2 is exactly the “zig-zag” Hamiltonian
cycle decomposition of KN −I from the Lucas-Walecki
construction [44], [45]. Thus, in addition to being an
Eulerian tour of KN − I , the construction guarantees
every node is represented exactly once in each block of
N in the sequence i′n.

Note that in step 2, the missing edges of the 1-factor
are exactly those given in [45]. Furthermore, the two
missing edges (N/2 + 1, 1) and (N/2 − 1, N/2 + 3)
inserted in the first Hamiltonian cycle at times n0 = 1
and n1 = N −1, respectively, obey the property in−1 =
jn = jn+1 for n = n0 or n = n1. This follows from
the definition of the zig-zag H0, which determines in−1

and jn+1 at n = n0 and n = n1. Insertion of these two
edges therefore results in dissemination of CSI that is 2P
packets old at times n0 +1 and n1 +1 since nodes in0+1

and in1+1 disseminate estimates formed at times n0 −
1 and n1 − 1, respectively. The disseminated estimates
at all other times in the first Hamiltonian cycle have
staleness P . Thus, insertion of the two missing edges in
the creation of (in, jn) extends the first N -block of i′n to
have length N+2, with N estimates being disseminated
with staleness P , and 2 estimates being disseminated
with staleness 2P .

Using similar arguments, insertion of the remaining
missing edges in subsequent Hamiltonian cycles at times
n = m(N + 1) + ` + 1 for m = 1, . . . , N/2 − 2
extends each of the remaining N -blocks of i′n to have
length N+1, with N estimates being disseminated with
staleness P , and 1 estimate being disseminated with stal-
eness 2P . Summarizing, the period-L protocol consists
of one block of N + 2 disseminated estimates followed
by N/2 − 2 blocks of N + 1 disseminated estimates.
Due to use of the Lucas-Walecki construction, each of
the N nodes transmits at least once in each block, with
2 nodes transmitting twice in the first block, and 1 node
transmitting twice in subsequent blocks. Furthermore,
the period L sequence disseminates L−N/2 estimates
with staleness P , and N/2 estimates with staleness 2P .
After L− 1 packets, a disseminated estimate with stale-
ness 2P will have staleness (L− 1)P + 2P = LP +P ,
so Smax = S∗max + P .

Achievable Average Staleness of Protocol 2 for even N
There are L − N/2 indirect estimates with average
staleness (L + 1)P/2 (i.e., those which are always dis-
seminated with staleness P ), and N/2 indirect estimates

with average staleness (L+1)P/2+P (those which are
disseminated with staleness 2P ), giving

Savg,indirect =
(L− N

2 ) (L+1)P
2 + N

2 ( (L+1)P
2 + P )

L

=
(L+ 1)P

2
+
N

2L
P.

Next, consider the 2L channel estimates which can be
directly estimated. The instantaneous average staleness
is largest when the most recent N packets cross a Hamil-
tonian cycle block boundary so the last N transmissions
are not all from distinct nodes. Using arguments identical
to those in arriving at equation (4), the average staleness
of the directly estimated CSI is upper bounded by

Savg,direct ≤
3N − 2

4
P.

Finally, the weighted average gives us an upper bound
on the average staleness of this protocol as

Savg =
L(N − 2)Savg,indirect + 2LSavg,direct

LN

≤ (N3 − 4N2 + 13N − 14)

4(N − 1)
P

= S∗avg +
N2 +N − 4

2N2 − 2N
P

≤ S∗avg +
2P

3

for N ≥ 4. Since the maximum and average staleness of
Protocol 2 is within a constant gap of the bounds S∗max

and S∗avg, the protocol is efficient for even N .
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