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Abstract— We consider the problem of multicasting a common
message signal from a distributed array of wireless transceivers
by beamforming to a set of beam targets, while simultane-
ously protecting a set of null targets by nullforming to them.
We describe a distributed algorithm in which each transmitter
iteratively adapts its complex transmit weight using common
aggregate feedback messages broadcast by the targets, and the
local knowledge of only its own channel gains to the targets.
This knowledge can be obtained using reciprocity without any
explicit feedback. The algorithm minimizes the mean square
error between the complex signal amplitudes at the targets and
their desired values. We prove convergence of the algorithm,
present geometric interpretations, characterize initializations that
lead to minimum total transmit power, and prescribe designs
for such initializations. We show that the convergence speed
is nondecreasing in the number of transmitters N if a step
size parameter is kept constant. For Rayleigh fading channels,
as N goes to infinity: 1) convergence can be made arbitrarily
fast and 2) beams and nulls can be achieved with vanishing
total transmit power even with noise, both with probability one.
These results add up to some remarkable scalability properties:
the feedback overhead does not grow with the number of
transmitters, and with high probability, the algorithm can be
configured to converge arbitrarily fast and use vanishingly small
total transmit power.

Index Terms— Cooperative communication, distributed
beamforming, distributed nullforming, interference management,
local channel knowledge, scalability, virtual antenna arrays.
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I. INTRODUCTION

WE CONSIDER the distributed joint beamforming and
nullforming (JBNF) problem shown in Fig. 1, where N

single antenna transmitters must broadcast a common message
signal by forming beams towards each of M1 single antenna
receivers (beam targets), while simultaneously forming nulls
at another set of M − M1 receivers (null targets). Thus, the
transmitters form a virtual antenna array and choose phases
and amplitudes to shape the array’s pattern such that beams
and nulls are created at desired locations. By simultaneously
transmitting beams and nulls, coherent combining gains can
be achieved toward intended receivers while protecting unin-
tended receivers. Some illustrative examples of applications
where this capability would be useful are:

- Electronic Warfare. A transmit array broadcasts strong
jamming signals [2] that disable an enemy’s communica-
tion infrastructure, while shielding friendly cooperating
stations. While enemy nodes are of course hostile, the
friendly nodes can cooperate in this process to steer nulls
to themselves thus shielding them from the jamming
transmission.

- Cognitive radio. A transmit array acts as a secondary
user of licensed spectrum seeking to communicate with a
set of secondary receivers (beam targets) without causing
interference at primary receivers (null targets). While this
application does require the cooperation of the primary
receiver with the secondary transmitters to steer nulls, the
cooperation is of a simple kind very similar to methods
considered in previous literature [3].

Other possible applications include wireless sensor networks
where sensor nodes use beamforming to efficiently transmit
observations to data collection nodes and cellular networks
where Base Stations form a transmit array and coordinate
their transmissions to avoid cochannel interference [4]. The
common feature of these applications is the need for interfer-
ence cancellation at specific locations, an objective at the very
core of the JBNF problem. More generally, joint beam and
nullforming may be viewed a fundamental building block for
increased spatial spectrum reuse [9], and towards achieving
MIMO spatial multiplexing gains [10] with distributed arrays.
Specifically, a distributed array can send multiple streams
of data simultaneously to different receivers without these
streams interfering with each other by running multiple JBNF
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Fig. 1. Problem of joint beam and null-forming using a distributed array.

algorithms in parallel each pointing beams to one receiver
while driving nulls to the others.

A. Contributions

We cast the JBNF objective as one of selecting the complex
transmit weights of each transmitter to attain specified com-
plex amplitudes that modulate the common message at the
beam targets, and formulate it as an unconstrained optimiza-
tion problem to minimize the mean square error between the
achieved and desired modulating amplitudes at the receivers.
A gradient descent minimization of this objective leads to a
distributed, iterative algorithm with attractive scalability and
robustness properties, a detailed analysis of which is the main
focus of this paper. In this algorithm, each receiver broadcasts
to all transmitters a common feedback message consisting
of a single complex number representing the amplitude of
the aggregate (total) baseband received signal in the previous
iteration. The fact that this feedback is common to all the trans-
mitters, rather than individualized, ensures scalability. Each
transmitter adjusts its own complex weight (the magnitude and
phase of its RF transmission) using only the feedback from
the receivers and the knowledge of its own complex channel
gains to each receiver.

While there is a rich literature on the analysis of
gradient descent for quadratic cost functions in the adap-
tive control [29]–[36] and signal processing [38]–[40] lit-
erature, our rigorous analysis goes well beyond known
results. These include a complete characterization of ini-
tializations that achieve power efficient solutions, scalabil-
ity with respect to N , and almost sure asymptotic energy
efficiency as N → ∞. These results, are summarized as
follows:

(a) Characterizing limit points: The JBNF has an entire
affine subspace H of global minima as the optimization
is underconstrained because there are more transmitters
than receivers. Such a situation is very common in
adaptive control and is often linked to the lack of persis-
tent excitation (pe) [30]–[32]. Barring an analysis in a
low dimensional case in [41], the literature only shows
convergence to H without pinpointing the limit point
further. We are able to show (Theorem 1) that, in the
noise-free setting, our algorithm converges to the projec-
tion of the initial iterate on H. With noise, convergence
is to this same point in the mean with bounded variance
(Theorem 2). Demonstration of bounded steady state
variance is a novelty in the adaptive systems literature

that addresses similar underconstrained problems
(see (c) below).

(b) Power efficiency of the limit point: We characterize
conditions under which the limit point corresponds to
the solution with minimum transmit power: specifically,
the initial iterate of the gradient descent algorithm must
lie in the range space of a matrix comprising the
complex channel gains. We prescribe practical methods
for obtaining such an initialization.

(c) The absence of drift due to noise: If without noise an
adaptive algorithm converges to an affine subspace like
H rather than to an isolated point, then the possibility
arises that noise may cause the adaptations to drift along
H [42], [45], [46]. Such drift can cause unbounded
residual variance. In adaptive control, this causes serious
problems like bursting [43] and instability, and leakage
is used to combat it [34], [44]. In the JBNF problem,such
drift represents wasted transmit power. However, we
show that our algorithm avoids this problem entirely,
as noise has no effect along H.

(d) Scalability: For a given set of beam and null targets, if
we keep a step size parameter of the algorithm fixed,
then the convergence rate of our algorithm increases
with the number of transmitters N . Since each receiver
sends a fixed amount of feedback in each iteration,
this implies that the total feedback overhead of our
algorithm does not grow with N , if we use reciprocity
to obtain the additional local channel knowledge [17].
This is a significant improvement over methods that
require global channel information where the number of
channel coefficients to be learned grows proportionally
with N .

(e) Asymptotic scalability and power efficiency: For i.i.d.
Rayleigh fading channels as N → ∞ and a fixed
number of receivers, even stronger scalability properties
can be established: with probability one, the conver-
gence speed can be made arbitrarily fast. Further, if the
algorithm is properly initialized, then with probability
one the iterates converge in the mean to zero with zero
error covariance. This implies that the total transmit
power across all transmitters becomes vanishingly small
(by virtue of coherent combining at the beam targets).

This latter fact has one important implication. An alternative
formulation of the JBNF problem is: minimize the net transmit
power, while achieving desired power levels (rather than spe-
cific complex amplitudes) at the beam targets. Conceptually,
this non-convex problem allows the implicit selection of the
phases of the target complex amplitudes by the optimization
process and may lead to a more power efficient solution than
our quadratic formulation. Our results show that our algorithm
matches the non-convex alternative for large N almost surely.

B. Background and Related Work

Special cases of the JBNF problem have been considered
in the recent literature, notably beamforming alone, or null-
forming alone, from a transmit array to a single receiver.
In distributed beamforming, the coherence gain is known
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to be robust to moderate errors in channel estimation [16].
In contrast, nullforming [18], [19] requires that the signals
from all the transmitters cancel each other precisely at the
receiver, making nullforming highly sensitive to errors, [19],
and JBNF a much more challenging problem. The literature
on the multicast problem [26]–[28] considers the nonconvex
problem of minimizing the total transmit power required by
an array to form only beams (no nulls) with a specified SNR
at a number of receivers. Further, [26] considers a setting
with more receivers than transmitters, whereas we consider the
opposite scenario where a large transmit array communciates
with a small number of receivers. Nullforming using global
channel knowledge is studied in [18] and [19].

An iterative algorithm for nullforming to a single receiver
is presented in [20] which, like our algorithm, also requires
knowledge at each transmitter only of its own complex channel
gain to the receiver in addition to common feedback from
the receiver. The algorithm of [20] uses phase-only adaptation
yielding a non-convex optimization. By allowing amplitude
and phase adaptation and by targeting received complex ampli-
tudes rather than power, we are able to consider a much
simpler quadratic optimization framework while generalizing
to multiple beam and null targets.

Interference avoidance techniques based on implicitly
learning the nullspace to multiple receivers are studied
in [3] and [4]. These probe the MIMO channel with different
precoding vectors and observe indirect measures of the SINR
at the users to which the nulls are steered to determine a
nullforming precoding vector.

Our iterative, aggregate feedback based approach to JBNF
is novel in conception and solution. Previous JBNF type work
relies on a non-iterative, one-shot approach, assumes full CSI
and calculates the weights directly from the full channel
matrix [8]. A preliminary conference version of this paper
is [1].

II. FORMULATION OF THE JBNF PROBLEM

A. The Broad Problem, Approach and System Architecture

We consider a distributed array of N transmitters and M
receivers. Receivers, labeled 1, · · · , M1 are beam targets, and
the rest labeled M1 + 1 to M are null targets. In the k-th
time slot all transmitters broadcast after precoding, a common
complex baseband signal mk . At the null targets the received
signal must be zero. At the j -th beam target the received
baseband signal must be mkb j , for specified complex b j �= 0.
Knowing b j , the beam target can recover the transmitted mes-
sage form mkb j . Thus the common message mk is multicast
to the beam targets, while protecting the null targets. Our goal
is to design a distributed iterative algorithm that achieves this
objective asymptotically in time.

To this end at the k-th time slot or iteration the i -th trans-
mitter selects a complex transmit weight x∗

i [k], and transmits
the precoded message signal x∗

i [k]mk . Assume the aggregate
complex baseband received signal at the j -th receiver in this
time slot is r j [k]mk . The goal is to iteratively drive r j [k] to b j

at the beam targets and to zero at the null targets. To achieve
this goal, at the beginning of time slot k+1, the i -th transmitter

Fig. 2. Description of transmission in time-slot k.

adjusts xi [·] to iteratively minimize the quadratic cost function:

|mk |2
⎧
⎨

⎩

M1∑

j=1

∣
∣r j [k] − b j

∣
∣2 +

M∑

j=M1+1

∣
∣r j [k]∣∣2

⎫
⎬

⎭
. (1)

The minimization of this cost function is equivalent to achiev-
ing r j [k] = b j at the j -th beam target and r j [k] = 0 at
the j -th null target, thereby achieving our stated multicasting
objective. There are two novel aspects in our approach to this
minimization.

1) Aggregate Feedback: At the end of time slot k, the
receivers broadcast back in a time interlaced fashion the
conjugate of a sample of the aggregate received baseband
signal m∗

ks j [k] = (
mkr j [k])∗. Thus in each time slot the j -th

receiver broadcasts this single complex number. The transmit-
ters use this feedback to adjust the transmit weights at the next
time slot k + 1. We call the samples m∗

ks j [k] the aggregate
feedback from the j -th receiver. In our theoretical analysis
we assume these are of infinite precision. In our simulations
in Section V, we represent the real and imaginary parts as
double-precision floating point numbers; this requires 128 bits
to encode one complex number, which represents a negli-
gible fraction of the payload sizes used in most modern
packet wireless networks e.g. WiFi. While we defer a detailed
analysis of the effects of quantized feedback to future work,
our preliminary numerical studies suggest that the feedback
can be encoded with substantially reduced precision without
performance loss.

The underlying architecture is depicted in Figure 2, where
the k-th time slot, is itself subdivided into M + 1 subslots.
The long slot at the beginning represents the actual multicast
transmission from the array. The receivers take turns in the
remaining M shorter time slots to send their aggregate feed-
back information to the array nodes. At the end of each time
slot, the nodes update their precoding gains in the manner
described in the sequel.

2) Distributed Updates: Adjustments of the precoding
gains xi [k] are effected through the distributed gradient
descent minimization of (1). Specifically, the i -th transmitter
adjusts xi [k], using the aggregate feedback samples m∗

ks j [k]
broadcast by the receivers, and local channel information
i.e. the knowledge of its own channel gains to the M receivers.
Unlike say [8] it does not need the channel gains of the other
transmitters. Item (III) below describes how this can be done,
though the acquisition of this information is beyond the scope
of this paper.

We now elaborate on some implicit assumptions.
(I) Time-slotting. We assume a synchronous time-slotted

network with the time-division multiplexed schedule of
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transmissions shown in Fig. 2. This can be achieved using
standard network synchronization protocols such as [22].
In addition, the transmit nodes require timing synchronization
accurate enough to guarantee that at any time instant all the
array nodes are transmitting the same message symbols; this
requires timing errors to be much smaller than a symbol
duration.

(II) Slowly varying phase offsets. We assume that channel
gains and oscillator offsets are roughly constant over several
iterations to allow the JBNF algorithm to track any channel
variations. With time-slots of duration ≈ 50 ms, this requires
that the channels and offsets are roughly constant over several
seconds. This can be assured by using standard filtering tech-
niques [7] that dynamically track Doppler and clock dynamics.

(III) Local channel state information. We assume that
each transmitter knows its own complex channel gains to
each of the receivers. Means of obtaining this information
is not the subject of this paper. However, we do observe
that one particularly appealing way of acquiring this local
channel knowledge is for each transmitter to observe incoming
transmissions from the receivers (e.g., the packets carrying
the global aggregate feedback) and then use channel reci-
procity. Detailed algorithms to obtain local channel knowl-
edge using reciprocity have been reported in our recent
work [17].

B. Technical Problem Statement

Let H = [h1 h2 . . . hM ] be the N × M channel matrix
whose i j -th entry hi j is the complex channel gain from the i -th
transmitter to the j -th receiver, and h j be the j -th column
of H , corresponding to the channel vector to receiver j . Define
x = [x1, x2, . . . , xN ]T as the N × 1 vector of the transmit
precoding weights. Thus, the noiseless complex baseband
signal received at the j th receiver at the k-th slot is r j [k] =
mk

(
x H h j

)
.

As |mk|2 is common to each summand in (1), without
loss of generality, we set mk ≡ 1; i.e. the total complex
baseband signal seen by receiver j in time slot k is r j [k] =
x H [k]h j . The complex number s j [k] = r∗

j [k] = hH
j x[k] is

broadcast by receiver j to all the transmitters. Recall that these
samples s j [k] constitute the common aggregate feedback used
by each transmitter to implement the JBNF algorithm given
in Section II-C, in a distributed fashion.

The vector of feedback signals broadcast by all of the
receivers in time slot k is

s[k] = [
s1[k] · · · sM [k]]T = H H x[k] + w[k] (2)

where w[k] = [w1[k], . . . , wM [k]]T ∼ CN
(
0, σ 2

w I
)
,

∀k represents complex Gaussian noise assumed to be i.i.d.
across receivers and time slots.

We wish to adapt x[k] in a distributed fashion so that
x H [k]h j are driven towards specified nonzero values b j for
beam targets 1 ≤ j ≤ M1, and towards zero for null targets
M1 + 1 ≤ j ≤ M . Call b j = 0 for all j ∈ {M1 + 1, · · · , M},
and b = [b1, . . . , bM ]T . Then, (1) is just ‖s[k] − b‖2 =
∥
∥H H x[k] − b

∥
∥2

.

To accommodate noise the JBNF problem can be recast as
find x to minimize the quadratic cost function

Jw(x) = Ew

[
‖s − b‖2

]
= Ew

[∥
∥
∥H H x + w − b

∥
∥
∥

2
]

=
∥
∥
∥H H x − b

∥
∥
∥

2 + Mσ 2
w. (3)

The minimization of Jw is equivalent to that of

J (x) = ‖H H x − b‖2. (4)

Section II-C shows how this minimization can be achieved in
a scalable, distributed fashion.

We contrast our approach both to that of [26], which has
only beam tragets, and no null targets, and to traditional
beamforming, to expose another novelty of our approach. Tra-
ditional beamforming as in [26], simply imposes a minimum
power constraint at a beam target. Such an approach leads
to nonconvex optimization problems. While |b j | implicitly
specifies the desired beam power at the j -th beam target,
by specifying the phase of the desired b j rather than just
its magnitude, we have over-constrained the problem. This,
however, leads to a key advantage: the resulting cost in (4)
is convex with all its associated advantages. In addition, as
discussed in Section III-A, and verified by simulations in
Section V, the loss of optimality in setting target phases to
arbitrary values vanishes as the number of cooperating nodes
increases.

We would also like to note that the objective function in our
formulation is the aggregate Mean Squared Error (MSE) which
represents the sum of squared deviations of the achieved signal
power level (RSS) at each receiver from the desired value.
Zero aggregate MSE would mean all individual MSEs are
zero and QoS at each individual receiver is deterministically
guaranteed. We will show that our algorithm achieves this
in the absence of noise. In the presence of noise, while a
deterministic QoS guarantee at each individual receiver is no
longer possible, very good statistical guarantees can still be
obtained. For example, consider a 10 node array with one
beam and one null target with noise power at the receivers
as −40 dB compared to the desired signal level of 0 dB
at the beam target. Our results in Section V show that our
algorithm reduces the aggregate MSE to close to the noise
floor i.e. −40 dB, which serves as an upper bound for the
individual MSEs at both receivers. This means that at the
null target, the actual received power from the array fluctuates
close to the noise floor which effectively makes the signal
indistinguishable from noise. At the beam target, the received
signal fluctuates around the desired power level of 0 dB
with a variance of −40 dB. Assuming the fluctuations are
normally distributed, with greater than 99% probability, the
received power at the beam target is in the range of −0.2 dB
to 0.2 dB. Thus at the beam target, with 99% probability,
the received signal is strong enough to achieve a SNR level
between 39.8 dB and 40.2 dB, and similar guarantees apply
at every individual receiver in all JBNF problems.
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C. A Distributed Algorithm

Using (2), the gradient of J (x) with respect to x can be
written as

∇ J H(x) =
(

H(H H x − b)
)H = (H(s − b))H .

Thus, the gradient descent minimization of J (x) is for a
suitably small step size μ > 0

x[k + 1] = x[k] − μ ∇ J(x)|x=x[k]
= x[k] − μH(s[k] − b). (5)

This is similar to the LMS algorithm which too is a gradient
descent algorithm. The key difference is that for LMS the
role of H is played by a time varying regression vector. The
adaptation (5) for transmitter i can be written as

xi [k + 1] = xi [k] − μ

M∑

j=1

hi j
(
s j [k] − b j

)
. (6)

Thus to adapt its weight at slot k+1, transmitter i only requires
from each receiver j the aggregate feedback sample s j [k],
i.e. the total received baseband sample at receiver j , and
knowledge of its own channel gains to the receivers hi j , ∀ j .
In particular, transmitter i does not need the channel gains of
other transmitters hmj , m �= i .

III. ANALYTICAL CHARACTERIZATION

In this section, we discuss the geometric structure of the
problem and investigate the convergence properties of the
iterative algorithm (5). Section III-A provides the geometrical
perspective, focusing on the power efficient solution i.e. the
choice of transmit precoding weights x that satisfies the JBNF
constraints with the minimum total transmit power.

Section III-B analyzes convergence in the noiseless case.
As J (x) is convex, and in the absence of noise (5) is an exact
gradient descent, the convergence of x[k] follows trivially.
However, in this case there is an affine subspace H (see (9))
of minimizing solutions. Precise characterization of the limit
point is not in general available in the literature. Theorem 1
precisely characterizes the limit point as being the projection
of x[0] on H. This is used to provide a design prescription
that makes this limit point power efficient.

Section III-C is on the effect of noise. Theorem 2 shows
that the limit point of the mean of the iterates is identical to
those in Theorem 1. We also provide a clean expression for the
limiting error covariance. We note in subsequent discussions
that similar expressions for the error covariance for gradient
descent laws like LMS make simplifying assumptions that
we are able to avoid. As importantly, even though there is a
nontrivial affine subspace H on which J (x) is minimized the
residual noise covariance is still bounded. This does not occur
without an additional leakage term in algorithms like LMS
in applications that have affine subspaces of minimizing
solutions. To study the issues of scalability, we discuss in
Section III-D convergence rates and their relation to μ.

Since we are interested in scaling to a large number of
transmitters N , we focus on the regime N > M (distributed
array size larger than the number of receivers), and indeed,

Fig. 3. Geometric interpretations of the power efficient solution.

on N 
 M . With high probability, therefore, the N × 1
channels {h j , 1 ≤ j ≤ M} are linearly independent. For most
of our analysis, we make the latter assumption, stated formally
below.

Assumption 1: The N × M channel matrix H has full
column rank.

This assumption on the tall matrix H implies that the M×M
correlation matrix H H H is full rank and positive definite.
We denote its ordered eigenvalues by λ1 ≥ λ2 . . . ≥ λM > 0.

A. Geometric Interpretation of Optimum Solution

Under Assumption 1, with R(H H ) denoting the range space
of H H , one has b ∈ R(H H ), which guarantees the existence
of x such that (4) is zeroed out:

H H x = b. (7)

Since this is an underdetermined system in the typical regimes
of interest (N > M), there exists an entire affine sub-
space of vectors satisfying (7), from which we would like
to choose the power efficient solution, xe = arg minx∈H ‖x‖
with H = {

x ∈ CN
∣
∣ H H x = b

}
.

Under Assumption 1, the M×M matrix H H H is invertible,
and the unique power efficient solution is given by

xe = H
(

H H H
)−1

b = Ha. (8)

Observe that the power efficient solution xe must lie in the
signal space S = R(H) spanned by the columns h1, · · · , hM

of H . Fig.3-(a) illustrates this geometric interpretation of xe
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We can now completely characterize the affine subspace H
of solutions as

H = {x : x − xe ∈ S⊥} (9)

where S⊥ = N (H H ) is the null space of H H [49]. To see
this, note that for any x ∈ H, H H (x − xe) = b− b = 0. Thus,
the affine subspace of solutions to (7) is the translation of the
“undesired” subspace S⊥ by the power efficient solution xe (or
indeed, by any solution x of (7)). We will characterize how the
particular solution in this affine subspace that the iteration (5)
converges to depends on the initial condition. Before that, we
provide an alternative geometric characterization of the power
efficient solution xe, working within the signal space S.

1) Alternative Characterization of Power Efficient Solution:
This approach treats the beam and null targets separately.
Since hH

i x = 0 for i = M1 + 1, . . . , M , we must have x
orthogonal to the subspace Sn spanned by hM1+1, . . . hM .
For j = 1, . . . , M1, let h̃ j = P⊥

Sn
h j denote the projection

of beam target vector h j orthogonal to this subspace Sn .
We can therefore write the beam target equations as hH

j x =
h̃

H
j x = b j , j = 1 . . . M1. This can be written in vector

form as

H̃
H
beam x = bbeam (10)

where H̃beam is an N ×M1 matrix with columns h̃1, . . . , h̃M1 ,
and bbeam = [b1, . . . , bM1]T corresponds to the complex
conjugates of the desired complex amplitudes at the beam
targets.

Reasoning as before, the minimum norm solution lies
in R (H̃

H
beam), and can be written as xe = H̃beam abeam,opt

with

abeam,opt =
(

H̃
H
beam H̃beam

)−1
bbeam

where we have used the fact that h̃1, . . . , h̃M1 are linearly
independent under Assumption 1. Fig. 3-(b) illustrates this
alternative geometric interpretation of xe for an example case
of two beam targets. It shows the projections of the beam
target vectors, h1 and h2, orthogonal to the subspace Sn , as
h̃1 and h̃2, and how the power efficient solution xe is a linear
combination of h̃1 and h̃2.

Remark: As long as Assumption 1 holds, a solution exists
for any choice of target complex amplitudes bbeam . The
minimum transmit power, corresponding to the minimum norm
solution xe, is

PT X = x H
e xe = bH

beam

(
H̃

H
beam H̃beam

)−1
bbeam

This depends on the target complex amplitudes bbeam , hence
in principle, we could choose these complex amplitudes to
further optimize the value of the minimum transmit power.
Fixing ||bbeam ||, the minimum possible value is attained by
choosing bbeam along the eigenvector corresponding to the

minimum eigenvalue of
(

H̃
H
beam H̃beam

)−1
. However, such a

choice of bbeam might not be admissible, because we may
wish to constrain the magnitudes of the entries of bbeam

to some values based on the desired SNR at each beam

location, and hence may only have control on the phases
of the entries. Furthermore, the resulting possible reduction
in transmit power is upper-bounded by the condition number
of H̃beam which in the regime N 
 M is likely to be minor
since we expect the eigenvalue spread of H̃

H
beam H̃beam (and

hence that of its inverse) to be small. We explore this issue
further in Section V with numerical simulations (see Figure 7
and associated discussion), and generally focus on the fixed,
arbitrary choice bbeam = 1 for the rest of the paper.

B. Convergence in Noiseless Regime

Behavior of the updates (5) in the noiseless case is provided
in Theorem 1 below. A few features are instructive. First
observe that, while it is well known that convergence must
occur to the affine subspace H, existing analyses of such
algorithms fail to characterize the the precise limit point x∞
on H. In contrast this theorem proves that this limit point is
in fact the projection of the intial iterate x[0] on H. Design
implications of this fact is described after the theorem.

The second fact that impacts subsequent noise analy-
sis is as follows. Consider the error vector defined
as �[k] .= x[k] − x∞. It is shown in the proof that this vector
evolves according to:

�[k + 1] = �[k] − μH H H �[k] =
(

I − μH H H
)

�[k]
(11)

Observe as H is tall, the transition matrix
(

I − μH H H
)

has eigenvalues at 1, representing modes that are orthonormal
to H, and do not decay. To facilitate the convergence analysis,
the theorem in fact proves that that the N ×1 vector �[k] lies
in the signal subspace, and can therefore be expressed in terms
of a lower dimensional M × 1 vector δ[k] as

�[k] = Hδ[k] (12)

This vector on the other hand evolves as

Hδ[k + 1] =
(

I N − μH H H
)

Hδ[k]
= H

(
I M − μH H H

)
δ[k]

where we put subscripts on the identity matrices to specify
their dimension. As H has full column rank, this becomes

δ[k + 1] =
(

I M − μH H H
)

δ[k] (13)

and the de facto transition matrix I M − μH H H does not
have eigenvalues at 1. Note (13) reflects movement along the
signal subspace. We explain later why this reduced state space
has important implications to the convergence analysis in the
presence of noise.

Theorem 1: Consider (5) under (2) and Assumption 1. With
w[k] ≡ 0, and

|1 − μλi | < 1, i ∈ {1, · · · , M}. (14)

the weight sequence exponentially converges to x∞:

x∞ = limk→∞ x[k] = xe + P⊥
S x[0] = xe + x[0] − PS x[0]

= xe + x[0] − H(H H H)−1 H H x[0] (15)
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Equivalently, we can express this limit as the projection of x[0]
onto the affine subspace H:

x∞ = ProjH (x[0]) (16)
Proof: Recall that any vector x ∈ CN can be expressed

as the sum of its projection onto S = R(H) and its
orthogonal complement, i.e., x = PS x + P⊥

S x. Observe
that the update term in (5) lies in the signal space S, for
any values of the feedback vector s[k] and desired complex
amplitudes b. Thus, the component of x[0] orthogonal to S is
unaffected by the iterations. Decomposing the weight sequence
into its projection in the signal space and orthogonal to it,
as H(s[k] − b) ∈ S, we may rewrite the iteration as follows:

PSx[k + 1] = PS x[k] − μH(s[k] − b)

P⊥
S x[k + 1] = P⊥

S x[k] ≡ P⊥
S x[0] (17)

Thus, the component orthogonal to the signal space remains
unchanged at P⊥

S x[0]. On the other hand, the component
restricted to the signal space is follows gradient descent on
a quadratic cost function with a unique global minimum xe,
and therefore converges to xe. To see this, without presum-
ing the existence of a limit point, and treating x∞ as the
well defined vector on the right hand side of (15), consider
�[k] = x[k]−x∞. From (17), x[k]−x[0] = PS (x[k]−x[0]).
Thus,

�[k] = x[k] − x∞
= x[k] − (xe + P⊥

S x[0])
= x[k] − xe − x[0] + PSx[0]
= PS (x[k] − x[0]) − xe + PS x[0]
= PS x[k] − xe. (18)

Note that this N ×1 vector lies in the signal space S, and can
therefore be written as in (12) for an M × 1 error vector δ[k].
In the absence of noise,

s[k] − b = H H x[k] − H H x∞ = H H�[k] = H H Hδ[k]
Thus (5) becomes (11), or in terms of the M × 1 error
vector δ[k] as in (13). Under (14) and Assumption 1, all
eigenvalues of I M − μH H H are strictly smaller than one
in magnitude. Hence δ[k] exponentially converges to 0. Due
to (12) and Assumption 1, so must �[k]. Then (18) proves
that PSx[k] exponentially converges to xe and hence to x∞
in (15).

Finally, we derive (16) for the limiting weight. The projec-
tion of any N-vector z onto the affine subspace H = xe +S⊥
is xe + y, where y ∈ S⊥ minimizes the distance of z from H:

min y∈S⊥||z − (xe + y)||2
= min y∈S⊥||PS z − xe||2 + ||P⊥

S z − y||2
where we have decomposed the squared distance
across S and S⊥. We cannot change the first term on
the right hand side, but can set the second term to zero by
setting y = P⊥

S z, so that

ProjH (z) = xe + P⊥
S z (19)

Plugging in z = x[0] completes the proof. �

The proof of exponential convergence of LMS is much more
complicated and requires that a sequence of regressors satisfy
a persistent excitation (p.e.) condition, [31]. The eigenvalues
of certain outer product sums of regressors play the role of λi

in (14).
1) Design Prescription for Minimizing Transmit Power:

A key implication of the theorem is that, as long as the
initial condition x[0] is in the signal space (i.e., it can be
written as x[0] = Hη for some M × 1 vector η), the
iterations converge to the power efficient (minimum norm)
solution xe. To see this, substitute x[0] = Hη into (15)
and verify that x∞ ≡ xe. For example, the initialization
x[0] = 0, or to a spatial matched filter to one of the beam
targets, say x[0] = h1, guarantees convergence to the power
efficient solution. When initialization in the signal space is not
feasible, then leakage-type mechanisms can be introduced to
dissipate the P⊥

S x[0] term that our present algorithm is unable
to perturb. This is explored further in Section IV-C.

2) Effect of Linear Dependence: If Assumption 1 is violated
(i.e., the channel vectors {hi } are linearly dependent), then b
may not be in the range space of H H . In that case J (x) has a
nonzero minimum. Nonetheless under (14), without noise the
gradient asymptotically vanishes

lim
k→∞ H(H H x[k] − b) = 0 (20)

though H H x[k] need not converge to b. As J (x) is convex,
the is a global minimum.

C. The Effect of Noise

We now extend the preceding arguments and analyze the
impact of noise in the feedback:

s[k] = H H x[k] + w[k], w[k] ∼ CN (0, σ 2
w I). (21)

We characterize the means and covariances of the weight
vectors {x[k]} in Theorem 2 below. The noisy version of (13)
is used to show in the theorem that noise does not cause
the {x[k]} to drift along the affine subspace H, and the error
covariance is bounded with a limit point.

We first note that even with noise, the update term in (5)
lies in S, hence we still have

P⊥
S x[k] ≡ P⊥

S x[0]
Define the error vectors �[k] and δ[k] as before, using (18)
and (12). Then

s[k] − b = H H x[k] + w[k] − H H x∞ = H H �[k] + w[k]
= H H Hδ[k] + w[k]

Thus we obtain,

�[k + 1] = �[k] − μH
(

H H�[k] + w[k]
)

=
(

I − μH H H
)

�[k] − μHw[k]
Hδ[k + 1] =

(
I N − μH H H

)
Hδ[k]

= H
(

I M − μH H H
)

δ[k] − μHw[k] (22)
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As H has full column rank the last equation becomes:

δ[k + 1] =
(

I M − μH H H
)

δ[k] − μw[k] (23)

There are two key points to make about these equations.
First with λi as in Theorem 1, the transition matrix in (23)
is asymptotically stable, though that in (22) is not. More
importantly, in both equations, the effect of noise is masked by
the channel matrix H , precluding the possibility of Brownian
motion orthogonal to the signal space.

Theorem 2: Consider (5) under (2) and Assumption 1, with
noisy feedback modeled as in (21).

Assume that the adaptation gain μ satisfies (14). Then the
mean of the weight sequence converges to the same limit as
in the noiseless setting:

lim
k→∞ E [x[k]] = x∞ = xe + P⊥

S x[0] = xe + x[0] − PSx[0]
= xe + x[0] − H(H H H)−1 H H x[0]
= ProjH (x[0]) (24)

The covariance

�x[k] = E
[
(x[k] − E[x[k]]) (x[k] − E[x[k]])H

]

converges to

� = lim
k→∞ �x[k] = μσ 2

w H(2H H H − μ(H H H)2)−1 H H .

(25)
Proof: Observe (22) and (23) hold. Define the mean

vectors m�[k] = E [�[k]] and mδ[k] = E [δ[k]] and the
corresponding covariance matrices

��[k] = E
[
[�[k] − E[�[k]]] [�[k] − E[�[k]]]H

]
,

�δ[k] = E
[
[δ[k] − E[δ[k]]] [δ[k] − E[δ[k]]]H

]
(26)

Taking expectations on both sides of (22) and (23), it is
easy to see that the means follow the same trajectories
as in the noiseless setting, and therefore converge to zero
under the assumptions of Theorem 1. Subtracting the means
from (22 and (23) and taking outer products yields:

��[k + 1] =
(

I − μH H H
)

��[k]
(

I − μH H H
)

+ μ2σ 2
w H H H (27)

�δ[k + 1] =
(

I − μH H H
)

�δ[k]
(

I − μH H H
)

+ μ2σ 2
w

(28)

As the magnitudes of all eigenvalues of I M − μH H H are
less than 1, the limiting covariance �δ in (28) exists and is
the unique solution of the Lyapunov equation, [49],

�δ =
(

I − μH H H
)

�δ

(
I − μH H H

)
+ μ2σ 2

w I . (29)

We verify below that this solution is in fact:

�δ = μσ 2
w(2H H H − μ(H H H)2)−1. (30)

Set A = H H H , and note that all quantities like (a1 A+a2 I )−1

commute with all polynomials in A, if the ai are scalar. Then
to verify (29), substitute �δ/σ

2
w = μ(2 A − μA2)−1 into

(I − μA)�δ (I − μA) /σ 2
w + μ2 I to see if it equals �δ/σ

2
w .

Indeed

(I − μA) μ(2 A − μA2)−1 (I − μA) + μ2 I

= μ(2 A − μA2)−1
(

I − 2μA + μ2 A2
)

+ μ2 I

= μ(2 A − μA2)−1
(

I − μ(2 A − μA2)
)

+ μ2 I

= μ(2 A − μA2)−1 − μ2 I + μ2σ 2
w I

= μ(2 A − μA2)−1 = �δ/σ
2
w

This proves (30). From (12) we have ��[k] = H�δ[k]H H .
Plugging in (30) yields (25). �

Theorem 2 shows that, even with noise in the feedback, the
mean of the weight vector x[k] converges to the same limit as
in the noiseless setting, and the limiting covariance is finite. It
is worth highlighting the structure of the error revealed through
the proof. As before, the N-dimensional error vector �[k] =
x[k]−x∞ is constrained to the M-dimensional signal space S,
and can therefore be described in terms of an M-dimensional
error vector δ[k]. The limiting M-dimensional covariance �δ

is positive definite under our assumptions, whereas the lim-
iting N-dimensional covariance �� = H�δ H H is positive
semidefinite, with M positive eigenvalues, and N − M zero
eigenvalues.

We also emphasize that the component of x[k] orthogonal
to the signal space remains fixed at P⊥

S x[0] throughout the
iterations, whether or not there is noise in the feedback. The
implication of this is that noise in the feedback cannot cause
drift in x[k]. This is in stark contrast to standard adaptive filter-
ing, e.g. with LMS, [43], where noise components orthogonal
to the signal space induce drift, leading to unbounded residual
covariance. This happens in LMS when the p.e. condition
alluded to after Theorem 1 is violated and is typically remedied
by mechanisms such as tap leakage. The key difference in
our setting is that the effect of noise at the receivers, when
used for transmitter adaptation, is seen through the channel
matrix H , and hence is restricted to the M-dimensional signal
space. A comparable rigorous characterization of the residual
error covariance is not available for LMS, [39], without
certain simplifying independence assumptions [38], [50] that
approximately hold for sufficiently small μ.

We note that, even if Assumption 1 is violated (i.e., the
channel vectors {hi } are not linearly independent), noise does
not induce drift. To see this, note that drift must occur along
the null space of H H . This is so as should x = x∗ minimize
J (x) and η be in the null space of H H then as H Hη = 0,
x = x∗ + η must also minimize J (x). Now for any such η

there holds:

ηH x[k + 1] = ηH (x[k] − μH(s[k] − b))

= ηH
(

x[k] − μH(H H x[k] + w[k] − b)
)

= ηH x[k].

Thus, the noise has no impact along the null space of H H . This
argument can be formalized further to show that even when H
does not have full column rank, noise does not induce drift.
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D. Convergence Speed vs. Residual Variance

To study convergence speed and residual variance as the
number of transmitters N increases, but the number of
receivers M is fixed, we first quantify the effect of λi and
the selection of μ.

Define � = diag (λ1, · · · , λm) as the eigenvalue matrix
of H H H under the ordering λi ≥ λi+1 > 0. Then, with
U ∈ CN×N , V ∈ CM×M unitary matrices, one has

H = U
[

�
1
2 0

]T
V . (31)

Then from (12) and (13) one readily obtains:

�[k] = U diag
(
(I − μ�)k, 0

)
U H�[0]. (32)

Thus, the convergence rate is constrained by the largest
among |1 − μλi |. Specifically ‖�[k]‖ ≤ |1 − μλi |k‖�[0]‖.
Subject to (14), the μ that minimizes the largest
among |1 − μλi | is, [50],

μ∗ = 2

λ1 + λM
. (33)

In this case, the largest value of |1 − μλi | is given
by −(1 − μλ1) = 1 − μλM > 0, yielding

max
i∈{1,··· ,M} |1 − μλi | = C − 1

C + 1
≡

(

1 − 2

C + 1

)

(34)

where C = λ1
λM

is the condition number of H . The convergence
rate improves as C decreases (i.e., as the eigenvalue spread
shrinks), and C = 1 (no spread) yields deadbeat one step
convergence. Note (33) holds also for LMS for suitably defined
λ1 and λM , [50]. The recursive least squares algorithm (RLS)
is not exponentially convergent in the noise free case, [35],
without a forgetting factor. With forgetting factor, (33) applies
with λi defined similarly to LMS.

A more conservative choice,

μ = 1

λ1
, (35)

ensures that 0 < 1 − μλi ≤ 1 for all i . In this case, the
convergence rate is given by 1 − μλM = 1 − λM

λ1
= 1 − 1

C .
As with the optimal choice, the convergence rate improves
with declining C and achieves deadbeat status when C = 1.
The choice of μ = μ∗, however, may lead to a larger residual
variance. To see this observe that (25) and (31) yield:

� = μσ 2
wU diag

(
(2I − μ�)−1, 0

)
U H . (36)

Of course a smaller μ results in a smaller steady state
covariance. Under (33) there obtains

μ∗

2 − μ∗λi
≤ μ∗

2 − μ∗λ1
= 2

2(λ1 + λM ) − 2λ1
= 1

λM
.

Thus,

0 ≤ � ≤ σ 2
w

λM
I. (37)

On the other hand if μλ1 ≤ 1, a condition that guarantees
convergence, but may not be satisfied by μ = μ∗, one obtains
the smaller bound of

μ

2 − μλi
≤ μ

2 − μλ1
≤ μ = 1

λ1
,

leading to

0 ≤ � ≤ σ 2
w

λ1
I. (38)

IV. BEHAVIOR WITH LARGE N : SCALABILITY AND

ASYMPTOTICS

We now study the convergence rate, the power efficient
solution xe and the noise performance of the JBNF algorithm
as N , the number of transmitters, becomes large, with the total
number of beam and null targets fixed at M . We introduce
subscripts to explicitly denote dependence on N . For example,
H N is the corresponding channel matrix, the eigenvalues
of H H H , are λi,N .

A. Convergence Speed With Deterministic Channels

First suppose that μN is fixed at some value μ0 such
that μ0λ1,N < 1. In this case, (14) is satisfied and con-
vergence rate does not decline if μ0λM,N does not decline
with N . The channel matrix grows from N transmitters
to N + 1 as:

H N+1 =
(

H N

gH
N+1

)

,

gN+1 = [h∗
N+1,1, h∗

N+1,2, . . . , h∗
N+1,M ]�. (39)

We then have the following result.
Theorem 3: Consider the family of JBNF algorithms (5)

with an increasing number of transmitters N > M while
keeping the step size μN fixed at μ0. Then the convergence
rate of the algorithm is nondecreasing in the number of
transmitters N provided μ0λ1,N < 1.

Proof: As μ is fixed at μ0 and μ0λ1,N < 1, it suffices
to show that for all l < N (a) μ0λM,N < 1, and (b) μ0λM,l

is nondecreasing in l. Observe from (39) that H H
l+1 Hl+1 =

H H
l Hl + gL+1gH

L+1. Then (a) and (b) follow as for any pair
of Hermitian matrices A and B, λmin(A + B) ≥ λmin(A) +
λmin(B) and λmax(A + B) ≤ λmax(A) + λmax(B). �

Note that this result does not depend on any specific channel
model and holds for all fading and LoS channels. However,
using a fixed step-size μ0 while increasing the number of
transmitters is too restrictive: for large N , the value of μ0
required is unnecessarily small. Thus, we now consider the
setting when μN is allowed to change with N . Recall from
Section III-D that the convergence rate is bounded from below
if and only if the condition number CN = λ1,N

λM,N
. is upper

bounded. To this end we provide a sufficient condition on
the hi that assures the uniform boundedness of CN . The condi-
tion is similar to the p.e. condition described earler, [30]–[32].
It requires that channel submatrices for each new batch of
transmitters should be well conditioned. We show later that
i.i.d. complex Gaussian channels asymptotically meet the
condition.

Theorem 4: Suppose H N ∈ CN×M and gi ∈ CM are as
in (39). Define λi,N as the eigenvalues of H H

N H N and CN as
above. Suppose there exist 0 < αl and an L such that for all i
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and gi defined in (39),

0 < α1 I ≤
i+L∑

m=i

gm gH
m ≤ α2 I.

Then for all N ≥ L, CN is uniformly bounded in N.
Proof: Follows from the eigen-inequalities in the proof of

Theorem 3 and the fact that H H
N H N = ∑N

m=1 gm gH
m ;. �

B. Asymptotics With Rayleigh Fading Channels

We now derive a variety of results for large N , assuming
i.i.d. (across all transmitter-receiver pairs) complex Gaussian
channels. All draw upon the following result from [37].

Theorem 5: Suppose the channel coefficients
hi j ∼ CN (0, 1), i ∈ {1 . . . N}, j ∈ {1 . . . M} and are
i.i.d. Then for any given M, the condition number CN of the
matrix H H

N H N satisfies limN→∞ CN = 1 with probability
one. Further, with probability one, there holds

lim
N→∞

λ1,N

N
= lim

N→∞
λM,N

N
= 1 (40)

Referring to the discussion in Section III-D, this implies that
the optimal choice (33) and the conservative choice (35) of μN

are asymptotically equivalent, and that we asymptotically
obtain arbitrarily fast convergence, both with probability one
as N → ∞. Further, the covariance bounds (37) and (38)
imply that the covariance tends to zero. These results are
summarized below.

Theorem 6: Consider xN [k+1] = xN [k]−μN H N (s[k]−b)
and suppose the conditions of Theorem 5 hold. Then there
exists a sequence of μN such that without noise convergence
to xN,∞ occurs arbitrarily fast, and with noise limN→∞
�N = 0, with probability 1.

Finally, recall that any initialization in the range space
of H N causes convergence to the power efficient solution xe,N

in the noise free case. In the presence of noise, convergence
to the same point occurs in the mean. In view of Proposi-
tion 5 and (8) there holds:

lim
N→∞ xe,N = H N (H H

N H N )−1bN = 0.

Further H N (H H
N H)−1

N H H
N = U N

[
IN 0
0 0

]

U H
N .

Thus as, U N is unitary, for every N , we have∥
∥
∥

(
I − H N (H H

N H)−1
N H H

N

)
x[0]

∥
∥
∥ ≤ ‖x[0]‖. Thus, one

obtains with probability one that limN→∞
∥
∥ProjHN

(x[0])∥∥ ≤
‖x[0]‖, and the following.

Theorem 7: Suppose the conditions of Theorem 6 hold
with

∣
∣1 − μN λi,N

∣
∣ < 1 for all i . Then in the noise

free case for every xN [0] there holds with probability
one, limN→∞ ‖x N,∞‖ ≤ ‖xN [0]‖. Further when xN [0]
is in the range space of H N then with probability one,
limN→∞ xN,∞ = 0.

To summarize, for channels that are i.i.d. CN (0, 1), we have
established the following results with probability one as N
goes to infinity. (i) Convergence is arbitrarily fast. (ii) Residual
variance goes to zero. (iii) Initialization in the signal space
drives the steady state transmit power to zero. (iv) Regardless

of initialization the steady state transmit power is no greater
than the initial transmit power. (v) In the presence of noise
the last two occur in the mean.

Items (ii), (iii) and (v) together demonstrate the following.
As N tends to infinity, should one initialize in the signal space
using e.g. the design prescription on Section III-B, then even
with noise the limit point approaches almost surely, a zero
transmit power solution in the mean with zero covariance.

C. Leakage to Minimize the Total Transmit Power

Initialization in the signal space ensures the attainment of
the power efficient solution in the mean. But, such initial-
ization may not always be feasible; e.g. if the channel matrix
changes, a weight vector that was previously in the subspace H
may no longer be in it. The introduction of leakage, a popular
device both in adaptive filtering and control [44]–[46] can cope
with this.

Leakage involves the addition of a penalty term proportional
to the total transmit power to the objective function in (4) to
get a new objective function: J2(x) = ∥

∥H H x − b
∥
∥2 +α ‖x‖2

where α > 0 is a constant that can be chosen to penalize
power inefficiency. This leads to a distributed gradient search
implementation, like (5):

x[k + 1] = (1 − μα)x[k] − μH(s[k] − b). (41)

This achieves the JBNF solution with the minimum total
transmit power for arbitrary x[0]. However, it has a limitation:
One can no longer make convergence to be arbitrarily fast
as N increases to infinity. Judicious choice of α can be used to
gain the benefits of power minimization without compromising
convergence speed.

V. SIMULATION RESULTS

We consider a JBNF system with N = 20 transmitters and
M = 5 receivers of which M1 = 2 are beam targets and the
remaining 3 receivers are null targets. All channel gains are
modeled as i.i.d. ∼ CN (0, 1), and the noise level is taken to
be −40 dB at each receiver. We encode the real and imaginary
parts of s[k] into double precision floating point numbers with
each requiring 64 bits for a total feedback of 128 bits per
iteration.

Fig. 4 depicts the variation of the cost function as well
as the individual received signal levels at each receiver
with x[0] = 0. Within about 40 iterations, the cost function
as well as the power levels at the null targets converged to a
level close to the noise floor of −40 dB. The convergence at
the beam targets is even faster. The apparent lack smoothness
of the null plots is an artifact of the logarithmic scale of
the plots. In fact, the largest fluctuations are about −30 dB
(i.e. a factor of a thousand) smaller than the beam power.

If the weights are initialized randomly from a complex
Gaussian distribution on the other hand, we expect a non-
zero constant component orthogonal to the signal space that
leads to wasted transmit power. This is confirmed by Fig. 5-(a)
showing that the transmit power does not converge to that
for the power efficient solution xe. For zero initialization of
weights, Fig. 5-(b) shows that xe is reached in 50 iterations.
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Fig. 4. Convergence of JBNF algorithm with initialization of transmit weights
as zeros.

Fig. 5. In (a,b,c), blue line represents the total transmit power, red dashed
line represents the power corresponding to power efficient solution. (d,e,f)
represent the deviation of transmit weights from optimal weights under the
JBNF algorithm.

Per our design prescription given after Theorem 1 Fig. 5-(c),(f)
initializes its weights x[0] to be a linear combination of the
channel vectors to the beam targets i.e. x[0] .= a1h1+a2h2 for
randomly chosen scalar constants a1, a2. Note that the trans-
mitter i ’s initial weight is xi [0] .= a1hi1 + a2hi2, which only
requires knowledge of transmitters i ’s channel gains hi1, hi2.
Converges to xe is even faster, within about 20 iterations
under this initialization. Fig. 6 shows the JBNF algorithm with
leakage with random x[0] and the penalty parameter α = 5
chosen by a simple trial and error procedure to achieve a

Fig. 6. Convergence of JBNF algorithm with leakage. In (c), blue line
represents the total transmit power, red dashed line represents the power
corresponding to power efficient solution.

good tradeoff between convergence and power minimization;
it can be seen that the algorithm effectively achieves the power
efficient solution even though x[0] is not in the signal space.

Next, we investigate constraining complex amplitudes rather
than powers at the beam targets. If bbeam were aligned to the
eigenvector corresponding to the minimum eigenvalue ρmin

of K = (H̃
H
beam H̃beam)−1, then we would obtain a minimum

transmit power P∗
T X = bH

beam K bbeam = ρmin‖bbeam‖2. This
gives a very conservative lower bound, against which we
compare the minimum power PT X obtained for our fixed
choice bbeam = 1. As N increases, the eigenvalue spread of K
declines, so that PT X should approach the lower bound. This is
confirmed by Fig. 7 which plots the CDF of the ratio PT X

P∗
T X

(for
i.i.d. complex Gaussian channel realizations) for different val-
ues of N , for M = 5 receivers and M1 = 2 beam targets. For
90% of the channel realizations, the ratio is at most 2.25, 1.35
and 1.14 for N = 20, 100, and N = 500, respectively. Given
the N-fold gain in power efficiency from coherent beamform-
ing, and the rapid convergence, our quadratic approach is
clearly an attractive design choice even for relatively small
values of N , with the power penalty relative to the lower bound
vanishing as N increases.

Fig. 8 considers the performance of JBNF with time-
varying channels, modeled by a first order autoregressive
Gaussian process. Specifically we model each channel
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Fig. 7. Cumulative Distribution Function of transmit power corresponding
to power efficient solution.

Fig. 8. JBNF algorithm with a time-varying channel.

gain hi j as varying over the iterations k of the JBNF
algorithm as hi j [k + 1] = √

1 − α2hi j [k] + αwi j [k], where
wi j are modeled as iid white complex Gaussian processes
i.e. wi j [k] ∼ C N(0, 1). We have N = 10, M = 2 with one
beam target and one null target. The noise level is −40 dB
at each receiver, and the channel time-variation rate parameter
α = 0.1 which makes the channel after 100 iterations to have
a 0.6 correlation with the initial channel. The JBNF algo-
rithm adapts to channel variations effectively and converges
within approximately 20 iterations which is comparable to the
convergence time for static channels. However, it should be
noted that variations in the channel inherently limit the quality
of the nulls that can be achieved; in Fig. 8, the null power
is on average about 10 dB higher than the noise level, and
this penalty increases when channel variation rate increases.
The JBNF algorithm update rate must be set proportionally
with the channel variation rate to allow the array weights to
track the varying channels.

Fig. 9 shows improved convergence rate, and thus scala-
bility, as the number of transmitters N increases. The step-
size parameter μ varied as per (33), the channels are i.i.d.
complex Gaussian, and there is no noise. We set M = 2, one
beam and one null target. The number of iterations required for

Fig. 9. Rate of Convergence of JBNF algorithm with different number of
transmitters and M = 2.

the algorithm to drive the cost function to −60 dB decreases
with N as predicted.

VI. CONCLUSION

Our algorithm achieves simultaneous beams and nulls in a
quadratic framework guaranteeing rapid convergence. It scales
to large transmit arrays, as it only requires aggregate broadcast
feedback from the receivers and the convergence rate actually
improves with the number of transmitters. This work opens
up many interesting questions for further inquiry. A non-
asymptotic exploration of scalability and generalization to
non-Rayleigh channel statistics is one open problem. Studying
the effects of quantized feedback, partial CSI and other prac-
tical constraints is another interesting topic for future work.
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