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ABSTRACT 

 

Existing commercial hand prostheses can be controlled from 

the electrical activity (electromyogram or EMG) of remnant 

muscle tissue within the forearm, but are limited in function 

to one degree of freedom of proportional control. In a pilot 

study (N=3 subjects), we used least squares estimation to 

identify a model between forearm electrical activity 

recorded by high-resolution (64 channel) electrode arrays 

(applied over the flexor and, separately, extensor muscles of 

the forearm) to force in the four fingertips. Average errors 

ranged from 4.21 to 10.20 %MVCF (flexion maximum 

voluntary contraction), depending on the muscle contraction 

task performed, number of EMG electrodes in the model 

and the electrode montage selected. Results suggest that, at 

least for intact subjects, 2–4 degrees of freedom of 

proportional control are available from the EMG signals of 

the forearm. 

 

Index Terms— EMG signal processing, biomedical 

signal processing, EMG-force, electromyography 

 

1. INTRODUCTION 

 

Classic myoelectric control of a hand prosthesis provides, at 

most, one degree of freedom of proportional control from 

the electromyogram (EMG) of one extension electrode and 

one flexion electrode, each placed on the skin over the 

remnant muscle tissue of the forearm [1, 2]. Amputees 

desire improved control capabilities, particularly an increase 

in the number of degrees of freedom [1, 2]. One approach to 

increased control is multifunction selection in which 

classification analysis is used to relate features derived from 

forearm EMG to various hand/wrist functions [3–9]. 

Classification accuracies above 95% have been achieved, 

with higher accuracies found when more electrodes are 

used, fewer functions are selected and/or longer EMG signal 

durations are observed. Some studies have concentrated on 

classification of individual finger movements [10–14]. This 

approach can increase amputee function, but does not 

provide the desired proportional control. 

Some recent effort [14–17] has concentrated on the 

goal of providing proportional finger control via EMG-

based estimation of finger joint angles or forces. Force 

estimation may be preferable, as it is likely to be less 

influenced by external forces that interact with the hand. 

However, many questions remain, particularly with respect 

to the number of electrodes required and how their signal 

should be acquired and processed. In particular, the muscles 

of the forearm are small in cross section and packed tightly 

beside each other, making it difficult to sense their activities 

independently. Over the past few years, high resolution 

spatial filtering of EMG array signals has been used to 

localize the electrical potentials of small muscle tissue 

volumes [18–20]. We hypothesized that such systems would 

be useful in separating the source electrical activity of 

distinct hand muscles within the forearm, facilitating more 

accurate EMG-force identification. 

This paper presents the methods and results of a pilot 

study (N=3 subjects) in which commercial high-resolution 

(64 channel) electrode arrays were used to measure EMG 

signals from the extensor and flexor muscles of the forearm 

while recording fingertip flexion-extension forces during 

constant-posture contractions. The goal of the study was to 

investigate and compare the performance of various EMG 

spatial filters (“montages”) in terms of their ability to 

identify an EMG-force relationship for the fingertips. Our 

results showed average errors ranged from 4.21 to 10.20 

%MVCF, depending on the muscle contraction task 

performed, number of EMG electrodes in the model and the 

electrode montage selected. Our results also suggest that, at 

least for intact subjects, 2–4 degrees of freedom of 

proportional control are available from the forearm EMG.  

 

2. METHODS 

 

2.1. Experimental Apparatus 

 

The arm restraint device, shown in Fig. 1, was used to 

record constant-posture finger flexion-extension. The 

subject sat along the table edge with their elbow forming a 

90o angle. The height of the elbow rest plate was adjusted 

for each finger to keep the long axis of the forearm parallel 

to the table. After donning a glove, the palm of the hand 
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Fig. 1.  Photograph of hand/arm secured into the finger restraint. 

Electrode arrays are mounted over the medial (flexion array) and 

lateral (extension array—not visible) aspects of the forearm. 

was secured at the front of the restraint to an upright via 

Velcro. The hand was oriented with the thumb directed 

upwards and the four remaining digits passively curled 

beyond the upright. The height of the hand was adjusted to 

align the distal phalange of any one digits with the load 

beam. A phalange was secured to the load beam by a 

tightly-wrapped Velcro strip. Load on this beam was 

measured with a one degree of freedom load cell and 

amplifier (models LCL-040 and DMD-465WB, 

respectively; Omega Engineering, Inc., Stamford, CT, 

USA). The cut-off frequency of the amplifier lowpass filter 

was 9.4 Hz (second-order, Bessel). Measurement was only 

made on one digit at a time. 

The skin over the circumference of the proximal right 

forearm was scrubbed with an alcohol wipe. Two, 

commercial 64-channel monopolar electrode arrays were 

applied (ELSCH064R3S Adhesive Electrode Arrays, EMG-

USB Amplifier; OT Bioeletronica, Torino, Italy). Each 

array was a rectangular, 13x5 matrix of electrodes (with one 

corner electrode omitted), utilizing 2 mm diameter gel-filled 

electrodes separated by 8 mm center-to-center. The long 

axis of the “flexion” array was oriented along the 

circumference of the right forearm, centered on the mid-line 

of the medial aspect of the forearm. The second “extension” 

array was secured with the long axis oriented along the right 

forearm circumference, centered on the mid-line of the 

lateral aspect of the forearm. The eight extension electrodes 

located furthest from the base of the finger restraint along 

the most proximal electrode column were not used, leaving 

56 electrodes. A gap of 3.5–7 cm existed between the 

superior and inferior edges of the two electrode arrays. The 

proximal edge of each EMG array was located three fingers 

width from the olecranon process [21]. A reference 

electrode was applied to the left wrist and a power-line 

attenuation circuit (“driven-right-leg”) was applied to the 

right arm. Each electrode channel had a passband from 10–

750 Hz, CMRR greater than 104 dB at the power line 

frequency, input impedance greater than 1014 Ω, and input 

referred noise <1 µV RMS. EMG data were sampled at 

2048 Hz with 12-bit resolution. 

A PC was used to collect the finger flexion-extension 

load cell data (128 Hz, 16 bits; synchronized offline with 

the EMG data) and as a subject display. Its 18 inch monitor 

was placed approximately one meter in front of the subject. 

A custom LabView interface displayed a vertical line on the 

screen that moved horizontally with the subject’s extension-

flexion force. A fixed or dynamic target could also be 

displayed on the screen. 

 

2.2. Experimental Methods 

 

The New England IRB approved and supervised the human 

studies. Three subjects each completed one experiment. 

Subjects had no known neuromuscular deficits of their right 

hand, arm or shoulder. After signing written informed 

consent, subjects were fitted into the hand restraint device. 

Each subject performed separate maximum flexion, then 

extension trials for each of the four digits, repeated twice. 

The average flexion plateau for each digit and the average 

extension plateau for each digit were used as the respective 

maximum voluntary contraction (MVC) values. Subsequent 

contractions were scaled to the MVC of the respective digit. 

The EMG electrode arrays were then secured (see above). 

Subjects next performed five-second constant-force 

contractions. Two such recordings were made for 30% 

MVC flexion and, separately, 30% MVC extension, for 

each digit. Subjects lastly performed a series of slowly 

force-varying (ramp) tracking tasks. The LabView display 

of extension-flexion force was scaled over the range from 

30% MVC extension to 30% MVC flexion. A target signal 

began at the force level half-way between these two 

extremes (this level was not equivalent to zero force, since 

extension and flexion MVCs are not equal), advanced to 

30% extension, continued to 30% flexion, returned to 30% 

extension, and ended back at the half-way force. Tracking 

lasted for 30 seconds, with all target movement at a constant 

speed. Four tracking tasks were completed per digit. 

 

2.3. Methods of Analysis 

 

Data Preprocessing: Data analysis was performed off-line 

using MATLAB. The sampled EMG data were bandpass 

filtered (15–700 Hz) using a fourth-order Butterworth filter, 

and second-order notch filters at the power line frequency 

and all harmonics. Filtering was applied in the forward, then 

reverse time directions to achieve zero phase. Each data 

recording was plotted and reviewed. Channels with 

anomalous data (e.g., obviously corrupted by excessive 

power line noise or motion artifact) were avoided from 

further use. Regardless, all desired electrode configurations 

were achieved. The finger force data were upsampled to the 

same rate as the EMG data (2048 Hz), time-aligned to the 
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Fig. 2.  EMG-force model. Extension and flexion monopolar arrays are spatially filtered into L signals, each 

signal being used to produce one EMG standard deviation (EMGσ) estimate. Least squares estimation then 

relates the EMGσ’s to force of the four fingertips (indexed by c). The “B” matrices hold the coefficients of 

the spatial filters; the “A” matrices hold the coefficients relating EMGσ to force. 

EMG data and scaled to its respective flexion MVC value. 

The fingertip force for inactive fingers was set to zero. 

EMG-Force Processing: The EMG-force model is 

shown in Fig. 2. Numerous classic spatial filters with known 

(pre-selected) spatial filter coefficients were investigated. 

The preprocessed extensor/flexor signal sets (  ne iE ,
, 

 ne iF ,
, where i indexes the spatial channels and n indexes 

time) were spatially filtered to produce L extensor/flexor 

channels (  nm iE ,
,  nm iF ,

). A spatial filter is a memory-less 

weighted sum of the monopolar potentials. The EMG 

standard deviation (EMG amplitude estimate) of each 

channel was computed by rectifying each channel and then 

decimating to 10.24 Hz. After decimating, the signal was 

further lowpass filtered  (cut-off frequency of 1 Hz, fourth-

order Butterworth filter applied in the forward, then reverse 

time directions), producing signals  mEMG iE ,s  and 

 mEMG iF ,s , where m indexes time at the reduced rate. This 

reduced rate is appropriate as it is approximately ten times 

that of the force signal being estimated [22, 23]. 

For the constant-force recordings, distinct five second 

flexion and extension recordings from each finger were 

concatenated, forming a 40 second data set (4 fingers x 10 

seconds per finger). A fit coefficient was multiplied by each 

of the L extension EMGσ’s to estimate each of the four digit 

extension force contributions (total of 4L coefficients). 

Another 4L coefficients were similarly required to estimate 

flexion force contributions. Their difference was the 

estimate of total force for each finger. Linear least squares 

was used to estimate the fit coefficients from a 40 second 

data set. Since there were two constant-force recordings per 

finger per flexion/extension contraction, two such sets were 

available per subject. One set was used for coefficient 

training and the second for performance testing, with full 

leave-one-out cross-validation. The average error from the 

two test cross-

validations was 

expressed in percent 

MVC flexion 

(%MVCF), relative to 

each respective digit. 

For the slowly 

force-varying (ramp) 

contractions, the first 

and last five seconds 

of each 30 second 

tracking trial were 

discarded, leaving 

one complete 

contraction cycle of 

duration 20 seconds 

per digit. Four 

sequential tracking 

recordings, representing data from each of the four digits, 

were concatenated to form an 80 second data set. Linear 

least squares was again used to estimate fit coefficients 

(same method as described above) from an 80 second 

tracking set. Four tracking data sets were available per 

subject. Three data sets were used for coefficient training 

and the fourth for performance testing, with full leave-one-

out cross-validation. The average error from the four cross-

validations was expressed in %MVCF, relative to each 

respective digit. 

For each of the constant-force and ramp contraction 

data sets, each extension/flexion EMG array contained 13 

rows of electrodes. An L=13 channel monopolar spatial 

filter (montage) was formed by choosing one of the central 

electrodes in each row. Then, alternate rows were selected 

to form an L=7 channel monopolar spatial filter. By 

skipping increasingly more rows, filters were formed for 

L=5 and 4 channels. Next, these four row selections were 

repeated, utilizing additional adjacent columns to form 

bipolar and linear double difference (LDD) filters [20]. 

Note that these filters were formed along the presumed 

direction of action potential propagation. Lastly, normal 

double difference (NDD) filters were formed. Because of 

the additional rows required to form NDD filters, the 

selected channel sizes were L=11, 6 and 4. Thus, a total of 

15 classic spatial filters were investigated. 

 

3. RESULTS 

 

Fig. 3 shows sample results from the constant-force trials 

using a 5-channel, bipolar electrode montage. Table I shows 

the complete summary results for all montages and number 

of EMG channels studied. Fig. 4 shows sample results from 

the slowly force-varying (ramp) trials using a 13-channel 

monopolar montage. Table II shows the complete summary 

results. Taken together, the results suggest that the 

montages known to be more spatially selective (LDD and 



 
Fig. 3.  Constant-force trial sample EMG-force test results of 

estimated (jagged blue line) and actual (solid red line) force vs. 

time using L=5 bipolar montage. Subject WZ04, trials 01–08. 

 

 

TABLE I 

CONSTANT-FORCE TRIAL AVERAGE RMS TEST ERROR RESULTS 

(%MVCF) 

 

EMG Channels 

(L) 

Spatial Filter 

Mono Bipolar LDD NDD 

13 (11 for NDD) 9.25 8.03 10.02 10.03 

7 (6 for NDD) 8.95 8.99  8.64 10.20 

5 8.34 7.22 10.31 — 

4 7.82 8.43  8.17  8.82 

 

 

 
Fig. 4.  Slowly force-varying (ramp) force trial sample EMG-

force test results of estimated (jagged blue line) and actual (solid 

red line) force vs. time using L=13 monopolar montage. Subject 

WZ09, trials 26, 27, 36, 37. 

 

TABLE II 

SLOWLY FORCE-VARYING (RAMP) TRIAL AVERAGE RMS TEST 

ERROR RESULTS (%MVCF) 

 

EMG Channels 

(L) 

Spatial Filter 

Mono Bipolar LDD NDD 

13 (11 for NDD) 4.41 5.49 5.97 5.51 

7 (6 for NDD) 4.51 5.68 5.73 5.58 

5 4.69 5.37 5.91 — 

4 4.84 5.45 5.99 5.51 

 

 NDD) did not produce lower EMG-force estimation errors; 

in fact, their errors were generally higher. There was also 

not a strong trend for lower errors as the number of EMG 

channels was increased. The constant-force results seem to 

show higher average errors overall, perhaps due to the small 

duration of signal (5 seconds) available for training [24]. 

Given the small number of subjects, statistical comparisons 

were not pursued. 

 

4. DISCUSSION AND CONCLUSIONS 

 

The EMG-force errors found in this study (ranging from 

4.21 to 10.20 %MVCF) are similar to errors found in studies 

of other joints (c.f., [24]). This outcome is significant, since 

there is currently no consensus within the literature that 

multiple degrees of freedom of proportional control are 

available—at least in intact subjects—to relate forearm 

electrical activity to fingertip forces. Further, these results 

suggest that there may be no obvious advantage to high-

resolution (and high channel count) electrode arrays and 

spatial montages. Such arrays are thought to reduce EMG 

crosstalk (undesired recording of more distant muscles away 

from the recording site). Crosstalk is thought to confound 

EMG-force identification, although blind source separation 

techniques have been attempted to resolve this problem 

[25]. If high resolution arrays provide little or no advantage, 

then standard electrode hardware might be used instead. 

Such hardware is simpler, less expensive and more readily 

available. In fact, existing commercial high resolution 

arrays are not suitable (or designed) for use in commercial 

prostheses. 

The sample size used in this study was small and 

primarily intended as part of a pilot study. While the results 

are encouraging, a number of limitations exist, including: 

the lack of dynamics in the contraction forces, the limitation 

of constant-posture contractions, the omission of models 

that incorporate the thumb (necessary for many hand 

actions/grips) and the limited model forms studied. 

In summary, EMG signals were acquired from the 

extensor and flexor muscles of the forearm during constant-

posture contractions and related to the force produced in the 

four fingers (index, middle, ring and pinky). Various 

conventional electrode montages and number of EMG 

channels were considered. Over a range of contraction 

forces spanning 30% MVC extension to 30% MVC flexion, 

RMS EMG-force error ranged from 4.21–10.20 %MVCF, 

depending on the montage and number of channels. Results 

were encouraging for finger EMG-force applications in 

prosthesis control. 
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