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Abstract—This paper considers a distributed wireless reception
system with M -ary phase shift keyed (M-PSK) modulated signals
in which two or more receivers exchange quantized information
about their observations to approximate a receive beamformer
and improve the signal to noise ratio with respect to single-user
reception. To reduce the throughput requirements of distributed
reception, previous work on this problem considered the exchange
of hard decisions among the nodes in the receive cluster with a
simple form of linear combining called “pseudo-beamforming”.
The previous work also assumed that the nodes in the receive
cluster had perfect channel estimates. This paper generalizes
the previous work by analyzing the performance of pseudo-
beamforming with imperfect channel estimates. While channel
estimation error degrades the performance of both ideal receive
beamforming (no quantization) and pseudo-beamforming, the
asymptotic analysis in this paper reveals the somewhat surprising
result that the SNR ratio between ideal receive beamforming and
pseudo-beamforming does not depend on the amount of channel
estimation error. The SNR ratio with channel estimation error
is identical to the previously derived SNR ratio without channel
estimation error. Numerical examples with a finite number of
receivers are also presented to confirm the analysis.

Index Terms—Distributed reception, receiver cooperation,
beamforming, channel estimation error, asymptotic analysis.

I. INTRODUCTION

This paper considers a distributed reception system as
illustrated in Fig. 1. A distant transmitter emits digitally
modulated signals which are received by the N nodes in the
receive cluster. Quantized versions of the received signals at
each node in the receive cluster are then exchanged among
the nodes through a wireless local area network and are
subsequently processed and combined at one or more nodes in
the receive cluster to increase the diversity and signal to noise
ratio [1]–[3]. While distributed reception has been used in a
variety of contexts, e.g., aperture synthesis for radio astronomy
and sensor fusion, the focus of this paper is on the use of
distributed reception for improving the reception of digitally
modulated signals.

A difficulty in practically implementing distributed recep-
tion systems, even with a modest number of receive nodes, is
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Fig. 1. Distributed reception scenario.

that the throughput requirements of the local area network
(LAN) used by the receive cluster to exchange quantized
versions of the received signal can be prohibitive. For example,
suppose that the distant transmitter employs 8-PSK modulation
with an information rate of 1 Mbit/s and a rate r = 2/3
code. The symbols are received at each receiver at a rate of
500 Ksymbols/s. For “ideal” receive beamforming, assuming
N = 10 receivers and 16-bit quantization of the in-phase and
quadrature observations, the LAN would need to support a
throughput of at least 500 · 103 × 16 × 2 × 10 = 160 Mb/s,
not including overhead. Motivated by this difficulty, [1]–[3]
considered the exchange of hard decisions among the nodes in
the receive cluster. Under the same parameters as the previous
example, the required LAN throughput for exchanging hard
decisions is only 500 · 103 × 3× 10 = 15 Mb/s.

It has been shown that this dramatic reduction in
LAN/backhaul throughput requirements can be achieved with-
out a significant loss of performance. For the low per-node
SNR regime of interest with large receive clusters, asymptotic
analysis of a suboptimal combining technique termed “pseudo-
beamforming” showed that distributed reception with hard
decision exchanges performs within 1-2 dB of ideal receive
beamforming, depending on the digital modulation format [3].

A critical assumption in all of the past work is that the
receive cluster has perfect channel estimates to facilitate
combining of the hard decisions. This assumption is clearly
optimistic, especially in the low per-node SNR regime of in-
terest with large receive clusters. It is of interest to understand
the effect of channel estimation error on distributed reception.
The effect of channel estimation error on distributed reception
systems with hard decision exchanges and M -ary phase shift



keyed modulation is particularly interesting since the channel
estimation errors have two effects: (i) channel phase errors
cause increased likelihood of hard decision errors and (ii)
channel magnitude errors cause combining errors. This is the
problem considered in this paper.

The effect of channel estimation error on digital commu-
nication systems is a classic problem [4]–[6], and continues
to be considered in a variety of contexts. For example, [7]
investigates the effect of imperfect channel estimation on the
bit-error-rate (BER) performance of amplify-and-forward (AF)
relay-assisted cooperative transmission. Related to the M -PSK
focus of this paper, several prior papers have investigated the
effect of imperfect carrier phase recovery on the performance
of M-PSK [8]–[16]. Since our focus is on distributed reception
and on combining demodulated and quantized M -PSK signals,
our analysis accounts for the effects of phase and magnitude
error in the channel estimates at the receivers.

The main contribution of this paper is an asymptotic analy-
sis of the effect of imperfect channel estimation in a distributed
reception system with M -ary PSK modulation. Our analysis
provides closed-form SNR expressions for both ideal re-
ceive beamforming and a suboptimal hard-decision combining
technique termed “pseudo-beamforming”. Our analysis shows
the expected effect that distributed reception performance
is degraded by channel estimation error, but also reveals
the somewhat surprising result that the SNR ratio between
ideal receive beamforming and pseudo-beamforming does not
depend on the amount of channel estimation error. Specifically,
for QPSK, the SNR ratio is 2

π , corresponding to a loss of
approximately 2 dB. For M -PSK with M →∞, the SNR ratio
is π

4 , corresponding to a loss of approximately 1 dB. Since
these SNR ratios are independent of the amount of channel
estimation error (and are identical to the SNR ratios with no
channel estimation error), our analysis reveals that channel
estimation error causes the identical amounts of performance
degradation in ideal beamforming and pseudo-beamforming
systems despite the fact that the channel estimation errors
manifests themselves quite differently in both systems.

The rest of the paper is organized as follows. Section II
describes the system model for the proposed scenario. In
section III we derive the channel estimation at the receiver.
Section IV describes our asymptotic SNR analysis for each
technique with and without channel estimation error. In section
V the numerical results from simulation is presented and
section VI is about the conclusions. The proofs for the lemma
1 and corollary 1 are given in Appendix A and B.

II. SYSTEM MODEL

We assume a block transmission scenario with blocks of
length n as in [3] and let N denote the number of receive
nodes in the cluster. The complex forward link channel to
receive node i in block m is denoted as hi[m] for i =
1, . . . , N and the vector channel for block m is denoted as
h[m] = [h1[m], . . . , hN [m]]>. Over each block, the forward
link channels are assumed to be constant but may change block
to block.

For clarity of exposition and to explore the effects of
channel phase and magnitude errors on distributed recep-
tion, we assume M -PSK modulation in the forward link.
The `th symbol in block m is denoted as X[m, `] for
` = 1, . . . , n and is assumed to be drawn equiprob-
ably from the PSK alphabet X = {x1, · · · , xM} ={
a, aej2π/M , aej4π/M , · · · , aej(M−1)2π/M

}
. The energy per

transmitted signal is denoted as Es = |X[m, `]|2 = a2. Given
an additive white Gaussian noise channel (AWGN) with power
spectral density N0/2 in the real and imaginary dimensions,
the complex baseband signal received at the ith receive node
for the `th symbol of block m can be written as

Ui[m, `] = hi[m]X[m, `] +Wi[m, `] (1)

for i = 1, . . . , N and ` = 1, . . . , n where Wi[m, `] ∼
CN (0, N0) is spatially and temporally independent and iden-
tically distributed (i.i.d.) proper complex Gaussian baseband
noise. We assume the noise variance is identical at each receive
node. The quantity ρi[m] = |hi[m]|2Es

N0
corresponds to the

signal-to-noise ratio (SNR) at receive node i for symbols
received in block m.

To facilitate distributed reception, it is assumed that the
receive cluster has an established LAN backhaul, either ad-
hoc or through infrastructure such as an access point, and that
LAN transmissions are reliable. The LAN is also assumed
to support broadcast transmission in which any single node
can send a message to all other nodes simultaneously. To
prevent any interruption in transmission over forward link, it
is assumed that LAN and forward link operating frequencies
differ from each other which enables the receive cluster to
send and receive over the LAN, and also receive signals
from transmitter at the same time. The LAN is also assumed
to support a sufficient throughput for the exchange of hard
decisions among all nodes in the receive cluster.

III. CHANNEL ESTIMATION

Unlike the prior work in [1]–[3], we do not assume hi[m]
is known perfectly here. To facilitate estimation of hi[m] at
receiver i, we assume some of the symbols in each transmitted
block are known. Suppose X[m, 1], . . . , X[m,P ] are known,
where P ≤ n. Then node i can estimate hi[m] by computing
a least squares solution toUi[m, 1]...

Ui[m,P ]

 =

X[m, 1]
...

X[m,P ]

hi[m] (2)

Ui[m] = X[m]hi[m] (3)

such that

ĥi[m] =
XH [m]Ui[m]

XH [m]X[m]
(4)



Substituting Ui[m] = hi[m]X[m, `]+Wi[m], we can write

ĥi[m] =
hi[m]XH [m]X[m] +XH [m]Wi[m]

XH [m]X[m]

= hi[m] +
XH [m]Wi[m]

XH [m]X[m]

= hi[m] + h̃i[m] (5)

where h̃i[m] ∼ CN (0, 2ρ) is a proper complex Gaussian
random variable with variance ρ in the real and imaginary
dimensions. Since the training sequence X[m] is known, we
can determine 2ρ by computing

var(h̃i[m]) = E

{∣∣∣∣XH [m]Wi[m, `]

XH [m]X[m]

∣∣∣∣2 |X[m]

}

=
XH [m]

XH [m]X[m]
(IN0)

X[m]

XH [m]X[m]

=
N0

XH [m]X[m]

=
N0

PEs
(6)

where the last result follows from our M -PSK assumption and
the fact that the length of X[m] is P .

IV. ASYMPTOTIC SNR ANALYSIS

In this section, we consider the case where N →∞ and the
per-node SNR goes to zero at a rate of 1

N so that the SNR of
an ideal receive beamformer combiner is finite and bounded
away from zero. We can suppress the block/symbol indices
and consider the scalar observation at receive node i as

Ui = hiX +Wi (7)

where X is drawn from an M -PSK constellation with |X|2 =
Es. For our asymptotic analysis, we will assume signal energy
Es = E (1)

s /N , i.e., the transmit power scales as 1/N , where
E (1)
s is the per-symbol transmit energy with one receiver. We

also assume P = NP (1), i.e., the training signal length scales
with N , where P (1) is the training signal length with one
receiver. Under this assumption, note that PEs is a constant.
Since N0 is also fixed, the variance of the channel estimation
errors is constant.

The following subsections analyze the performance of ideal
distributed receive beamforming and a suboptimal combining
technique called “pseudo-beamforming” with and without
channel estimation error.

A. Ideal Receive Beamforming: Perfect Channel Estimation

The output of ideal receive beamformer at node i is realized
by using unquantized observations Uj and is defined as

Ybf ≡ Yi =
∑
j∈P

√
ρiUj = α

∑
j∈P
|hj |Uj (8)

where ρi =
|hi|2Es
N0

and α =
√
Es
N0

.

For the ideal receive beamformer, we have the vector
observation

U = hX +W . (9)

Assuming no channel estimation error, the ideal receive beam-
former output is given as

Ybf = hHU = hHhX + hHW . (10)

The SNR of ideal receive beamforming (conditioned on the
channel realizations) can be computed as

SNRbf =

(
E
{
hHhX + hHW |X

})2
var {hHhX + hHW |X}

=
‖h‖4Es

hHE{WWH}h

=
‖h‖2Es
N0

. (11)

If we further assume an i.i.d. Rayleigh fading channel
such that hi ∼ CN (0, 2λ), then asymptotically we have
limN→∞

‖h‖2
N = 2λ. The asymptotic SNR is then

SNRbf →
2NλEs
N0

=
2λE (1)

s

N0
. (12)

B. Ideal Receive Beamformer: Noisy Channel Estimation

Now we consider ideal receive beamforming with channel
estimates of the form

ĥ = h+ h̃ (13)

where h̃ ∼ CN (0, 2ρI). The ideal receive beamformer output
with channel estimation error is given as

Ybfe = ĥHU = ĥH(hX +W )

=
(
h+ h̃

)H
(hX +W )

= hH(hX +W ) + h̃H(hX +W )

= Ybf + Ỹbf . (14)

Then, the SNR of ideal receive beamforming with channel
estimation error (conditioned on the channel realizations) can
be computed as

SNRbfe =

(
E
{
Ybf + h̃H(hX +W ) |X

})2
var
{
Ybf + h̃H(hX +W ) |X

} . (15)

Note that h̃ is independent of h and X . Since the channel
estimates were generated from different observations than the
ones used in the SNR calculations, h̃ is also independent
of W . Hence,

E
{
Ybf + h̃H(hX +W ) |X

}
= E {Ybf |X}

= ‖h‖2
√
Es (16)



and the numerator of this expression is unchanged from the
case with no channel estimation error. As for the denominator,
since Ybf and Ỹbf are independent, we have

var
{
Ybf + Ỹbf |X

}
= var {Ybf |X}

+ var
{
h̃H(hX +W ) |X

}
= ‖h‖2N0 + var

{
h̃H(hX +W ) |X

}
(17)

We can compute the second term as

var
{
h̃H(hX +W ) |X

}
= E

{
h̃H(hX +W )

× (hX +W )H h̃ |X
}
−
∣∣∣E{h̃H(hX +W ) |X

}∣∣∣2
= E

{
h̃H(hX +W )× (hX +W )H h̃ |X

}
(18)

where the second equality follows from the fact that h̃ is zero
mean and independent of the other terms in the expectation.
We can further compute

var
{
h̃H(hX +W ) |X

}
= EsE

{
h̃HhhH h̃ |X

}
+ E

{
h̃HWWH h̃ |X

}
= EshHE

{
h̃h̃H |X

}
h+ E

{
h̃HWWH h̃ |X

}
= Es‖h‖22ρ+ E

{
h̃HWWH h̃ |X

}
=
‖h‖2N0

P
+ E

{
h̃HWWH h̃ |X

}
(19)

The final expectation can be solved with iterated expectations
since h̃ and W are independent. We can write

E
{
h̃HWWH h̃ |X

}
= E

{
h̃HE

{
WWH |X, h̃

}
h̃ |X

}
= E

{
h̃H(N0I)h̃ |X

}
= N0E

{
h̃H h̃ |X

}
= N0N2ρ

=
N2

0N

PEs
. (20)

Putting it all together, we have

var
{
Ybf + h̃H(hX +W ) |X

}
=

‖h‖2N0 +
‖h‖2N0

P
+
N2

0N

PEs
. (21)

and hence

SNRbfe =
‖h‖2Es

N0 +
N0

P +
N2

0N
‖h‖2PEs

. (22)

Asymptotically, since P grows proportionally with N and PEs
is fixed, the middle term in the denominator vanishes. So for
large N with vanishing per-node SNR we can write

SNRbfe →
‖h‖2Es

N0 +
N2

0N
‖h‖2PEs

. (23)

Moreover, since limN→∞
‖h‖2
N = 2λ, Es = E(1)s

N , and P =
NP (1), it can be easily obtained that

SNRbfe →
2λE (1)

s

N0

(
1 + N0

2λP (1)E(1)s

) . (24)

The results in (11) and (23) allow us to compute the penalty
of channel estimation error in an ideal receive beamformer as
N →∞ as

Pbf =
SNRbf
SNRbfe

→ 1 +
N0

2λP (1)E (1)
s
. (25)

C. Pseudo-beamforming: Perfect Channel Estimation

Pseudo-beamforming is a simple but sub-optimal combining
technique where (8) is performed on the hard decisions from
each node. Specifically, the pseudo-beamformer combiner out-
put is

Ypbf ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P
|hj |Vj (26)

where Vj ∈ X for all j and are conditionally independent
given the transmitted symbol.

The asymptotic SNR of pseudo-beamforming for various
modulation formats was analyzed in [3]. The main results are
summarized here. First, the conditional mean of M -PSK hard
decisions can be calculated as

E[Vj |X = xl] =

(
Mρjsin

(
π
M

)
2
√
π

)
xl. (27)

Second, the conditional variance of with M -PSK hard deci-
sions in the low per-node SNR regime can be calculated as

var[Vj |X = xl] ≈ a2. (28)

These results allow us to compute the conditional mean and
variance of the pseudo-beamformer output with M -PSK hard
decisions. The conditional mean can be computed as

E[Ypbf |X = xl] = α
aM sin

(
π
M

)
2
√
N0π

||h||2xl. (29)

Similarly, the conditional variance of the pseudo-beamformer
output with M -PSK hard decisions in the low per-node SNR
regime can be computed as

var[Ypbf |X = xl] = α2a2||h||2 (30)

where we used the facts that ρj =
|hj |a√
N0

and
∑
j |hj |2 = ||h||2.

These results then imply

SNRpbf =
E[Ypbf |X = xl]

2

var[Ypbf |X = xl]

=
M2 sin2

(
π
M

)
||h||2Es

4N0π
(31)

=
M2 sin2

(
π
M

)
4π

SNRbf . (32)



With QPSK, we have M = 4 and
M2 sin2( πM )

4π = 2
π . This then

implies

SNRQPSK
pbf ≈ 2

π
SNRbf . (33)

For large M , we can use small angle approximation which
means we can say sin

(
π
M

)
= π

M and it results in
M2 sin2( πM )

4π → π
4 . Hence

lim
M→∞

SNRM−PSK
pbf ≈ π

4
SNRbf . (34)

D. Pseudo-beamforming: Noisy Channel Estimation
The effect of channel estimation error on pseudo-

beamforming has two effects: (i) channel phase errors cause
increased likelihood of hard decision errors and (ii) channel
magnitude errors cause combining errors. To model the effect
of channel estimation error on the decision variable at an
individual receiver, we first define the perfect and noisy
channel estimate, respectively, as

hj = |hj |ejθ (35)

ĥj = |ĥj |ejθ̂. (36)

Lemma 1 provides expressions for the conditional mean and
variance of hard decisions at an individual receiver with low
per-node SNR in presence of channel estimation error.

Lemma 1. For a forward link with M − PSK modulation
with M ≥ 4 and even, at low per-node SNR we have

E[Vj |X = xl] =

(
Mρj |h| sin

(
π
M

)
2
√
πE[|ĥ|]

)
xl (37)

and the variance is

var[Vj |X = xl] ≈ a2. (38)

A proof for this lemma is given in Appendix A. As it can
be seen from the proof, the calculation of mean and variance
of hard decisions do not depend on any specific phase error
distribution. In a low per-node SNR regime and for a large N ,
since ρj becomes very small, it is expected that the mean goes
to zero. Also, the variance given in (38) serves as an upper
bound for the variance of hard decisions as N gets large.

The next step is to find the mean and variance of the pseudo-
beamformer output in order to be able to calculate its SNR
performance. The pseudo-beamformer output with imperfect
channel estimates is given as

Ypbfe = α
∑
j∈N
|ĥj |Vj . (39)

Corollary 1 uses the results obtained from lemma 1 to provide
expressions for the conditional mean and variance of the
pseudo-beamformer output.

Corollary 1. Given the channel information hj and input
symbol X = xl, the mean and variance of pseudo-beamformer
output can be computed as

E[Ypbfe|X = xl] = α
aM sin

(
π
M

)
2
√
πN0

||h||2xl (40)

and the variance is

var[Ypbfe|X = xl] = α2a2
(
||h||2 + N0N

PEs

)
(41)

A proof for this corollary is provided in Appendix B. With
the results of Corollary 1, we now can compute the SNR of
pseudo-beamforming with channel estimation error as

SNRpbfe =
|E[Ypbfe|X = xl]|2

var[Ypbfe|X = xl]

=
α2 a

2M2 sin2( πM )
4πN0

||h||4x2l
α2a2

(
||h||2 + N0N

PEs

)
=
M2 sin2

(
π
M

)
4π

||h||2Es
N0 +

N2
0N

||h||2PEs

(42)

→
M2 sin2

(
π
M

)
4π

2λE (1)
s

N0

(
1 + N0

2λP (1)E(1)s

) (43)

where the final result assumes N →∞ with correspondingly
vanishing per-node SNR. In light of (24), we can write

SNRpbfe =
M2 sin2

(
π
M

)
4π

SNRbfe. (44)

Hence, the SNR gaps between pseudo-beamforming with
channel estimation error and ideal receive beamforming with
channel estimation error are identical to the cases without
channel estimation error.

Using (31) and (43), the SNR penalty of channel estimation
error with pseudo-beamforming can be expressed as

Ppbf =
SNRpbf
SNRpbfe

= 1 +
N0

2λP (1)E (1)
s

(45)

which is identical to (25). This shows the somewhat surprising
result that the SNR ratio between ideal receive beamforming
and pseudo-beamforming does not depend on the amount of
channel estimation error. In other words, the SNR ratio with
channel estimation error is identical to the SNR ratio without
channel estimation error, as derived in [3].

V. NUMERICAL RESULTS

In this section the results from the simulation are pre-
sented. In this simulation a QPSK modulation is chosen for
the forward link between single transmitter and the receive
cluster. The number of receive nodes inside the cluster are
N = [10 20 40 80 160 320 640 1280 2560 5120 7680].
The number of iterations for each channel/noise realization
is chosen to be 1000 and the per-symbol transmit energy with
one receiver E(1)s = 10 and training signal length with one
receiver P (1) = 1. The magnitude of each symbol is a =

√
2

and the number of payload symbols per block is Q = 100.
The total noise power N0 = 5 and channel variance in real
and imaginary dimension is λ = 2.

Fig. 2 shows the comparison of the SNRs between ideal
receive beamforming and pseudo-beamforming each with and
without channel estimation error.
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Fig. 2. Comparison of the SNRs between ideal receive beamforming and
pseudo-beamforming with and without channel estimation error. The dotted
lines are the calculated SNRs for large N in each scenario.

The results from Fig. 2 confirms our proofs that the ratio
of the SNRs between ideal receive beamforming and pseudo-
beamforming in both case of perfect and noisy channel esti-
mation are equal to 2

π and the SNR in each case converges to
the calculated limit for large N.

Fig. 3 shows the comparison of the penalties between the
ideal and pseudo beamformer. It can be seen that, the penalty
term in both cases converges to the same number since the
SNR ratios in each case, as shown in equation (25) for an
ideal beamformer and (45) for a pseudo beamformer are the
same.
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Fig. 4 shows the mean and variance of the hard decisions
when there is channel estimation error. The results from the
figure show that, the calculated mean of the hard decisions
closely follows the numerical results. Also, the variance of

the hard decisions approaches to the upper bound obtained
from the theoretical results.
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Fig. 4. Mean and variance of the hard decisions when there is channel
estimation error.

VI. CONCLUSION

In this paper we used theoretical calculations, asymptotic
analysis and numerical results from simulation, to obtain and
characterize the effect of imperfect channel estimation in a
distributed reception system with M -PSK modulation. As
mentioned in the paper, channel estimation error had two
effects, channel phase error and channel magnitude error,
which our analysis had accounted for both of these effects in
the channel estimation process at the receiver. In our analysis,
phase error did not have a specific distribution and our results
are valid for any phase error distribution. Using theoretical
computations, we derived closed-form expressions for the SNR
of both ideal receive beamforming and pseudo-beamforming.
As it was expected, the results of our analysis shows that
channel estimation error degrades the performance of dis-
tributed reception with both ideal and pseudo-bemforming
techniques by almost 0.5 dB. The interesting outcome of
our analysis was that, the SNR ratio between ideal receive
beamforming and pseudo-beamforming does not depend on
the amount of channel estimation error and are identical to
the SNR ratios with no channel estimation error. So, our
analysis shows, channel estimation error causes the same
amounts of performance degradation in ideal beamforming and
pseudo-beamforming systems despite the fact that the channel
estimation errors manifests themselves quite differently in both
systems. Also, simulation results confirmed our calculations
for the mean and variance of hard decisions with channel
estimation error and also, our results for the penalty term in
both ideal and pseudo-beamforming systems.

APPENDIX A
PROOF OF LEMMA 1

Proof. To be able to find the mean and variance of hard
decisions, the distribution of decision variable phase at the



receiver should be calculated. The decision variable with no
estimation error would be

U j = e−jθhjX + e−jθWj (46)

and with estimation error would be

U je = e−jθ̂hjX + e−jθ̂Wj (47)

if we define θe = θ − θ̂ and replace the hj with its polar
format defined in (35) we get

U je = (|hj |X + e−jθWj)e
jθe = Uj × ejθe (48)

If we replace the decision variables with their polar formats
we get

θUje
= θUj + θe (49)

Since we already have the distribution of θUj from (11) in
[17], we can derive the distribution of θUje by convolving the
distributions of θUj and θe. So,

f(θUje
|X = x1) = f(θUj |X = x1) ∗ f(θe)

=

∫ ∞
−∞

(
1

2π
e−ρ

2
j +

ρj√
π
cos(θUje

− θe)e
−ρ2j sin

2(θUje
−θe)(

1−Q(
√
2ρ2j cos

2(θUje
− θe))

))
× f(θe)dθe (50)

where f(θe) is the distribution of θe and could have any
distribution.

Using θUje distribution, transition probability or the proba-
bility of deciding Vj = xm given X = x1, can be expressed
as

pm,1 =

∫ (2m−1)π
M

(2m−3)π
M

f(θUje
|X = x1)dθUje

(51)

In a low per-node SNR regime, we can calculate a first-order
Taylor series expansion of pm,1 at ρj = 0 by computing

pm,1|ρj=0 =

∫ (2m−1)π
M

(2m−3)π
M

f(θUje
|X = x1)

∣∣∣
ρj=0

dθUje

=

∫ (2m−1)π
M

(2m−3)π
M

1

2π

[∫ ∞
−∞

f(θe)dθe

]
dθUje

=
1

M
(52)

The expression in the brackets is equal to 1 since it is the
integral of a distribution. For the second term we have

∂

∂ρj
pm,1|ρj=0 =

∫ (2m−1)π
M

(2m−3)π
M

∂

∂ρj
f(θUje

|X = x1)
∣∣∣
ρj=0

dθUje

=

∫ (2m−1)π
M

(2m−3)π
M

∫ ∞
−∞

cos(θUje
− θe)

2
√
π

f(θe)dθedθUje

=

∫ (2m−1)π
M

(2m−3)π
M

[
1

2
√
π

(
cos(θUje

)E[cos(θe)]

+ sin(θUje
)E[sin(θe)]

)]
dθUje

(53)

Channel estimation ĥ in polar format can be written as
|ĥ|ejθ̂ = |h|ejθ+ |h̃|ejθ̃. Also, h is given and h̃ ∼ CN (0, 2ρ).
Then, from expectation of real and imaginary part of ĥ,
respectively, we have

E[cos(θ̂)] =
|h| cos(θ)
E[|ĥ|]

(54)

E[sin(θ̂)] =
|h| sin(θ)
E[|ĥ|]

(55)

Using θe = θ − θ̂ and getting the expectation of cos(θe), we
would have

E[cos(θe)] =
|h|

E[|ĥ|]
(56)

E[sin(θe)] = 0 (57)

Now if we substitute these result into equation (53) we would
have

∂

∂ρj
pm,1|ρj=0 =

∫ (2m−1)π/M

(2m−3)π/M

[
1

2
√
π
cos(θUje

)
|h|

E[|ĥ|]

]
dθUje

=
|h| sin

(
π
M

)
√
πE[|ĥ|]

[
cos

(
2π(m− 1)

M

)]
(58)

So, in a low pre-node SNR regime with ρj small, we have

pm,1 ≈
1

M
+
|h| sin

(
π
M

)
√
πE[|ĥ|]

[
cos

(
2π(m− 1)

M

)]
ρj (59)

Under the assumption that M ≥ 4 is even, we can compute
the conditional expectation as follow

E[Vj |X = x1] =

M∑
m=1

xmpm,1

≈
M∑
m=1

aej2π(m−1)/M

{
1

M
+
|h| sin

(
π
M

)
√
πE[|ĥ|]

×
[
cos

(
2π(m− 1)

M

)]
ρj

}
=

2aρj |h| sin
(
π
M

)
√
πE[|ĥ|]

×

M/2∑
m=1

cos2
(
2π(m− 1)

M

)
=

(
Mρj |h| sin

(
π
M

)
2
√
πE[|ĥ|]

)
x1 (60)

The conditional variance can be computed similarly as

var[Vj |X = x1] = E[|Vj |2|X = x1]− |E[Vj |X = x1]|2

≈ a2 −

(
Mρj |h| sin

(
π
M

)
2
√
πE[|ĥ|]

)2

a2 (61)

Since ρj is small under low per-node SNR assumption, we
can discard the term with ρ2j , so we get

var[Vj |X = x1] ≈ a2 (62)



APPENDIX B
PROOF OF COROLLARY 1

Proof. By having the mean and variance of hard decision
we can now calculate the mean and variance of pseudo-
beamformer output. The pseudo-beamformer uses the esti-
mated channel magnitudes to compute the combiner output

Ypbfe = α
∑
j∈N
|ĥj |Vj (63)

Therefore the mean of the pseudo-beamformer output is

E[Ypbfe|X = xl] = α
∑
j∈N

E[|ĥj ||X = xl]E[Vj |X = xl]

= α
M sin

(
π
M

)
2
√
π

∑
j∈N

(ρj |hj |)xl (64)

by replacing ρj :=
|hj |a√
N0

and setting
∑
j∈N |hj |2 = ||h||2 we

would have

E[Ypbfe|X = xl] = α
aM sin

(
π
M

)
2
√
πN0

||h||2xl (65)

Also, the variance of the pseudo-beamformer output can
calculate as follow

var[Ypbfe|X = xl] = α2
∑
j∈N

var[|ĥj |Vj |X = xl]

= α2
∑
j∈N

(
E[|ĥj |2]E[V 2

j |X = xl]− E[|ĥj |]2E[Vj |X = xl]
2
)

(66)

the second term can be set equal to zero since in a low per-
node SNR regime E[Vj |X = xl]

2 ≈ 0. Then we would have

var[Ypbfe|X = xl] = α2a2
∑
j∈N

E[|ĥj |2] (67)

To obtain E[|ĥj |2] we have to use the fact that

|ĥj |2 =
(
|hj | cos(θj) + |h̃j | cos(θ̃j)

)2
(68)

+
(
|hj |sin(θj) + |h̃j | sin(θ̃j)

)2
(69)

After simplifying the above equation and getting the expecta-
tion of both side, we have

E[|ĥj |2] = |hj |2 + E[|h̃j |2] = |hj |2 +
N0

PEs
(70)

by replacing it back in the equation (67) the variance of
pseudo-beamformer output is obtained.

var[Ypbfe|X = xl] = α2a2
(
||h||2 + N0N

PEs

)
(71)
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