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Abstract—This paper analyzes the performance of passive time delay
estimation with bandpass signals and generalizes the results of Weiss and

Weinstein by considering a more general bandpass signal model with a

parameter that allows for increasing the mean-squared bandwidth of

the bandpass signal with respect to conventional flat bandpass signals.
Analysis of the modified Ziv-Zakai lower bound shows (i) performance is

typically improved at moderate to high signal to noise ratios due to the

increased mean-squared bandwidth of the split bandpass signal but (ii)
performance is typically worse at moderate to low signal to noise ratios

due to increased ambiguities.

Index Terms—time delay estimation, bandpass signals, maximum
likelihood estimation

I. INTRODUCTION

This paper considers the effect of bandpass signal design on the

performance of passive time delay estimation. Fundamental limita-

tions of passive time delay estimation for narrow-band and wide-band

systems were studied in [1] and [2], respectively. While this work was

based on a tight lower bound called the “modified Ziv-Zakai lower

bound” which can be generally applied to any signal used for delay

estimation, the analysis in [1], [2] focused primarily on spectrally flat

bandpass signals with constant signal-to-noise ratio (SNR) over the

band of interest such that

SNR(Ω) =

{

SNR |Ω± Ω0| ≤ W/2

0 otherwise.
(1)

where Ω0 is the carrier frequency (rad/sec) and W is the bandwidth

(rad/sec) of the bandpass signal, respectively. Under this assumption,

Weiss and Weinstein derived several elegant results including SNR

thresholds that divide passive time delay estimation performance into

three distinct operating regimes: (i) the the “no-information” regime

with performance governed by a priori delay knowledge at low SNRs,

(ii) the “ambiguity-dominated” regime with performance governed by

the Barankin bound at moderate SNRs, and (iii) the “ambiguity-free”

regime with performance governed by the Cramer-Rao lower bound

at high SNRs. These regimes are notionally illustrated in Fig. 1.

The radar literature has also considered the fundamental limitations

of time delay estimation, primarily focusing on the ambiguity-

dominated regime [3], [4]. A well-known result states that the mean-

squared error of time delay estimates is lower bounded by

σ2 ≥ 1

2β2E/N0
(2)

where E/N0 is the post-integration SNR and

β2 =

∫∞
−∞(2πf)2|S(f)|2 df
∫∞
−∞ |S(f)|2 df (3)

This material is based upon work supported by the NAVAL SEA SYSTEMS

COMMAND under Contract No. N00024-13-D-6400, Task Order #0022 and
by the National Science Foundation awards CCF-1302104 and CCF-1319458.
Distribution Statement A — Approved for Public Release; Distribution
Unlimited

no information

post-integration SNR (dB)

m
e

a
n

-s
q

u
a

re
d

 e
rr

o
r 

(d
B

) Barankin bound

(ambiguity-dominated)

CRLB

(ambiguity-free)

Fig. 1. Three operating regimes of passive time-delay estimation.

is the mean-squared bandwidth of the signal used for delay es-

timation where f = Ω
2π

. For a signal with a flat spectrum on

Ω ∈ [−W/2,W/2] and zero otherwise, it can be straightforwardly

verified that β2 = W 2/12. Denoting T as the signal duration and

R =
(

WT
2π

)

SNR = E/N0 as the post-integration SNR for the flat

bandpass signals in (1), we can rewrite (2) as

σ2 ≥ 6

W 2R
(4)

which is consistent with the Barankin bound in [1], [2] for post-

integration SNRs in the ambiguity-dominated regime.

The general result in (2) naturally suggests that delay estima-

tion performance can be improved by increasing the mean-squared

bandwidth β2. This can be achieved in the context of [1], [2] by

simply increasing the bandwidth W . Increasing the bandwidth of the

delay estimation signal may not be possible in some circumstances,

however. In a setting where W is considered to fixed, one can still

increase the mean-squared bandwidth with respect to the flat bandpass

signals considered in [1], [2] by pushing the spectral content of the

delay estimation signal to the extents of the available spectrum. In

the limit, by transmitting tones at Ω ∈ {−Ω0 ± W/2,Ω0 ±W/2},

the mean-squared bandwidth becomes β2 → W 2/4 and the lower

bound on the delay estimation MSE improves by a factor of 3.

The primary question we consider in this paper is, given a fixed

carrier frequency Ω0 and signal bandwidth W , how does the mean-

squared bandwidth β2 affect the overall delay estimation performance

in all three regimes shown in Fig. 1? Based on (2), we can expect the

performance to improve in at least some portion of the ambiguity-

dominated regime. But what are the tradeoffs, how are the transi-

tion regions affected, and how is the performance affected in the

ambiguity-free and no-information regimes?

To answer these questions, we analyze the delay estimation perfor-

mance of “split bandpass” signals shown in Fig. 2. These signals can

be considered a generalization of the signals considered in [1], [2]

and have an additional parameter B ∈ (0,W/2] that allows control of



the mean-squared bandwidth of the signal. Note that the spectrum of

the split bandpass signal is identical to the spectrum of the bandpass

signals considered in [1], [2] when B = W/2. By decreasing B
while holding W and the time-bandwidth product 2BT fixed, we

can analyze the effect of increasing the mean-squared bandwidth on

the MSE of delay estimation relative to the conventional flat bandpass

signals in (1) over all three operating regimes.

noise level

−Ω0 Ω0

Ω

W

B

SNR

Fig. 2. “Split bandpass” spectrum.

Using the modified Ziv-Zakai lower bound, our results show that

decreasing B typically achieves two effects: (i) it improves the MSE

over a certain range of post-integration SNRs in the ambiguity-

dominated regime and (ii) it pushes the transition to from the

ambiguity-dominated regime to the the ambiguity-free regime in

Fig. 1 left so that the CRLB is achieved at lower post-integration

SNRs than with signals of the form in (1). These performance

gains come with a tradeoff, however. For a certain range of low to

moderate post-integration SNRs, the delay estimation performance of

signals with increased mean-squared bandwidth can be considerably

worse than the Barankin bound in (4) for signals of the form

of (1). Moreover, choosing very small values for B (effectively

maximizing the mean-squared bandwidth) leads to generally worse

delay estimation performance except at very high post-integration

SNRs. Intuitively, this is caused by the increased ambiguities inherent

in split bandpass signals with small B. Hence, the applicability of

split bandpass signals for passive delay estimation is primarily for

systems with controlled moderate to high post-integration SNRs.

Applications for these results include ranging [5], synchronization

[6], [7], and distributed wireless communication systems including

distributed beamforming [8], [9] and distributed nullforming [10].

II. MODIFIED ZIV-ZAKAI LOWER BOUND

The results in this paper comparing the delay estimation perfor-

mance with conventional flat bandpass signals and split bandpass

signals rely primarily on the “modified Ziv-Zakai” lower bound

derived in [1], [2]. The modified Ziv-Zakai lower bound is given

as

σ2 ≥ 1

D

∫ D

0

xG[(D − x)Pe(x)]dx. (5)

In (5), the term σ2 denotes the delay estimation MSE, D denotes

the maximum delay (signals are known a priori to arrive with a

delay bounded in [0, D]), Pe(x) is the minimum probability of error

(achievable by a likelihood ratio test) for deciding between delay τ0
and delay τ1 where τ1 − τ0 = x, and

G[f(x)] = max
x≤t≤D

f(t) (6)

is an operator that fills in the valleys of the function f(x) so that

G[f(x)] is monotonically decreasing. The bound in (5) is general:

there are no assumptions about the underlying signals.

To facilitate analysis, we assume the time-bandwidth product of

the delay estimation signal is significantly larger than 1. Under this

assumption, it was shown in [1], [2] that

Pe(x) ≥ P e(x) = exp {−d(x)} ·Q
(

√

c(x)
)

where Q(·) is the standard Q-function tail probability of the Gaussian

distribution and

c(x) :=
T

π

∫ ∞

0

SNR(Ω) sin2(Ωx/2) dΩ (7)

d(x) :=
T

4π

∫ ∞

0

[

SNR(Ω) sin2(Ωx/2)
]2

dΩ (8)

Note that the integrals in (7) and (8) are both definite under the

conventional bandpass and split bandpass signal models since both

models have finite spectral support. The following sections analyze

(7) and (8) for the conventional flat bandpass and split bandpass

system models, respectively.

1) Conventional Flat Bandpass Signal Model: The conventional

flat bandpass signal model is comprehensively analyzed in [1], [2].

We will summarize just the main results here to provide context for

the analysis of the split bandpass model in the next section.

Since the conventional bandpass signal model specifies a constant

SNR(Ω) in the passband according to (1), it is straightforward to

calculate.

cflat(x) = R (1− SW (x/2) cos(Ω0x))

dflat(x) =
πR2

8WT
(3− 4SW (x/2) cos(Ω0x) + SW (x) cos(2Ω0x))

with R denoting the post-integration SNR and SW (x) := sin(Wx)
Wx

.

The results in [1], [2] are facilitated by analyzing cflat(x) and

dflat(x) in two specific cases: (i) when x is close to zero and (ii)

when x = xn = 2π
Ω0

n for integer n. In the former case, Maclaurin

series approximations can be applied to write

cflat(x) ≈ R
Ω2

0

2
x2 = c2x2

(small x)

dflat(x) ≈ R2 2π

8WT

Ω4
0

4
x4 = d4x4

(small x)

In the latter case, when x = xn = 2π
Ω0

n, the cos(Ω0x) and

cos(2Ω0x) terms become one in the expressions for cflat(x) and

dflat(x). Using the bounds x− x3

3
≤ sin(x) ≤ x, we can write

cflat(xn) ≤
W 2

24
Rx2

n = c̃2x2
n (9)

dflat(xn) ≤
W 3π

T · 15 · 26R
2x4

n = d̃4x4
n (10)

After several additional approximations (the reader is referred to

Appendix C of [2] for the full details), Weiss and Weinstein present

the delay estimation MSE lower bound

σ2 ≥ 1

c2

∫ c̃T0

0

x exp
{

−(dx/c)4
}

Q(x)dx

+
1

c̃2

∫

√
R

c̃T0

x exp
{

−(d̃x/c̃)4
}

Q(x) dx+
D2

6
Q(

√
R)

(11)

where T0 = 2π
Ω0

. Assuming a sufficiently large time-bandwidth

product, the three regimes shown in Fig. 1 can be characterized

directly from this last expression as follows:

1) When R ≪ 1, the quantity c̃T0 = π W
Ω0

√

R
6

is close to zero

and the dominant term is the third term. In this case, we have

σ2 ≈ D2

6
Q(

√
R) ≈ D2

12
(12)

which corresponds to the “no information” bound.

2) When 1 ≪ R ≪ Ω2

0

W2 , the quantity c̃T0 = π W
Ω0

√

R
6

is still

small. The first and third terms are negligible and the dominant



term is the second term. In this case, we have

σ2 ≈ 1

c̃2

∫

√
R

c̃T0

x exp
{

−(d̃x/c̃)4
}

Q(x) dx

≈ 24

W 2R

∫ ∞

c̃T0

xQ(x)dx

≈ 24

W 2R
· 1
2
Q (c̃T0)

≈ 6

W 2R

which corresponds to the Barankin bound in the ambiguity-

dominated regime and is consistent with (4).

3) When R ≫ Ω2

0

W2 , the quantity c̃T0 = π W
Ω0

√

R
6

is large and the

dominant term is the first term. In this case, we have

σ2 ≈ 1

c2

∫ c̃T0

0

x exp
{

−(dx/c)4
}

Q(x) dx

≈ 2

Ω2
0R

∫ ∞

0

xQ(x) dx

≈ 1

2Ω2
0R

which corresponds to the ambiguity-free regime and the CRLB.

The critical transition from the ambiguity-dominated regime to the

ambiguity-free regime approximately begins when Q(c̃T0) = 1/4
and approximately ends when 12

W2R
Q(c̃T0) =

1
2Ω2

0
R

. Substituting c̃

from (9), we can write the approximate beginning and end of the

transition region respectively as

R′
flat =

6(Q−1(1/4))2

π2

(

Ω0

W

)2

= f ′(Ω0/W ) (13)

R′′
flat =

6

π2

(

Ω0

W

)2 [

Q−1

(

W 2

24Ω2
0

)]2

= f ′′(Ω0/W ) (14)

As shown in Section IV, these approximate beginning and ending

points of the critical transition region tend to be quite accurate, at

least in the cases tested in this paper.

2) Split Bandpass Signal Model: This section leverages the anal-

ysis in the previous section to characterize the performance limits

of the split bandpass signal model and determine the tradeoffs in

increasing the mean squared bandwidth by pushing the spectral

content of the signal to the extents of the available spectrum.

For the split bandpass signal model shown in Fig. 2, SNR(Ω) for

Ω ≥ 0 is non-zero and constant on Ω ∈ [Ω0 −W/2,Ω0 −W/2 +
B]∪ [Ω0+W/2−B,Ω0+W/2]. Straightforward calculations result

in

csplit(x) = R (1− SB(x/2) cos((W −B)x/2) cos(Ω0x))

dsplit(x) =
πR2

16BT

[

3− 4SB(x/2) cos((W −B)x/2) cos(Ω0x)

+ SB(x) cos((W −B)x) cos(2Ω0x)
]

with SB(x) := sin(Bx)
Bx

and R = 2BT
2π

SNR.

For x close to zero, we can use Maclaurin series approximations

to write

csplit(x) ≈ R
Ω2

0

2
x2 = c2x2

dsplit(x) ≈ R2 2π

16BT

Ω4
0

4
x4 = d4x4

When x = xn = 2π
Ω0

n, we can use the bounds sin(x) ≥ x− x3

3
and

cos(x) ≥ 1− x2

2
to write

csplit(xn) ≤ R

(

1−
(

1− B2x2
n

24

)(

1− (W −B)2x2
n

8

))

= R

((

B2 + 3(W −B)2

24

)

x2
n − 3B2(W −B)2

(24)2
x4
n

)

≤ R

(

B2 + 3(W −B)2

24

)

x2
n

= R
β2

2
x2
n

= c̃2x2
n (15)

where the result on line 4 follows from the fact that the mean-squared

bandwidth β2 = B2+3(W−B)2

12
for the split bandpass signal model.

A similar analysis can be performed on dsplit(x) at x = xn to write

dsplit(xn) ≤ (W 5 + 8(W/2−B)5)π

TB2 · 15 · 28 R2x4
n = d̃4x4

n.

All of these results can be shown to agree with the results for the

conventional flat bandpass signal model when B = W/2.

Assuming a sufficiently large time-bandwidth product, the analysis

and approximations in the previous section for the conventional flat

bandpass signal model revealed that the operating regimes are only

a function of c and c̃. Note that c is identical for conventional flat

bandpass and split bandpass signal models but c̃ differs in that W2

12

is replaced by β2. Hence, the results in the previous section for the

conventional bandpass signal model can be translated to the split

bandpass signal model by replacing W2

12
with β2. The operating

regimes and achieved MSE in these regimes are summarized as:

1) R ≪ 1: σ2 ≈ D2

12
(same as conventional flat bandpass).

2) 1 ≪ R ≪ Ω2

0

12β2 : σ2 ≈ 1
2β2R

.

3) R ≫ Ω2

0

12β2 : σ2 ≈ 1
2Ω2

0
R

(same as conventional flat bandpass).

Similarly, the critical transition region approximate beginning and end

points from ambiguity-dominated to ambiguity-free operation can be

written as

R′
split = f ′

(

Ω0√
12β

)

(16)

R′′
split = f ′′

(

Ω0√
12β

)

. (17)

Defining the relative mean-squared bandwidth α := β2

W2/12
∈ [1, 3),

we can compute the relative SNR of the beginning and end of the

critical transition region for split bandpass signals with respect to

conventional bandpass signals as

R′
split

R′
flat

=
1

α

R′′
split

R′′
flat

=
1

α





Q−1
(

α W2

24Ω2

0

)

Q−1
(

W2

24Ω2

0

)





2

.

As a numerical example, suppose we have a fractional bandwidth
W
Ω0

= 1
100

and a split bandpass signal with B
W

= 1
10

. The relative

mean-squared bandwidth can be computed as α = 2.44, which

implies that the start of the critical transition region is shifted to

the left by approximately 3.9 dB and the end of the critical transition

region is shifted to the left by approximately 4.3 dB. This example

shows that, in addition to the expected performance improvement

of split bandpass signals in the ambiguity-dominated regime, the



transition to the ambiguity-free regime can occur at lower post-

integration SNRs than with conventional bandpass signals. This effect

will be numerically confirmed in Section IV using the modified Ziv-

Zakai lower bound and Monte-Carlo tests of a maximum likelihood

delay estimator.

Numerical tests show that the ambiguity-dominated regime for

split bandpass signals actually has two sub-regimes not revealed by

the prior analysis. To better understand these sub-regimes, we can

assume the carrier at Ω0 provides no useful information and consider

delay estimation in regime (2) with a downmixed version of the split

bandpass signal such that

SNR(Ω) =

{

SNR |Ω± Ω′
0| ≤ B/2

0 otherwise.
(18)

with Ω′
0 = W−B

2
. Observe that this downmixed signal is a conven-

tional flat bandpass signal with bandwidth B and carrier frequency

(W − B)/2. The regimes follow directly from the analysis in

Section II-1 as:

1) R ≪ 1: σ2 ≈ D2

12
.

2) 1 ≪ R ≪ 3(W−B)2

B2 : σ2 ≈ 6
B2R

.

3) R ≫ 3(W−B)2

B2 : σ2 ≈ 2
(W−B)2R

.

The implicit assumption
3(W−B)2

B2 ≫ 1 implies that the mean

squared bandwidth can be approximated as

β2 =
B2 + 3(W −B)2

12
≈ (W −B)2

4
.

With this approximation, observe that regime (3) of the downmixed

signal model is consistent with the results in regime (2) for the split

bandpass signal model. Regime (2) of the downmixed signal model,

however, reveals the additional ambiguities caused by narrowing the

bandwidth B of the split bandpass signal: if the post-integration

SNR is not sufficiently high, performance is dominated by B-

ambiguities (with MSE 6
B2R

) rather than β-ambiguities (with MSE
2

(W−B)2R
≈ 1

2β2R
≪ 6

B2R
). The transition from the B-ambiguity-

dominated regime to the β-ambiguity dominated regime begins at

f ′((W −B)/(2B)) and ends at f ′′((W −B)/(2B)), where f ′ and

f ′′ are defined in (13) and (14), respectively.

To fully characterize the performance limits of delay estimation

with split bandpass signals, we summarize the preceding analysis by

listing the operating regimes and the transition regions as

σ2 ≈



















































D2

12
R < 0.4613

transition 0.4613 < R < R2

6
B2R

R2 < R < f ′((W −B)/(2B))

transition f ′((W −B)/(2B)) < R < f ′′((W −B)/(2B))
1

2β2R
f ′′((W −B)/(2B)) < R < f ′(Ω0/(

√
12β))

transition f ′(Ω0/(
√
12β)) < R < f ′′(Ω0/(

√
12β))

1
2Ω2

0
R

R > f ′′(Ω0/(
√
12β))

where R2 is the larger solution to the transcendental equation

R2Q(R2) =
(

6
BD

)2
. If BD is small, a solution to this equation

may not exist, which implies that the B-ambiguity-dominated regime

transitions directly into the no-information regime. Tabulated values

for R2 can be found in [2].

III. MAXIMUM LIKELIHOOD ESTIMATOR

To confirm the bounds and approximations derived in the previous

section are accurate indicators of the delay estimation performance

that can be achieved in practice, this section describes an implemen-

tation of a maximum likelihood delay estimator. Numerical results in

Section IV verify this delay estimator achieves a MSE close to the

bounds derived in the previous section in the cases considered.

Given a template signal s(t) and an observation

y(t) = as(t− τ ) + w(t)

where 0 ≤ τ ≤ D is a bounded delay and w(t) is noise with flat

spectrum in the support of the template signal’s spectrum, it is well-

known, e.g., [11], that the maximum likelihood estimate of τ can be

calculated by correlating the template signal s(t) with the observation

y(t) and setting τ̂ equal to the peak of the correlation, i.e.,

τ̂ = arg max
0≤ν≤D

∫

s(t− ν)y(t) dt. (19)

In practice, we can’t compute (19) directly since we typically have

a discrete-time observation with some sampling rate fs rather than a

continuous-time observation. Instead, we can compute

k̂ = arg max
− D

2Ts
≤ℓ≤ D

2Ts

∑

k

s[k − ℓ]y[k] (20)

where y[k] = y(kTs) and s[k − ℓ] = s((k − ℓ)Ts) with Ts = 1
fs

.

The delay estimate from the discrete-time observation is then

τ̂ = k̂Ts. (21)

In general, the discrete-time correlation in (20) is an unsatisfactory

substitute for the continuous-time correlation in (19) because (i) the

sampling period effectively quantizes the delay estimates and sets a

floor on the achievable performance of the delay estimator and (ii) the

discrete-time delay estimate may select an incorrect correlation peak

in signals with quasi-periodic correlations even at infinite SNR since

the samples may miss the actual peaks of the correlation function.

These problems can be overcome to some extent by oversampling

or interpolating the discrete-time signal, but this can significantly

increase the computational complexity of the delay estimator. In this

section, we describe an alternative approach to maximum likelihood

delay estimation with discrete-time signals when the template signal

is a modulated baseband signal of the form

s(t) = cos(Ω0t)u(t)

where u(t) is a bandlimited signal such that U(Ω) = 0 for all |Ω| ≥
Ω0.

The template signal in discrete time can be expressed as

s[k] = [cos(Ω0t)u(t)]t=kTs
= cos(ω0k)u[k]

where ω0 = Ω0Ts is the normalized carrier frequency in radi-

ans/sample

The discrete-time observation with unknown delay 0 ≤ τ ≤ D
can be expressed as

y[k] = [cos(Ω0(t− τ ))u(t− τ )]t=kTs

= cos(ω0(k − τfs))u(kTs − τ )

for k = 0, . . . ,K − 1.

The discrete-time delay estimate k̂ is computed according to (20).

To refine the delay estimate, we define

si[k, ℓ] = cos(ω0(k − ℓ))u[k − ℓ]

sq[k, ℓ] = sin(ω0(k − ℓ))u[k − ℓ].

Using k̂ from (20), we can compute

zi[k̂] =

K−1
∑

k=0

y[k]si[k, k̂] ≈ cos(ω0(τfs−k̂))

2

K−1
∑

k=0

u(kTs−τ )u[k−k̂]



where the approximation results from the the fact that
∑K−1

k=0 cos(ω0(2k − τfs − k̂))u(kTs − τ )u[k − k̂] ≈ 0. Similarly,

we can calculate

zq[k̂] =
K−1
∑

k=0

y[k]sq [k, k̂] ≈ sin(ω0(τfs−k̂))

2

K−1
∑

k=0

u(kTs−τ )u[k−k̂]

We can then compute

θ = tan−1

(

zq[k̂]

zi[k̂]

)

(22)

= tan−1

(

sin(ω0(τfs − k̂))

cos(ω0(τfs − k̂))

)

= ω0(τfs − k̂).

The refined delay estimate can then be computed as

τ̂ =

(

k̂ +
θ

ω0

)

Ts (23)

where θ is calculated according to (22) and k̂ is from (20).

A remark: Note that a four-quadrant arctangent will result in −π ≤
θ ≤ π. Also note that ω0 < π if the sampling frequency is chosen

to avoid aliasing. Hence, the “delay refinement” θ
ω0

must fall in the

interval
θ

ω0
∈
[

−π

ω0
,
π

ω0

]

⊇ [−1,+1].

In other words, the delay refinement can (at a minimum) adjust the

discrete-time delay estimate k̂ by a full sample in either direction.

The adjustment can be even larger if the sampling rate is selected so

that the normalized carrier frequency ω0 = Ω0

fs
is small. In any case,

if the discrete-time delay estimate k̂ is sufficiently close to τfs such

that

|k̂ − τfs| ≤ π

ω0
(24)

then the refinement can form an accurate estimate of the true delay τ .

If, on the other hand, k̂ is such that (24) is not satisfied, then the

refinement step can not result in an accurate estimate of the true

delay τ .

To address this problem, we can consider a modification of the

procedure above to provide N distinct candidate discrete-time delays

k̂1, . . . k̂N . The number of candidate delays is a parameter that can

be selected to allow the maximum likelihood delay estimator to

find a discrete-time delay estimate sufficiently close to the actual

delay without excessive additional computational complexity. This

number can be small if the correlation function does not have strong

periodicity but should be larger when the correlation function is quasi-

periodic. A delay refinement is then computed for each of these

candidate discrete-time delays, resulting in N candidate continuous-

time delay estimates τ̂1, . . . , τ̂N . The maximum likelihood delay

estimate is then selected from the candidate delay estimates according

to

τ̂ = arg max
ν∈{τ̂1,...,τ̂N}

∑

k

s(kTs − ν)y[k]. (25)

Note that computation of (25) requires re-calculation of the known

template signal s(t) at each of the candidate continuous-time delays.

IV. NUMERICAL RESULTS

This section presents numerical results verifying the analysis in

Section II and also demonstrating the efficacy of the maximum

likelihood delay estimator developed in Section III.

Figure 3 shows the directly integrated modified Ziv-Zakai lower

bound, performance limits in each operating regime, and the achieved

maximum likelihood delay estimator performance for a conventional

flat bandpass signal model with carrier frequency Ω0 = 2π · 4000,

fractional bandwidth W
Ω0

= 1
100

, time-bandwidth product TW
2π

= 50,

and maximum delay D = 105·T0. Observe that the directly integrated

modified Ziv-Zakai lower bound closely follows the three regimes

predicted by the analysis. The maximum likelihood delay estimator

also closely follows the bound. The delay estimator with discrete-

time correlation (no refinement) clearly shows the expected error

floor caused by quantization of the delay estimates at the simulation

sampling rate fs = 16 kHz. The effect of multiple candidate

delays on the performance of the delay estimator is only observed

in the critical transition region. With 2 or more candidate delays,

the maximum likelihood delay estimator reaches the ambiguity-free

regime at a slightly lower post-integration SNR than with a single

candidate delay.
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Fig. 3. Maximum likelihood delay estimation versus directly integrated
modified Ziv-Zakai lower bound for a conventional flat bandpass signal with
W
Ω0

=
1

100
. Black dashed lines correspond to the thresholds of the transition

regions and the performance in each regime as derived in Section II-1.

Figure 4 shows a similar result for the split bandpass signal model

with identical parameters as Fig. 3 and B
W

= 1
10

. The magenta

dashed lines correspond to the thresholds of the transition regions

and the performance in each regime as derived in Section II-2. The

black dashed lines are copied from Fig. 3 for the conventional flat

bandpass signal model for comparison. We see that the directly inte-

grated modified Ziv-Zakai lower bound closely follows the regimes

predicted by the analysis and the maximum likelihood delay estimator

also closely follows the bound. As predicted by the analysis, we also

see the two sub-regimes of the ambiguity-dominated regime and the

transition from B-ambiguity-dominated to β-ambiguity dominated

behavior between 25-30 dB post-integration SNR. Most importantly,

we see that the split bandpass signal provides better performance

than the conventional flat bandpass signal for delay estimation for

post-integration SNRs between approximately 30 dB and 50 dB.

The performance gains are significant especially in range of post-

integration SNRs where the split bandpass signal operates in the

ambiguity-free regime while the conventional flat bandpass signal

is still in the ambiguity-dominated regime (approximately 45-50 dB

post-integration SNR).
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Fig. 4. Maximum likelihood delay estimation versus directly integrated
modified Ziv-Zakai lower bound for a split bandpass signal with W

Ω0

=
1

100

and B
W

=
1
10

. Magenta dashed lines correspond to the thresholds of
the transition regions and the performance in each regime as derived in
Section II-2.

Figure 5 shows the relative delay estimation MSE of split bandpass

signals with respect to conventional flat bandpass signals for W
Ω0

=
1

100
. The relative MSE in these results is calculated by computing the

ratio of directly integrated modified Ziv-Zakai lower bounds for the

split bandpass and conventional flat bandpass signals. These results

show that split bandpass signals can improve performance in the

ambiguity-dominated regime with significant gains (exceeding three

orders of magnitude in this example) at moderate to high SNRs near

the transition to the ambiguity-free regime. The tradeoff, however,

is that delay estimation performance can be significantly worse than

conventional flat bandpass signals at moderate to low SNRs due to the

B-ambiguity-dominated regime as discussed in Section II-2. As B
W

decreases, the mean-squared bandwidth β2 increases, but the regime

in which the split bandpass signal outperforms the conventional flat

bandpass signal diminishes due to the increasing B-ambiguities. At

very small values of B
W

, the B-ambiguities dominate the performance

except at very high and very low post-integration SNRs.

V. CONCLUSION

This paper analyzed the performance of passive time delay es-

timation with split bandpass signals and developed a discrete-time

maximum likelihood delay estimator that achieves a MSE close to

the performance bounds. Our analysis showed that split bandpass

signals generally provide four regimes of operation: (i) no informa-

tion, (ii) B-ambiguity-dominated, (iii) β-ambiguity-dominated, and

(iv) ambiguity-free. By increasing the mean-squared bandwidth of

the split bandpass signals and maintaining a fixed time-bandwidth

product significantly larger than one, delay estimation performance

is typically improved at moderate to high post-integration SNRs and

the transition from ambiguity-dominated to ambiguity-free operation

occurs at lower SNRs. The tradeoff, however, is that performance

is typically worse at low SNR due to the increased ambiguities in

the B-ambiguity-dominated regime. Our results can be considered a

generalization of the analysis in [1], [2] and are consistent with the

results of Weiss and Weinstein when B = W/2.
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Fig. 5. Relative MSE of delay estimation using split bandpass signals for
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100
. Values less than one correspond to settings

in which delay estimation with split bandpass signals outperforms delay
estimation with conventional flat bandpass signals.
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