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1 Introduction

In Rife and Boorstyn’s work [1], a maximum likelihood estimation (MLE) algorithm was
presented to estimate the parameters of a single tone. However, they provide few details
about the implementation of this specific algorithm. The purpose of this document is
providing a detail study of Rife’s algorithm. Section 2 will provide background informa-
tion about Rife’s algorithm. Sections 3 and 4 will present the estimation algorithms of
complex signal model and real signal model. Section 5 will discuss the results.

2 Background

2.1 Complex Signal Observation Model

In Rife’s paper[1], the received complex signal model is

z(t) := b0 exp(j(ω0t+ θ0)) + w(t) (1)

where b0, ω0 and θ0 denote the unknown amplitude, frequency and phase of the signal
respectively, and w(t) denotes zero-mean proper complex additive white Gaussian Noise
(AWGN).The received signal is sampled at a constant sampling frequency rate fs := 1/T
to produce the discrete-time observation

z[n] := z(t0 + nT ) = b0 exp(j(ω0(t0 + nT ) + θ0)) + η[n] (2)

for n := 0, ..., N − 1 where t0 denotes the time of the first sample and η[n] is a zero-mean
proper complex Gaussian random variable with var{Re(η[k])} = var{Im(η[k])} = σ2 and
cov{Re(η[k]), Im(η[k])} = 0. Here we assumed that η[n] are independent and identically
distributed (i.i.d) for n := 0, ..., N − 1.

The N -sample observation of (2) is provided as an input to a phase and frequency
estimator. The phase and frequency estimates generated by the estimators are denoted
as θ̂ and ω̂ respectively, and the resulting phase and frequency errors are denoted as
θ̃ := θ0 − θ̂ and ω̃ := ω0 − ω̂, respectively.
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2.2 Real Signal Observation Model

As discussed in [2], the received real signal model is the real part of (2). Therefore, the
real signal observation is

x[n] := b0 cos(ω0(t0 + nT ) + θ0) + η[n] (3)

for n := 0, ..., N − 1 where t0 denotes the time of the first sample and η[n] is zero-mean
proper real AWGN with var{η[k]} = σ2. The N -sample observation of (3) is provided
as the input to a phase and frequency estimator, which generated the phase estimate, θ̂,
and the frequency estimate, ω̂. The resulting phase and frequency errors are denoted as
θ̃ := θ0 − θ̂ and ω̃ := ω0 − ω̂, respectively.

2.3 Complex Signal Cramer-Rao Lower Bound

In this estimation system,we use Cramer-Rao Lower Bound (CRLB) to measure system
inaccuracy. The Fisher Information Matrix for CRLB for complex signal is [1, 3]

J(β) :=
1

σ2





b20T
2(n2

0N + 2n2
0P +Q) 0 b20T (n0N + P )

0 N 0
b20T (n0N + P ) 0 b20N



 (4)

where

P :=

N−1
∑

n=0

n =
N(N − 1)

2
(5)

Q :=

N−1
∑

n=0

n2 =
N(N − 1)(2N − 1)

6

β := [ω, b, θ]T (6)

and t0 = n0T is the time at which the first sample is taken.
When all three parameters are unknown, after inverting all the variations of J, the

variances obtain the following set of bounds:

var{b̂0} ≥
σ2

N
(7)

var{ω̂0} ≥
12σ2

b2T 2N(N2 − 1)
(8)

var{θ̂0} ≥
12σ2(n2

0N + 2n0P +Q)

b20N
2(N2 − 1)

(9)

2.4 Real Signal Cramer-Rao Lower Bound

When the received signal is real, the Fisher Information Matrix changes to the approxi-
mations in [4]

I(γ) :=
1

σ2





2
N

0 0
0 2b20π

2Q πb20P

0 πb20P
Nb2

0

2



 (10)
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where
γ := [b, ω, θ]T

Hence, after inverting all the variations of I the variances obtain the following set of
bounds:

var(b̂0) ≥
2σ2

N
(11)

var(ω̂0) ≥
24σ2

(2π)2N(N2 − 1)
(12)

var(θ̂0) ≥
4(2N − 1)σ2

N(N + 1)
(13)

2.5 Complex Signal Maximum Likelihood Estimation

According to [1], when all three parameters are unknown, the frequency should be es-
timated at first. Upon receiving the discrete time observations according to (2) for
n := 0, ..., N − 1, the maximum likelihood frequency estimate can be computed as [1]

ω̂ = max
ω

|A(ω)| (14)

where

A(ω) :=
1

N

N−1
∑

n=0

z[n] exp(−jnωT ) (15)

Once the maximum likelihood frequency estimate has been computed, the maximum
likelihood phase and amplitude follow as

θ̂ = ∠{exp(−jω̂t0)A(ω̂)} (16)

b̂ = |A(ω̂)| (17)

2.6 Real Signal Maximum Likelihood Estimation

For the real signal MLE, still, when all the three parameters are unknown, the frequency
should be estimated at first. Since the signal model is changed, the formula (15) need to
be re-computed as well. Rife’s algorithm simply took the real part of (15), which is

V (ω) :=
1

N

N−1
∑

n=0

xn exp(−jnωT )

where xn is (3). Then the frequency estimate was generated by maximizing |V (ω)|.
However, in experiment, we found this approximate may not work. The reason is that if
w0 is near 0 or

1
2
ωs, this approximate will be incorrect. Therefore, we use a more accurate

model from [4].
According (3), the maximum likelihood estimation of amplitude b0, frequency ω0, and

phase θ0 is found by minimizing

D(b, ω, θ) :=
N−1
∑

n=0

(x[n]− b cos(ωnT + θ))2
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Suppose α1 := b cos θ and α2 := −b sin θ, then

b =
√

α2
1 + α2

2 (18)

θ = arctan

(

−α2

α1

)

(19)

Also, let
c := [1, cos(2πωT ), ..., cos(2πωT (N − 1))]T

s = [1, sin(2πωT ), ..., sin(2πωT (N − 1))]T

Then, we have

D
′

(α1, α2, ω) = (x− α1c− α2s)
T (x− α1c− α2s) = (x−Hα)T (x−Hα)

where α = [α1, α2]
T and H = [c, s]. In order to get the maximum likelihood frequency

estimate, we need to maximize

R(ω) :=

[

cTx

sTx

]T [

cTc cT s

sTc sT s

]

−1 [
cTx

sTx

]

=









N−1
∑

n=0

xn cos(Tnω)

N−1
∑

n=0

xn sin(Tnω)









T









N−1
∑

n=0

cos2(Tnω)
N−1
∑

n=0

cos(Tnω) sin(Tnω)

N−1
∑

n=0

cos(Tnω) sin(Tnω)
N−1
∑

n=0

sin2(Tnω)









−1 







N−1
∑

n=0

xn cos(Tnω)

N−1
∑

n=0

xn sin(Tnω)









(20)

Therefore, once the maximum likelihood frequency estimate has been estimated correctly,
we can computer α̂ by using

α̂ = (HTH−1HTx)

Then the maximum likelihood phase and amplitude can be generated by using (18) and
(19).

3 Complex Signal Estimation

In this section, we use (2) as the signal model. In [1], the authors presented a two-part
search routine to compute ω̂. The first part calculates |A(ω)| for a set of ω values between
zeros and ωs, which is Nyquist frequency, and identifies the ω that maximizes |A(ω)| over
this set of ω values. This part is called the coarse search. The second part locates the
local maximum closet to the value of ω picked out by the coarse search. This part is
called the fine search.

For the coarse search, we used the discrete Fourier transform (DFT) to find ω which
maximizes |A(ω)|. In fact, the M-point DFT is a sampled version of A(ω) at frequencies
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ω = 2πk
MT

for k := 0, ...,M − 1. Usually, we use the fast Fourier transform (FFT) to
compute A( 2πk

MT
) for k := 0, ...,M − 1. Then we select the index k at which A( 2πk

MT
)

attains its maximum magnitude, i.e.,

ω̂ = max
ω∈Ω

|A(ω)| (21)

where Ω :=
{

0, 2π
MT

, ..., 2π(M−1)
MT

}

. However, the accuracy of this method is strongly

affected by the number of points of FFT. Therefore, in [3], the FFT magnitude is inter-
polated to improve the estimation accuracy. For example, suppose the maximum in (21)
occurs at FFT index k̂. A quadratic fit y = ax2 + bx + c in the neighbourhood of the

maximum can be computed given the frequencies x ∈
{

2π(k̂−1)
MT

, 2πk̂
MT

, 2π(k̂+1)
MT

}

and FFT

magnitudes y = |A(x)|. Then maximum likelihood frequency estimate can be computed
using standard techniques as ω̂ = −b

2a
. This is method is described as the Quad MLE in

this document.
Although the coarse search can locate the maximum likelihood frequency by using

FFT, and the Quad MLE can improve the precision further, both results may not be
accurate enough to attain the CRLB at high SNR. Figure 1 and Figure 2 show that for
Mean Squared Error(MSE) the coarse search only MLE cannot achieve the CRLB in the
entire SNR range. For the Quad MLE, only when the value of M is 216, the MSE can
overlap the CRLB up to 60dB SNR. Therefore, the fine search is required to improve
estimation accuracy. The MLE method contains both the coarse search and the fine
search is described as the full method in this document. In [1], the secant method was
mentioned to locate the value of ω closet to ω̂ that maximizes |A(ω)|. However, the
author did not provide many details about it.

3.1 Secant Method

The secant method is a iterative method used to find roots of a non-linear system. The
iteration formula is [5]:

xn :=
xn−2f(xn−1)− xn−1f(xn−2)

f(xn−1)− f(xn−2)

= xn−1 − f(xn−1)
xn−1 − xn−2

f(xn−1)− f(xn−2)
(22)

The two initial values, x0 and x1, are chosen to lie close to root.
Finding the maximum of |A(ω)| is equivalent to find the root of the first order deriva-

tive of |A(ω)|. Therefore, (2) can be re-written as z[n] = x[n] + jy[n] =
N−1
∑

n=0

xn + jyn.

Then (15) can be written in rectangular form as:

A(ω) := B(ω) + jC(ω) (23)

where

B(ω) :=
1

N

N−1
∑

n=0

xn cos(nωT ) + yn sin(nωT ) (24)
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C(ω) :=
−1

N

N−1
∑

n=0

xn sin(nωT )− yn cos(nωT ) (25)

Also, the maximization of |A(ω)| is equivalent to the maximization of

|A(ω)|2 := A(ω)A∗(ω) = B2(ω) + C2(ω) = U(ω)

Hence, we have
dU

dω
:= 2B

dB

dω
+ 2C

dC

dω
(26)

where
dB

dω
:=

1

N

N−1
∑

n=0

Tn(yn cos(Tnω)− xn sin(Tnω))

dC

dω
:=

−1

N

N−1
∑

n=0

Tn(xn cos(Tnω) + yn sin(Tnω))

Therefore, (22) becomes

ωn = ωn−1 − U
′

(ωn−1)
ωn−1 − ωn−2

U ′(ωn−1)− U ′(ωn−2)

When |ωn − ωn−1| ≤ ε, U
′

(ωn) = U
′

(ωn−1), or U
′

(ωn) = 0, the iteration will stop. In our
experiment, we choose the first condition to terminate the process. The algorithm of the
secant method is described in Algorithm 1.

Algorithm 1 The Secant Method
Import ω0, ω1

∆ = 0, n = 1
while |∆| ≥ ε do
n = n+ 1
∆ = U

′

(ωn−1) ∗
ωn−1−ωn−2

U
′(ωn−1)−U

′ (ωn−2)

ωn = ωn−1 −∆
end while

return ωn

3.2 Bisection Method

Since the secant method cannot ensure convergence when the interval is not very small
[5], an alternatively iterative method, the bisection method, is introduced here. If f is
a continuous function on the interval [a, b] and f(a)f(b) < 0, then the bisection method
converges to the root of f by halving the range. The best estimation is the midpoint of
the smallest range found. Therefore, after n steps, the absolute error is

|b− a|

2n

The algorithm of the bisection method is described in Algorithm 2.
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Algorithm 2 The Bisection Method
Import ω0, ω1

if U
′

(ω0) ≤ 0 then

lo = ω0

hi = ω1

else

lo = ω1

hi = ω0

end if

ω2 = lo + (hi−lo)
2

n = 2
while (ωn−1 6= lo)AND(ωn−1 6= hi) do
n = n+ 1
if U

′

(ωn−1) ≤ 0 then

lo = ωn−1

else

hi = ωn−1

end if

∆ = hi−lo

2

ωn = lo +∆
if |∆| ≤ ε then
BREAK

end if

end while

return ωn

3.3 Hybrid Iteration Method

Since the initial point of the bisection method have different signs, hence, we can ensure
that the bisection method can converge finally. However, the convergence of the bisection
method is linear. Therefore, the convergence speed is slow. Thus, for the fine search of
maximum likelihood estimation, we use a hybrid iterative method. The primary method
is the secant method. When the iterative steps and |U(ω0) − U(ωn)| are large, the
algorithm will shift to the bisection method. In our experiment, when the iteration step
is over 1000 or |U(ω0) − U(ωn)| ≥ 0.1, the iteration method will shift to the bisection
method.

In some literatures, like [6] and [7], Newton’s Method was used as the iterative method.
However, as discussed in [2], when U

′′

(ω) was very small, Newton’s method did not
converge but the secant did. In addition, the function U

′′

(ω) is not easy to calculate.

4 Real Signal Estimation

The maximum likelihood estimation algorithm of real signal is similar to that of complex
signal. For the coarse search routine, we still use FFT to find the index k at which
V ( 2πk

MT
) attains its maximum magnitude. After locate the index k, we shift to the fine

search routine. In order to apply the hybrid iteration method, firstly, we compute the
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first order derivative of (20) respect to ω, which is

dR

dω
=

(

dF

dω

)T

G−1F+ FT

(

dG−1

dω

)

F+ FTG−1

(

dF

dω

)

(27)

where

dF

dω
=









N−1
∑

n=0

−xnTn sin(Tnω)

N−1
∑

n=0

xnTn cos(Tnω)









dG

dω
=









N−1
∑

n=0

−Tn sin(2Tnω)
N−1
∑

n=0

Tn cos(2Tnω)

N−1
∑

n=0

Tn cos(2Tnω)
N−1
∑

n=0

Tn sin(2Tnω)









dG−1

dω
= −G−1dG

dω
G−1

Now we can use the Algorithm 1 and Algorithm 2 to locate ω̂. After finding ω̂, we can
compute α̂ and then estimate b̂ and θ̂ by using (18) and (19). Then we can estimate b̂
and θ̂ by using (18) and (19).

5 Numerical Results and Discussion

This section presents numerical results comparing phase and frequency estimators of the
coarse search only MLE, the Quad MLE and the full MLE for different values ofM . All of
the results in this section assume an observation with N = 2000 samples at fs = 16kHz.
5000 realizations of the complex signal using (2) or the real signal using (3) and AWGN
were generated with fixed b0 = 1 and random independent uniformly distributed phase
and frequency centred at 1020Hz according to

θ0 ∼ U(−π, π)

ω0 ∼ U(2π · 1010, 2π · 1030)

The error boundary ε is 1 · 10−6.The independent AWGN in each realization was gen-
erated with independent real and imaginary components for complex signal and with
independent real component for real signal. The AWGN has zero mean and variance σ2.

Figure 1 and 2 show the mean squared frequency and phase estimation error, respec-
tively, of the coarse search only MLE, the Quad MLE and the full MLE frequency and
phase estimators as a function of SNR := 10 log10(b

2
0/σ

2) for three values of M for the
complex signal. Figure 3 and 4 show same thing as Figure 1 and Figure 2 respectively
but for the real signal. The Quad MLE is implemented with quadratic interpolation as
discussed in previous section.

For complex signal, the coarse search only MLE method provides the worst estimation
performance among all of the MLE methods. The Quad MLE with M = 212 have the
same performance of the coarse search only MLE with M = 216. For Quad MLE, the
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Figure 1: Mean squared frequency estimation error for complex signal
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Figure 2: Mean squared phase estimation error for complex signal
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Figure 3: Mean squared frequency estimation error for real signal
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Figure 4: Mean squared phase estimation error for real signal
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CRLB can be achieved only when the value of M is 216. For the full MLE, the CRLB
can always be achieve.

For real signal, the worst estimation method is still the coarse search only MEL
method. The CRLB cannot be achieved for the entire SNR range. For the Quad MLE, the
MSE overlaps the CRLB before 20dB. In addition, the performance cannot be improved
further when the value of M is 214. For the complete MLE, the CRLB can always be
achieved.

0 5 10 15 20
0

1000

2000

3000

4000

iteration step

N
um

be
r 

of
 ti

m
es

Iteration step with M12 and SNR = 0dB

2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

iteration step
N

um
be

r 
of

 ti
m

es

Iteration step with M14 and SNR = 0dB

2 2.5 3 3.5 4
0

1000

2000

3000

4000

iteration step

N
um

be
r 

of
 ti

m
es

Iteration step with M16 and SNR = 0dB

3 4 5 6
0

1000

2000

3000

4000

iteration step

N
um

be
r 

of
 ti

m
es

Iteration step with M12 and SNR = 60dB

Figure 5: Iteration Step

In Figure 5, the iteration is completed within 19 steps when the SNR is 0dB and the
value of M is 212. With the increase of the value of M , the iteration can be done within
four steps. When M is 212 and the SNR is increased to 60dB, the iteration takes six steps
at most. Compared with the Quad MLE, the complete MLE method has much better
performance with lower complexity.

In these examples, the value of M does not affect the performance of the complete
MLE method. In addition, the computation complexity of the fine research routine is
low. Therefore, this method points a potential method for real-time implementation in
the future.
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6 Conclusion

This document presented a performance comparison among three different maximum
likelihood estimation methods. We developed Rife’ method and implement it for different
M values. The numerical results show that the full MLE method can always achieve
Cramer-Rao lower bound over a wide range of signal to noise ratios. The discussion of
iteration steps purposes the low computational complexity of the full MLE method.
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A Complex Signal Estimation Function

A.1 Main Function

1 function [ahat ,omegahat ,thetahat ,counter] = ML_fun(N,s,nfft ,fs,el ,sindex,eindex)

2

3 % Input Paramter:

4 % N: length of signal

5 % s: input signal

6 % nfft: number of points of FFT

7 % fs: sampling frequency

8 % el: the error bound

9 % sindex: start index of signal

10 % eindex: end index of signal

11

12 % Output Parameter

13 % ahat: amplitude estimate

14 % omegahat: frequency estimate (in rad/s)

15 % thetahat: phase estimate

16 % counter: iteration steps

17

18 A = fft(s,nfft)/N;

19 [junk ,index] = max(abs(A(1:nfft /2)));

20 n = sindex:eindex;

21

22 x0 = (index -2);

23 x1 = index;

24 y0 = dA_fun(N,s,x0 ,nfft ,n,fs);

25 y1 = dA_fun(N,s,x1 ,nfft ,n,fs);

26

27 if abs(A_fun(N,s,x0,nfft ,n,fs)) > abs(A_fun(N,s,x1 ,nfft ,n,fs))

28 temp = x0;

29 x0 = x1;

30 x1 = temp;

31 temp = y0;

32 y0 = y1;

33 y1 = temp;

34 end

35

36 counter = 0;

37 delta = 1;

38 peak = abs(A_fun(N,s,index -1,nfft ,n,fs));

39 while abs(delta) > el

40 %Secant method

41 delta = y1*(x1 -x0)/(y1-y0);

42 x0 = x1;

43 x1 = x1 -delta;

44 y0 = y1;

45 y1 = dA_fun(N,s,x1,nfft ,n,fs);

46 counter = counter+1;

47 dd = peak - abs(A_fun(N,s,x1,nfft ,n,fs));

48

49 if (counter > 1000)||(abs(dd) >0.1)

50 %shift to Bisection method

51 aa = index -2;

52 bb = index;
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53 while dA_fun(N,s,aa ,nfft ,n,fs)* dA_fun(N,s,bb ,nfft ,n,fs) >= 0

54 if dA_fun(N,s,aa ,nfft ,n,fs)<0

55 aa = aa -1;

56 else if dA_fun(N,s,bb ,nfft ,n,fs) > 0

57 bb = bb+1;

58 end

59 end

60 end

61 if dA_fun(N,s,aa ,nfft ,n,fs) <= 0

62 lo = aa;

63 hi = bb;

64 else

65 lo = bb;

66 hi = aa;

67 end

68

69 mid = lo+(hi -lo)/2;

70 counter = 0;

71 while (mid ~= lo) && (mid ~= hi)

72 if dA_fun_real(N,s,mid ,nfft ,n,fs) <=0

73 lo = mid;

74 else

75 hi = mid;

76 end

77 delta = (hi -lo)/2;

78 mid = lo + delta;

79 if abs(delta) < el

80 break;

81 end

82 counter = counter+1;

83 end

84 x1 = mid;

85 break;

86 else continue;

87 end

88 end

89

90 omegahat = x1/nfft*fs*2*pi;

91 thetahat_secant(kk ,i) = angle(exp(-j*( omegahat_secant(i)*t0))*A_fun(N,s,x1 ,nfft ,n,fs)

92 ahat = abs(A_fun(N,s,x1,nfft ,n,fs));
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A.2 Function U(ω)

1 function value = A_fun(N,xx ,k,nfft ,nn ,fs)

2 % Input Paramter:

3 % N: length of signal

4 % xx: input signal

5 % k: index of FFT

6 % nfft: number of points of FFT

7 % nn: discrete index

8 % fs: sampling frequency

9

10 % Output Parameter:

11 % value: A(k)

12

13 w = 2*pi*k*fs/nfft;

14

15 T = 1/fs;

16 j = sqrt(-1);

17

18 value = (1/N)*sum(xx.*exp(-j*nn*w*T));

19

20

21 end
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A.3 Function U
′

(ω)

1 function da = dA_fun( N,xx,k,nfft ,nn,fs )

2 % Input Paramter:

3 % N: length of signal

4 % xx: input signal

5 % k: index of FFT

6 % nfft: number of points of FFT

7 % nn: discrete index

8 % fs: sampling frequency

9

10 % Output Parameter:

11 % da: A’(k)

12

13 w = 2*pi*k*fs/nfft;

14

15 T = 1/fs;

16

17 n = nn;

18 sine = sin(T*n*w);

19 cose = cos(T*n*w);

20

21 x = real(xx);

22 y = imag(xx);

23

24 B = sum(x.*cose+y.*sine);

25 B = B/N;

26 C = sum(x.*sine - y.*cose);

27 C = -C/N;

28

29 dB = sum(n.*(y.*cose - x.*sine));

30 dB = dB*T/N;

31 dC = sum(n.*(x.*cose + y.*sine));

32 dC = -T/N*dC;

33

34 da = 2*B*dB+2*C*dC;

35

36

37 end
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B Real Signal Estimation Function

B.1 Main Function

1 function [ahat ,omegahat ,thetahat ,counter] = ML_fun(N,s,nfft ,fs,el ,sindex,eindex)

2

3 % Input Paramter:

4 % N: length of signal

5 % s: input signal

6 % nfft: number of points of FFT

7 % fs: sampling frequency

8 % el: the error bound

9 % sindex: start index of signal

10 % eindex: end index of signal

11

12 % Output Parameter

13 % ahat: amplitude estimate

14 % omegahat: frequency estimate (in rad/s)

15 % thetahat: phase estimate

16 % counter: iteration steps

17

18 A = fft(s,nfft)/N;

19 [junk ,index] = max(abs(A(1:nfft /2)));

20 n = sindex:eindex;

21

22 x0 = (index -2);

23 x1 = index;

24 y0 = dA_fun_real(N,s,x0,nfft ,n,fs);

25 y1 = dA_fun_real(N,s,x1,nfft ,n,fs);

26

27 if abs(A_fun_real(N,s,x0 ,nfft ,n,fs)) > abs(A_fun_real(N,s,x1 ,nfft ,n,fs))

28 temp = x0;

29 x0 = x1;

30 x1 = temp;

31 temp = y0;

32 y0 = y1;

33 y1 = temp;

34 end

35

36 counter = 0;

37 delta = 1;

38 peak = abs(A_fun_real(N,s,index -1,nfft ,n,fs));

39 while abs(delta) > el

40 delta = y1*(x1 -x0)/(y1-y0);

41 x0 = x1;

42 x1 = x1 -delta;

43 y0 = y1;

44 y1 = dA_fun_real(N,s,x1 ,nfft ,n,fs);

45 counter = counter+1;

46 dd = peak - abs(A_fun_real(N,s,x1 ,nfft ,n,fs));

47

48 if (counter > 1000)||(abs(dd) >0.1)

49 aa = index -2;

50 bb = index;

51 while dA_fun_real(N,s,aa ,nfft ,n,fs)* dA_fun_real(N,s,bb ,nfft ,n,fs) >=

52 if dA_fun_real(N,s,aa ,nfft ,n,fs)<0
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53 aa = aa -1;

54 else if dA_fun_real(N,s,bb ,nfft ,n,fs) > 0

55 bb = bb+1;

56 end

57 end

58 end

59 if dA_fun_real(N,s,aa ,nfft ,n,fs) <= 0

60 lo = aa;

61 hi = bb;

62 else

63 lo = bb;

64 hi = aa;

65 end

66

67 mid = lo+(hi -lo)/2;

68 counter = 0;

69 while (mid ~= lo) && (mid ~= hi)

70 if dA_fun_real(N,s,mid ,nfft ,n,fs) <=0

71 lo = mid;

72 else

73 hi = mid;

74 end

75 delta = (hi -lo)/2;

76 mid = lo + delta;

77 if abs(delta) < el

78 break;

79 end

80 counter = counter+1;

81 end

82 x1 = mid;

83 break;

84 else continue;

85 end

86 end

87

88 omegahat = x1/nfft*fs*2*pi;

89 cose = cos(omegahat*n(:)/fs);

90 sine = sin(omegahat*n(:)/fs);

91 cc = cose ’*s(:);

92 ss = sine ’*s(:);

93 Ha = cose ’*cose;

94 Hb = cose ’*sine;

95 Hc = sine ’*cose;

96 Hd = sine ’*sine;

97 alpha = [Hd -Hb; -Hc Ha]*[cc;ss]./(Ha*Hd -Hb*Hc);

98 thetahat = atan2(-alpha(2),alpha (1));

99 ahat = sqrt(alpha (1)^2+ alpha (2)^2);
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B.2 Function R(ω)

1 function value = A_fun_real(N,xx ,k,nfft ,nn,fs)

2

3 % Input Paramter:

4 % N: length of signal

5 % xx: input signal

6 % k: index of FFT

7 % nfft: number of points of FFT

8 % nn: discrete index

9 % fs: sampling frequency

10

11 % Output Parameter:

12 % value: A(k)

13

14 ww = 2*pi*k*fs/nfft;

15

16 n = nn ’;

17 x = xx ’;

18 T = 1/fs;

19 w = ww*T;

20

21 % these are the cos/sin vectors just below (7.63) in Steven Kay

22 c = cos(w*n);

23 s = sin(w*n);

24

25 % compute (7.65) from Steven Kay

26 a = c’*x;

27 b = s’*x;

28 A = c’*c;

29 B = c’*s;

30 C = s’*c;

31 D = s’*s;

32

33 in = [D -B; -C A]./(A*D-B*C);

34

35 value = [a;b]’*in*[a;b];
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B.3 Function R
′

(ω)

1 function value = dA_fun_real( N,xx ,k,nfft ,nn ,fs )

2 % Input Paramter:

3 % N: length of signal

4 % xx: input signal

5 % k: index of FFT

6 % nfft: number of points of FFT

7 % nn: discrete index

8 % fs: sampling frequency

9

10 % Output Parameter:

11 % value: A’(k)

12

13 ww = 2*pi*k*fs/nfft;

14

15 T = 1/fs;

16 w2 = 2*ww*T;

17 w = ww*T;

18 n = nn ’;

19 x = xx ’;

20

21 c = cos(w*n);

22 c2 = cos(w2*n);

23 s = sin(w*n);

24 s2 = sin(w2*n);

25

26 dA = [sum(( -1)*s.*x.*n*T); sum(c.*x.*n*T)];

27 dB = [sum(( -1)*s2.*n*T) sum(c2.*n*T); sum(c2.*n*T) sum(s2.*n*T)];

28 dC = dA;

29 dA = dC ’;

30

31 p = c’*x;

32 q = s’*x;

33

34 A = [p;q]’;

35 C = [p;q];

36

37 a = c’*c;

38 b = c’*s;

39 %c = s’*c;

40 c = b;

41 d = s’*s;

42

43 %B = [a b; c d];

44 B_i = [d -b; -c a]./(a*d-b*c);

45

46 value = dA*B_i*C+A*(( -1)*B_i*dB*B_i)*C + A*B_i*dC;

47

48 end
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