Implementation and Testing of a Low-Overhead
Network Synchronization Protocol

Daniel R. Kowalski, Timothy M. Christman, Andrew G. Klein
Department of Engineering and Design, Western Washington University
Bellingham, WA 98225
{kowalsd2, chris70, andy.klein} @ wwu.edu

Mitchell W.S. Overdick, Joseph E. Canfield
PACCAR Technical Center
Mt. Vernon, WA 98273
{mitchell.overdick, joe.canfield } @ paccar.com

Abstract—This paper describes a radio frequency implementa-
tion of precise synchronization between two software defined
radios without the use of timestamps. Contemporary synchro-
nization protocols mostly rely on exchanging digital timestamps
between nodes. The finite precision of these digital timestamps
limits the degree of synchronization achievable, and the addi-
tional overhead of sending timestamps reduces data through-
put. Previous experimental work demonstrates that synchro-
nization information can instead be conveyed at the physical
layer through pairwise message exchanges between nodes. By
forgoing the use of digital timestamps the problem of finite
precision error can be avoided and the accuracy of synchroniza-
tion is only limited by fundamental bounds of delay estimation.
Our implementation was successful in synchronizing two Ettus
N210 Software Defined Radios to within a standard deviation of
8.18 ns.

TABLE OF CONTENTS

1. INTRODUCTION .t etteeeeeessnsssssssssssscescascnsss 1
2. TIMESTAMP-FREE SYNCHRONIZATION PROTOCOL?2
3. DELAY ESTIMATION FOR BANDPASS RF SIGNALS .2
4. PASSBAND RADIO-FREQUENCY IMPLEMENTATION 3
5. EXPERIMENTAL RESULTS ..ctiuiieiieeiecaecancnnans 5
6. DISCUSSION ..viuiinienrensenssnssssssssscascascnnons 6
7. CONCLUSION .tuiuteteenacacesessasncosossasacasnnes 7
ACKNOWLEDGMENTS ..vtieteateatantescsscascascasans 7
REFERENCES 1 .teieietereeeacacesesaacncosescacacannnes 7
BIOGRAPHY ..iiiuiiineineeeeeneesascanscansccsascnnsans 8

1. INTRODUCTION

Recently, there has been great interest in techniques such as
distributed MIMO and beamforming [1]. These techniques
permit multiple devices to coordinate their communication
and pool their antenna resources, thereby forming a virtual
antenna array. Such distributed transmission techniques
require precise synchronization between devices to permit
carrier phase alignment. The past few decades have seen the
development of a number of synchronization protocols such
as Network Time Protocol [2], the Global Positioning System
[3], and several lightweight synchronization protocols for use
in resource constrained sensor networks [4]. A common

978-1-5386-2014-4/18/$31.00 (©2018 IEEE

D. Richard Brown III
Department of ECE, Worcester Polytechnic Inst.
Worcester, MA 01609
drb@wpi.edu

theme with existing protocols is that they rely on exchanging
digital timestamps between devices. Finite precision error
resulting from digital time stamps inherently limits the accu-
racy of such synchronization protocols. Furthermore, precise
synchronization requires frequent exchanging of timing in-
formation. Exchanging digital timestamps at these speeds can
present a prohibitive amount of overhead to network channels
between devices. To eliminate the significant issues of con-
ventional synchronization for this application, a timestamp-
free synchronization protocol was proposed that performs
synchronization implicitly at the physical layer through pair-
wise message exchanges [5]. Theoretical analysis has shown
that this leads to precise, accurate clock synchronization
between two devices, and results in lighter load on a network
when compared with conventional timestamp-based synchro-
nization approaches.

In the past, this protocol has been used to synchronize various
DSP platforms with mean errors well below the period of
the carrier frequency. Previously, an implementation of this
protocol at acoustic frequencies using a Texas Instruments
TMS320C6713 DSK [6], and a subsequent implementation
at radio frequency (RF) using an Ettus E310 software de-
fined radio [7] were tested. While these experiments were
encouraging, the former did not operate at radio frequencies,
while the latter Ettus E310 implementation was only able to
achieve 70 ns synchronization due to practical limitations in
the architecture of the software defined radio (SDR). That is,
the delay estimation had to be performed on the baseband
signal after downconversion. It is well known from the
Cramer-Rao lower bound that the achievable accuracy of
delay estimators on such signals are limited when compared
to performing delay-estimation on sampled RF signals [8].

This paper describes a real-time implementation of the
timestamp-free network synchronization protocol imple-
mented on an Ettus N210 software defined radio, in which
the delay estimator operates directly on the sampled RF
signal. This leads to synchronization performance that is
significantly improved with respect to the previous RF im-
plementation of this protocol in Overdick et al. [7]. Experi-
mental results presented in this paper show that the protocol
can synchronize two radios to within 8.18 ns of precision
while accounting for the presence of propagation delay. This
experimental study serves to demonstrate the improved syn-
chronization performance of the timestamp-free protocol in a
software radio architecture that employs RF passband signals
rather than baseband signals in performing delay estimation.

slave node master node

timebase timebase
slave node
clock ticks
tle) - master node
clock ticks
Tt 0
Js
DS S I -
i i2
—t— o
@
) 4 4
ts =t+ Ag [k‘} t

Figure 1. Timestamp-free synchronization bidirectional
signal exchange.

2. TIMESTAMP-FREE SYNCHRONIZATION
PROTOCOL

Figure 1 shows the interactions between a slave node and
the master node using the timestamp-free synchronization
protocol. The time-varying clock offset at the slave node with
respect to the master node is denoted as A[k] and local time
at the slave node is denoted as

ts =t + Ag[K]

where ¢ is the reference time corresponding to the local clock
at the master node. The timestamp-free synchronization
protocol begins with the slave node transmitting a signal to
the master node at arbitrary local time ¢(*). The signal arrives
at the master node at local time

10 =t — Ag[k] 4 7

where A;k] is the current clock offset of the slave node with
respect to the master node and 7, is the propagation delay
between the slave node and the master node. The master
node then transmits a signal back to the slave node at time
t) where ¢ is selected such that

) 4 ¢

5 (mod Tp) =0 (1

where Tj is master node clock tick period. Note that, unlike
the usual sender/receiver synchronization protocol, e.g. [9],
no timestamps are exchanged between the nodes. Implicit
timing information is embedded in the master node’s re-
sponse to the slave node by selecting ¢© so that a local
clock tick the master node is centered between ¢ and
t©. Assuming a reciprocal channel and transmitter/receiver
chain, the slave node receives the reply signal from the master
node at local time

1D = 9 1 AJk] + 7y

The slave node can then estimate its clock tick offset with
respect to the master node by calculating

. (@) 4 (@
5y = (Lt ®)
2
To

where the notation (z)r, corresponds to wrapping z to the
interval [—Ty/2, Ty /2). The offset estimate in (2) can be used
directly for immediate clock offset correction at the slave
node or as an input to a filtering algorithm to correct both
clock offsets and drifts.

3. DELAY ESTIMATION FOR BANDPASS RF
SIGNALS

This section provides an overview of the delay estimator
used in the timestamp-free synchronization protocol. Pre-
vious experimental work that reported on the accuracy of
the timestamp-free protocol on RF signals used an Ettus
E310 embedded software radio [7]. Due to the front-end
architecture of the E310 software radio, estimation on a
baseband signal was required and made use of an approach
based on quadratic interpolation. Because the Ettus N210
radios employed in this paper permit direct sampling of an
RF signal, we assume the synchronization pulse is a bandpass
signal of the form

s(t) = cos(Qot)u(t)
where u(t) is a bandlimited signal such that U (€2) = 0 for all

|| > Q. The synchronization pulse in discrete time can be
expressed as

s[l] = [cos(Qot)u(t)],—er,
= cos(wof)ull]

where wyg = Q¢Ts is the normalized carrier frequency in
radians/sample.

The discrete-time observation with unknown delay 7 can be
expressed as

yll] = [cos(Qo(t — m))ult — 7)],—pr,
cos(wo(l — 7fs))u(lTs — 1)

for/ =0,...,L—1 where L is the number of samples in the
observation. Standard cross-correlation techniques with the
template waveform s[¢] can be used to generate a quantized

delay estimate ¢ € Z. The accuracy of this quantized delay
estimate is limited, however, by the sampling rate of the delay
estimator.

To refine the delay estimate, we define

si[€, €] = cos(wo (€ — £))ull —)
sqll, €] = sin(wo (£ — £))u[l —]
for{=0,...,L — 1 where 7 is the quantized delay estimate.

We can then compute

K-1

all) = 3 ylt)sile.

£=0

=

-1

(cos(wo(% —Tfs — @)) + cos(wo(Tfs — é)))
¢
X u(lTy — T)ull — 0]

1
2

I
=)

1cos(wo(TfS —0)) Z_ u(lTs — T)u[l — ¢
=0

Q

2

where the approximation results from the fact that
S cos(wo(20 — Tfs — D)u(lTs — TIull —] =~ 0.
Similarly, we can calculate

K-1

2ll) = yllsyle 4]
=0
1 K-—1 R
~ 5 sin n(wo(7fs — 1)) ZufoT — 1
=0

We can then compute

= tan~! [: 3
t (w) o

~ tan- mevﬂ—@>
cos(wo (7S 1)

= wo(Tfs —)

The refined delay estimate can then be computed as

= <é+ 9) T,
wo

where 6 is calculated according to (3). Note that ¢ represents
the integer, sample-level delay, which in the sequel we term
the coarse estimate; meanwhile, wio represents the fractional-
sample delay, so we term it the fine estimate. Again, the
coarse estimate can be be computed with standard cross-
correlation techniques.

4. PASSBAND RADIO-FREQUENCY
IMPLEMENTATION

To demonstrate the superiority of passband over baseband
signals with respect to delay estimation, the timestamp-
free synchronization protocol was implemented with radio-
frequency signals on Ettus N210 SDRs with wired connec-
tions between devices. Unlike the Ettus E310 SDRs which
perform analog downconversion before sampling, the Ettus
N210 SDRs are able to sample the incoming RF signal
directly, which, according to the Cramer-Rao lower bound
[8], leads to increased synchronization accuracy. To allow
sufficient time for computation, a relatively low sampling
frequency of 250kHz was selected for this implementation.
The USRP devices operate in block fashion, where each time

a receive command is issued, a block of samples is returned
to the calling routine. Similarly, transmission also works in
block fashion, where transmissions are scheduled in advance
by passing blocks of data with a transmit command. In
addition, the desired time of transmission is provided to the
transmit command, and needs to be sufficiently far in the
future to prevent sampling under-runs. In this implementa-
tion, we used the default block size of 1000 samples and a
transmission delay of fifteen blocks.

Two Ettus USRP N210s were used to implement the protocol:
one as the master node, a second as the slave node. In
addition, a third N210 was used as a measurement device
to determine the resulting clock offset. Each of the nodes’
software was implemented in C++ using the USRP Hardware
Driver (UHD) provided by Ettus, and the USRP’s were
connected to host computers with Core 17-6700k processors.
As the N210’s are part of Ettus’ “networked” series of SDRs,
the signal processing and logic needed to implement the
synchronization protocol were run in real-time on the host
computers, and not on the N210 SDR’s themselves. The re-
sult of this is processing latency that is significantly larger as
compared to the previously considered stand-alone embedded
E310 platform which performs all computation on the device
itself [7].

Master Node

RX Daughter TX Daughter
Board Board

Measurement

Device
RX-A RX-B TX-A TXB

initiating pulsekﬂ)
from slave master 5 py A

clock RX
Daughter
adJusted} RX-B Board
slave
response clock
from master
TXA TXB RXA RXB WES
Daughter
Board
TX Daughter RX Daughter TX-B
Board Board
Slave Node

Figure 2. Diagram of the connections between the N210s
used for the master node, slave node, and measurement
device. Each N210 has an independent local oscillator.

A diagram of the timestamp-free synchronization test setup
is shown in Fig. 2. Each of the three USRPs utilized two
Ettus LF daughterboards which provide access to the 14-bit
ADC and 16-bit DAC on the N210s. One daughter-board
was set to receive incoming signals while the other was used
to transmit. Each daughterboard contains two channels; for
instance, the LFTX transmitting daughterboard has channels
TX-A and TX-B, while the LFRX receiving daughterboard
has channels RX-A and RX-B. The basic operation is that
the slave node transmits an initial pulse which is received
by the master node. Once the master node detects that it

has received a pulse, it transmits a time-reversed copy of the
received pulse which is received by the slave node. In order to
externally measure the accuracy of synchronization achieved,
each node also transmits a clock signal on its remaining TX
channel. The master node transmits its clock signal as driven
by its internal oscillator while the slave node adjusts its clock
in attempt to transmit simultaneously with the master node.
In addition to sending the pulses to the measurement node,
the pulses are displayed on the oscilloscope for qualitative
evaluation and debugging purposes.

Signals used in this implementation were modulated sinc
pulses as described in Section 3, with a carrier frequency
equivalent to half of the Nyquist sampling rate of the master
and slave nodes, with baseband bandwidth chosen to utilize
a large proportion of the available spectrum while avoiding
aliasing. For simplicity the same signals were used for
exchanges between the master and slave nodes, and for clock
pulses sent to the measurement device. Figure 3 shows a 4 ms
recording of typical synchronized clock pulses transmitted by
the slave and master nodes.

1600

Slave

1400 Master |

1200 - 1

1000 - 1

800 - 1

600 - 1

amplitude

400 B

OWN\/

0 0.5 1 1.5 2 25 3 35 4
time (ms)

Figure 3. Example recording of clock pulses sent by master
and slave nodes.

Figure 4. Experimental test setup.

A state-diagram of the master node is shown in Fig. 5. The
TX-B and RX-A signal paths at the master node facilitate all
communication of sync pulses to and from the slave node
while TX-B facilitates the clock output. Each signal path
on the master node is controlled synchronously within the
software, but is displayed on the diagram asynchronously for

simplicity. Cross-correlation is used to detect the presence of
a pulse. When the magnitude of the cross-correlation breaks
a predefined threshold, the master node schedules the time
reversed transmission of the received waveform to the slave
node. The transmissions at the master node are scheduled 4
blocks in advance to accommodate the latency between the
host computer and the radio.

Receive Chain Transmit Chain

sync channel (A) sync channel (B) clock channel (A)

1
1
1
1
i
1
Y] Yy Y
get next i wait for send
received i sync clock
block ! pulse pulse
i L |
1
search i
for sync !
pulse i
:
1
]
i
lay flipped
pulse { | " received
found? +
pulse
Y L |
flip
received
pulse
L |

Figure 5. Flow diagram of master node operation.

A state-diagram of the slave node is shown in Fig. 6. TX-
A and RX-B facilitate all communication of sync pulses to
and from the master node and TX-B outputs the synchro-
nized clock output. Because the slave node adjusts its clock
based on the master’s timed response, the implementation
complexity of the slave node is significantly higher than the
master node. When searching, the slave node performs
cross-correlation on every receive block in order to locate the
sample at which the peak of the sinc pulse was received. As
with the master node, the slave node computes the magnitude
of the cross-correlation when searching for a pulse to confirm
that the threshold is surpassed. When the detection threshold
is broken and a pulse is detected the slave node sets a flag
for calculation, and saves both the position of the peak in the
most recent block of received samples as well as the complex
value resulting from the cross-correlation. The calculation
step uses the peak position as the coarse delay estimate, and
the fine delay estimator in equation (3) uses the peak cross-
correlation value to calculate the fractional delay.

The resulting total delay (coarse and fine) is used at the slave
node to calculate an estimate of the master node’s clock offset
and drift using a smoothing filter. The slave node maintains
estimates of the master node’s clock offset and drift that are
updated every block, and are subsequently used to generate a
new delayed pulse template which is transmitted on channel
TX-B of the slave node. When a new delay offset observation
is available at the slave node, the slave node’s prediction of
the master clock offset and drift is refined. The smoothing

Receive Chain Transmit Chain

sync channel (B) } sync channel (A) clock channel (B)

1
1
i
1
N Y] Yy]
get next i send send
received i sync clock
block ! pulse pulse
i L
1
search i predict
block for H master
pulse H clock pulse
i
[}
1
1
1
pulse E new
found? A ! offset? N
Y i Y
1
i
calculate ! update
offset from H clock
master i estimate
1
L L
]
1

Figure 6. Flow diagram of slave node operation.

filter makes use of the standard two-state (offset and drift)
clock model [10], and is implemented as a pseudo-Kalman
filter with a static Kalman gain; this results in a performance
penalty with respect to a true Kalman filter; however, the
static gain also yields a reduction in complexity by avoiding
computation of the covariance matrix that updates the gains
to appropriate magnitudes as the process approaches steady-
state. Instead, an optimized set of gains are experimentally
chosen using the approach described in [6] and ample time is
given for the system to approach steady-state.

The slave node’s predictions of the clock offset and drift
estimates at time & are denoted Ay 1 and Dy;_1, and are
initially set to zero and one respectively. In each block, the
pseudo-Kalman prediction is computed via

App—1| _ |1 T |Ar—1jk—1
|:Dk:k1:| N [0 1} |:Dk1|k1:| @

where 7' is the time-step, equal to 1000-samples in our case.
We denote z[k| as the new clock offset observation. When
new observations arrive, we compute the innovations g[k]
which correspond to the difference between the predicted
clock offset from the Kalman filter and the new clock offset
observation at the time of the new clock offset observation, or

glk] = z[k] — Agjp—1-
This innovation process is subsequently multiplied by the
static Kalman filter gains K and K, and used to adjust the

slave node’s prediction of the master node’s clock offset and
drift via the update equation

Api] _ [A1 Ky -

5. EXPERIMENTAL RESULTS

This section summarizes our experimental results in imple-
menting the timestamp-free synchronization protocol using
bandpass RF signals. First, we investigate the N210’s ability
to estimate offsets between signals by synthesizing clock sig-
nals with known offsets, and comparing these known offsets
with the measurement device’s estimate. Second, we test the
N210 when measuring two signals from the same source,
isolating the measurement integrity from the transmitter’s
induced error. Third, we report on the process of calibrating
the pseudo-Kalman filter used to refine the output of the
delay estimator. Finally, we report on synchronization data
collected. The clock pulses sent out by the master and slave
nodes were recorded by the measurement device while the
offsets between these signals were calculated after runtime in
MATLAB.

Due to constraints mentioned in the discussion section below,
the master and slave nodes were not able to operate at a rate
higher than 250 kilo-samples per second without running out
of time to complete each operation before the next block. The
measurement device was able to operate at 5 mega-samples
per second because processing of the data recorded by the
measurement device was not done in real-time, but instead
was conducted in MATLAB after recording each session.
Clock pulses were sent from each node to the measurement
device in 1000 sample blocks (equivalent to 4 ms in duration)
back-to-back. Synchronization signals exchanged between
nodes were sent at a period of 15 blocks (60 ms) to allow
enough time to compute cross-correlation, and to allow for
transmission delays between nodes.

Characterizing the Precision of the Transmission and Mea-
surement Device

In order to validate the results derived from sampled data it
is imperative to know the precision and accuracy between
the transmission and measurement device. To accomplish
this a single N210 was configured to send clock pulses on
both of its TX channels, but with an adjustable, intentional
offset between the signals. The measurement device recorded
these signals and offsets between pulses were calculated in
MATLAB. These calculated offsets were compared to the
true offsets as described by the test. Signals were transmitted
with delay offsets ranging from +2 us in increments of 400
ns, corresponding to 0.5 sample periods at an increment
of 0.1 samples. Signals were transmitted at each offset 250
times each session, and results were averaged over 5 sessions.
Figure 7 shows a plot of the error statistics of a run of this
test. The standard deviation of the error over all offsets from
40.5 fractional samples was found to be 5.97 ns. This was
a limiting factor in our experimentation as the coarseness of
this measurement determined the minimum delay offset the
receiver node was able to accurately detect.

Characterizing the Precision of Received Pulses with a 'T-
Junction’

Following a similar model of the precision test, a radio was
configured to send simultaneous pulses to the device under
test (DUT) along a T-Junction connector. This way, the
transmission is duplicated along two wires, effectively trans-
mitting two synchronized pulses and eliminating potential
error introduced by the transmission device. The error from

estimation error (ns)

10 I I I I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

true offset (fractional samples)

Figure 7. Statistics showing measurement device accuracy

each measurement device (labeled A,B, and C) is isolated and
quantified for each radio with this process. The results of this
experiment are reported in Table 1.

DUT mean[g[k]] std[g[k]]
A -0.51 ns 8.54 ns
B 0.55 ns 7.16 ns
C -0.82 ns 6.77 ns

Table 1. Summary of T-Junction precision results

Selection of Pseudo-Kalman Filter Gains

As described earlier in Section 4, and by equations (4) and
(5), we implemented a simplified, pseudo-Kalman filter to
smooth and correct for measurement error in delay offset
estimates. Due to the use of a reduced-complexity pseudo-
Kalman filter without an adaptive Kalman filter gain, it was
necessary to determine static filter gains which provided the
best smoothing performance and minimized prediction error.
The statistics of prediction errors calculated by the slave
node during runtime can serve as an indicator of performance
in absence of ground truth. To take advantage of this we
configured the slave node to record delays between sent and
received signals calculated during runtime. We then used
MATLAB post-processing to apply pseudo-Kalman filters
with different gains and simulate the resulting prediction error
statistics as if the data had been filtered in real time. By doing
this we were able to determine which filtering coefficients
minimized the resulting prediction error. Filtering coeffi-
cients were chosen to minimize error over the last minute of
a 5 minute recording, allowing the filter to take advantage of
prediction error memory accrued during the beginning of the
session.

Synchronization Accuracy Test

To evaluate the effectiveness of the timestamp-free synchro-
nization protocol we implemented the procedure described
in the implementation section above. To control for process
parameter variation across devices, the accuracy of synchro-
nization was tested with each SDR configured to operate as
each role in the protocol. A total of 6 tests were conducted
with each of the three different SDRs serving alternately as

the measurement device, master node, or slave node. During
each test the master and slave nodes ran the protocol for 3
minutes prior to recording to allow the nodes to synchronize.
The measurement device then recorded two minutes of clock
signals (about 30,000 pulses) sent from each node, and this
recording was used to evaluate the accuracy of synchroniza-
tion between the node. Prediction error statistics and mas-
ter/slave clock pulses were recorded in each test. The results
of these tests are summarized in Table 2. The mean standard
deviation across all configurations was 13.2 ns. In the next
section, we will discuss the implication and limitations of
these results.

M/S mean[y[k]] std[g[k]]
A/B 4.66 ns 8.18 ns
B/A -3.85ns 8.41 ns
C/A 2.72 ns 16.3 ns
A/C 1.77 ns 13.4 ns
B/C -6.95 ns 159 ns
C/B -3.76 ns 16.7 ns

Table 2. Summary of clock pulse synchronization results

6. DISCUSSION

This work represents a significant improvement with respect
to the previous RF implementation of the protocol on Ettus
E310 SDRs [7]. Results indicate a worst-case synchroniza-
tion error with a standard-deviation of 16.7 ns, corresponding
to about 0.1% of the period of the carrier frequency. It is
worth mentioning that the inaccuracy of our measurement
device has been shown to be comparable to the degree of
synchronization achieved. Without the ability to measure de-
lay offsets between signals to a finer resolution, our reported
results will continue to be dominated by the measurement
error in our estimation device. There were several other key
factors that limited the degree of synchronization, including
network latency, computational complexity, and error com-
pounded from finite-precision effects, all of which we now
explore in more detail.

In our implementation the data rate of the receiver is limited
by the processing delay between the radio and the computer.
In addition to this, due to the nature of the USRPs, all trans-
missions must be scheduled in advance. Accounting for the
clock drift that occurs from the time when the transmission
is scheduled to the time when it actually transmits is simple,
but the need to accommodate this additional latency does add
potential error to the system.

Additionally, the complexity of the computation, and re-
quirement to operate in real-time limit the possible sampling
rate of the USRP N210s. By far the most computationally
intensive operation in the protocol is the repeated cross-
correlations (i.e. receive filtering) that is performed at both the
master and slave nodes. If cross-correlation does not finish
executing before the next block of samples is ready, then
samples are lost and the device reports underruns. This limits
the degree of synchronization achievable as lower sampling
frequencies require lower bandwidth signals which limit the
degree of delay estimation accuracy as given by the Cramer-
Rao Lower Bound [8].

One more item that negatively impacted synchronization
performance was the sensitivity of the arctangent-based fine
delay estimator in (3) when fractional delays approached a
half sample. Specifically, we observed that small errors from
finite precision effects sourced from the ADC created small
errors in the cross-correlation, which subsequently accumu-
lated to larger errors in the fine delay estimator.

7. CONCLUSION

This work demonstrates the synchronization accuracy and
implementation challenges of implementing timestamp-free
synchronization protocol at RF using sampled passband sig-
nals instead of modulated baseband signals. An implementa-
tion of the protocol using such signals is presented along with
with experimental results and analysis. Experimental results
show that the protocol is able to achieve synchronization
to within a tenth of a percent of the period of the carrier
frequency over 4 ms prediction intervals.

Future work could improve the accuracy of the timestamp-
free synchronization protocol by addressing issues mentioned
in Section 6. Specifically, the sampling rate of our devices
is currently bottlenecked by the time it takes the CPU to
compute cross-correlation between template and received
waveforms. This latency could be reduced by offloading com-
putation from the CPU of the host computer to the GPU using
NVIDIA’s CUDA API. Alternatively, when the development
of Ettus’” RFNoC technology is sufficiently mature, much of
the computation (i.e. the cross-correlation) can be offloaded
to the FPGA on the Ettus radios. Future work could also
extend this implementation to operate in a wireless setting
with multipath and additional noise, or to work with more
than two synchronizing nodes. In a fully wireless, multiple-
node scenario, one could investigate use of the timestamp-
free network synchronization protocol in combination with
consensus-based techniques [11] for operation in a distributed
setting without the need for a centralized master/slave ap-
proach.

All source code for this experiment is available at —
https://github.com/agkleinl/
tsfreesync—n210

ACKNOWLEDGMENTS

This work was supported by a Research Experience for Un-
dergraduates (REU) Supplement to National Science Foun-
dation award CCF-1319458.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

R. D. Preuss and D. R. Brown III, “Two-way synchro-
nization for coordinated multicell retrodirective down-
link beamforming,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 11, pp. 5415-5427, Nov 2011.

D.L. Mills, “Internet time synchronization: the network
time protocol,” IEEE Trans. Commun., vol. 39, no. 10,
pp. 1482-1493, Oct. 1991.

W. Lewandowski, J. Azoubib, and W.J. Klepczynski,
“GPS: primary tool for time transfer,” Proceedings of
the IEEE, vol. 87, no. 1, pp. 163-172, Jan 1999.

F. Sivrikaya and B. Yener, “Time synchronization in
sensor networks: a survey,” IEEE Netw., vol. 18, no. 4,
pp. 45-50, Jul.—Aug. 2004.

D Richard Brown and Andrew G Klein, ‘“Precise
timestamp-free network synchronization,” in Informa-
tion Sciences and Systems (CISS), 2013 47th Annual
Conference on. IEEE, 2013, pp. 1-6.

M. Li, S. Gvozdenovic, A. Ryan, R. David, D. R.
Brown, and A. G. Klein, “A real-time implementation
of precise timestamp-free network synchronization,” in
2015 49th Asilomar Conference on Signals, Systems and
Computers, Nov 2015, pp. 1214-1218.

M. Overdick, J. Canfield, A. G. Klein, and D. R. Brown,
“A software-define radio implementation of timestamp-
free netwrok synchronization,” in IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP),
Mar. 2017, pp. 1193-1197.

A. Weiss and E. Weinstein, “Fundamental limitations
in passive time delay estimation—Part I: Narrow-band
systems,” Acoustics, Speech and Signal Processing,
IEEFE Transactions on, vol. 31, no. 2, pp. 472 — 486,
April 1983.

S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-
sync protocol for sensor networks,” in Proceedings
ACM SenSys 2003. ACM New York, NY, USA, Nov.
2003, pp. 138-149.

Lorenzo Galleani, “A tutorial on the two-state model of
the atomic clock noise,” Metrologia, vol. 45, no. 6, pp.
S175, 2008.

D Richard Brown, Andrew G Klein, and Rui Wang,
“Monotonic mean-squared convergence conditions for
random pairwise consensus synchronization in wireless
networks,” IEEE Transactions on Signal Processing,
vol. 63, no. 4, pp. 988—-1000, Feb. 2015.

BIOGRAPHY

Daniel R. Kowalski is currently pursu-
ing a B.S. in electrical engineering from
WWU and expects to graduate in June
2018. His current research activities
include working with software-defined
radios, and clock synchronization. He
wishes to continue his studies in Embed-
ded and Cyberphysical systems in appli-
cation of loT sensor networks.

Timothy M. Christman is currently pur-
suing a B.S. in electrical engineering
from WWU and expects to graduate in
June 2018. His current research ac-
tivities include software-defined radios,
synchronization, and fault line detection
in power systems. He hopes to study
or work with applications in machine

Joseph E. Canfield works as an elec-
trical hardware validation engineer at
the PACCAR Technical Center in Mount
Vernon, WA. His research interests in-
clude radio communications and analog
audio technology.

D. Richard Brown III received the B.S.
and M.S. degrees from the University of
Connecticut in 1992 and 1996, respec-
tively, and the Ph.D. degree from Cornell
University in 2000, all in electrical engi-
neering. From 1992 to 1997, he was with
General Electric Electrical Distribution
and Control. He was a Faculty Member
) with the Worcester Polytechnic Institute,
Worcester MA, USA, in 2000. He was a Visiting Associate
Professor with Princeton University from 2007 to 2008. Since
2016, he has been with the Computing and Communication
Foundations Division, National Science Foundation, as a
Program Director.

learning in the future.

Andrew G. Klein received the B.S.
degree from Cornell University, Ithaca,
NY, USA, the M.S. degree from the
University of California, Berkeley, CA,
USA, and the Ph.D. degree from Cornell
University, all in electrical engineering.
Previously, he was an Assistant Profes-
sor with the Worcester Polytechnic In-
stitute, Worcester, MA, USA, from 2007
to 2014, and he was a Post-Doctoral Researcher with Su-
plec/LSS, Paris, France, from 2006 to 2007. He joined the
Department of Engineering and Design, Western Washington
University, Bellingham, WA, USA, in 2014, where he is
currently an Associate Professor.

Mitchell W.S. Overdick received his
B.S. degree in Electrical Engineering at
WWU in 2017, and was a member of
the ASPECT Lab. Currently, he works
as an embedded systems validation en-
gineer at PACCAR in Mount Vernon,
WA. His research interests include Em-
bedded Systems, Signal Processing, Ma-

hine Learning, and Automotive.

