
Maneuvering Target Tracking using the

Autoencoder-Interacting Multiple Model Filter

Kirty Vedula∗, Matthew L. Weiss∗, Randy C. Paffenroth∗, Joshua R. Uzarski‡, D. Richard Brown III∗
∗Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

‡Soldier Protection and Survivability Directorate, U.S. Army CCDC-SC, Natick, USA 01760

Email: ∗{kpvedula, mlweiss, rcpaffenroth, drb}@wpi.edu, ‡ joshua.r.uzarski.civ@mail.mil

Abstract—This paper considers the problem of tracking and predicting

the state of a dynamic system with stochastic dynamics and multiple
modes of operation. A well-known approach to this problem is the
“interacting multiple model” (IMM) estimator, which uses knowledge of
the different modes of operation to update a bank of Kalman Filters

(each optimal for a given mode of operation). The IMM combines
estimates according to the posterior probability of the different modes.
Despite their popularity, IMMs are known to sometimes be slow to
detect mode switching, however, which can result in large state estimation

errors. This paper addresses this problem by developing an Autoencoder-
Interacting Multiple Model (AEIMM) algorithm. The AEIMM effectively
embeds an IMM within an autoencoder framework to create a hybrid

approach using both deep learning and classical tracking frameworks.
The motivation for this approach is that the neural network can perform
nonlinear transformations on the measurements to help the IMM more
quickly identify mode changes. The effectiveness of the AEIMM is

demonstrated in a maneuvering target tracking scenario. Numerical
results show that the AEIMM outperforms classical tracking techniques
as well as hybrid techniques and a Long Short-Term Memory network
in this scenario.

Index Terms—Kalman Filter, Interacting Multiple Model Filter, Au-
toencoder, Autoencoder-Kalman Filter, Deep Learning, Neural Networks,
Target Tracking

I. INTRODUCTION

Target tracking is used in many practical applications to accurately

track objects with trajectories that have significant position derivatives

of several orders. When not detected and compensated, the maneuvers

can degrade the performance of the tracker and might lead to filter

divergence [1]. A Kalman Filter (KF), or its non-linear variants such

as Extended Kalman Filter (EKF) or particle filter, is commonly

employed for tracking maneuvering targets [2].

Accurate tracking is possible only when we model the target

motion appropriately. Some common dynamic models are the nearly

constant velocity (NCV) model, the nearly constant acceleration

(NCA) model and the coordinated turn (CT) model [3]. However, a

single model is not always adequate to accurately describe the target’s

motion. In an Interacting Multiple Model (IMM) filter, two or more

models are considered, and the model inaccuracy is addressed by

facilitating an interaction between the models for different modes at

the beginning of each filter cycle [1]. These are weighed accordingly

by the conditional probabilities of switching between model modes.

However, the IMM is a heuristic algorithm designed to yield a good

performance only within the class of a fixed structure algorithms. It

is not known to be generally optimal and does not guarantee robust

performance. An IMM may give unsatisfactory results for particular

scenarios such as nonlinear target dynamics during a turn [4] and

sudden starts and stops of maneuvers such as model switching [5].

Funding was provided by In-house Laboratory Independent Research (ILIR)
and Section 219 Innovation Funding at the U.S. Army Combat Capabilities
Development Command Soldier Center in Natick, MA. Released for UNLIM-
ITED DISTRIBUTION, PAO #U21-150

While a variety of traditional state estimation and time series pre-

diction techniques, such as the EKF, particle filters, kernel methods

and Bayesian inference [6], [7], [8], address state estimation and time

series prediction in the non-linear context, the proposed approach in

this paper is conceptually justified and distinguished by the use of a

neural network. Specifically, leveraging the power of a neural network

allows the parameters of the IMM to be learned from data, which

is not possible with more traditional techniques. This will be further

elaborated upon in II-G.

The main contribution of this paper is the design and imple-

mentation of an Autoencoder-Interacting Multiple Model (AEIMM)

Filter, as an extension to the Autoencoder-Kalman Filter (AEKF)

proposed in [9], [10], to improve IMM state estimation in the above

challenging scenarios. In particular, while the AEKF addresses the

issue of estimating the measurement noise covariance, the AEIMM

addresses both the measurement noise covariance estimation and

choosing the appropriate system dynamics. This is discussed further

in section II-E.

Autoencoders are a class of unsupervised deep learning algorithms

often used for dimensionality reduction. They have been successfully

applied for end-to-end communication system design in channels

with Gaussian and non-Gaussian noise [11] and for object tracking

applications [12]. The AEKF in [9], [10] is a hybrid autoencoder

KF algorithm that places a KF in the latent layer of a traditional

autoencoder, as depicted in Figure 1. Further technical details of the

AEKF are presented in section II-C and [9], [10].

φ

El

zt

Rt

ẑt

Dl

φ̂

x̂t|t−1

x̂t|t

Fig. 1. The Autoencoder-Kalman Filter. Here the measurements, φ, are first
transformed by the encoder portion of an autoencoder, where each layer of the
autoencoder is represented by El. The encoder outputs two sequences, zt and
Rt, which are passed to a KF as measurements and associated measurement
noise covariances. The KF’s state estimate of zt, represented by ẑt, is then
mapped back to the measurement space via the decoder portion, whose layers
are similarly represented by Dl. The final output of the decoder is the state

estimate of the original measurements, φ̂. Note the vertical ellipses represent
the number of dimensions in a layer and horizontal ellipses represent the depth
of the encoder and decoder. This is further discussed in Section II-C.

Nearly

Constant

Velocity

Channel

M
D

P
 M

ix
e
rKF-NCV

KF-CT
Coordinated

Turn

 Model

N
N

 E
n

c
o

d
e
r

N
N

 D
e
c
o

d
e
r

φ

zA

RA

RB

zB

x̂A

PA

x̂B

PB

x̂M

PM

φ̂

Fig. 2. Block Diagram for the Autoencoder-Interacting Multiple Model (AEIMM) filter.

The AEIMM is conceptually the same as the AEKF except an IMM

appears in the autoencoder’s latent space. We apply the AEIMM to a

simulated flight data tracking problem with NCV and NCA models

and compare with the KF, IMM and AEKF algorithms. We also com-

pare our results with a traditional deep learning framework, the Long

Short-Term Memory (LSTM) recurrent neural network [13], [14]. The

improvements that we obtain using AEIMM in tracking maneuvering

targets are particularly useful in some tactical applications such as

threat evaluation, flight tracking and financial portfolio management.

II. SYSTEM MODEL

Among the standard KF, IMM, AEKF and AEIMM variants, we

consider three KF models in this paper, namely KF-NCV, KF-NCA

and KF-CT with nearly constant velocity, nearly constant acceleration

and coordinated turn models respectively. The states, statistics and

covariance matrices vary for these models. In models involving the

IMM, we consider a filter bank of two models with the aim to detect

the active state model since we do not know which KF is providing

the optimal updates. We pick our models such that one cannot be

in the subspace of another. We also assume for the scope of this

paper that we have a point target, that can result in at most a single

measurement.

We consider a maneuvering target model

xt+1 = fk(xt, ut) + wt (1)

yt = hk(xt) + vt (2)

where xt and yt are the target state and observations respectively

at time t. ut is the unknown external input. wt and vt are the

process and measurement noises and fk and hk are the state and

observational models at mode k. We present the discrete-time setting

here. These models are converted from continuous state-space models

by performing a zero-order hold sampling and using linearized

discretization [15].

A. Dynamic Models and Examples

1) Nearly Constant Velocity Model: The state vector for the

nearly constant velocity model in R
2 is represented by X =

[

xt yt vxt v
y
t

]⊤
[1]. Here xt and yt are the respective posi-

tion coordinates and vxt and v
y
t the corresponding velocities. It is

described by

xt =

1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

xt−1 +

1
2
∆t2 0
0 1

2
∆t2

∆t 0
0 ∆t

at (3)

with at ∼ N (0, σa
2).

2) Nearly Constant Acceleration Model: The state vector for

the nearly constant acceleration model in R
2 is represented by

X =
[

xt yt vxt v
y
t ax

t a
y
t

]⊤
. The position and velocity

terms are the same as the NCV model and ax
t and a

y
t represent the

corresponding accelerations. It is described by

xt =

1 0 ∆t 0 1
2
∆t2 0

0 1 0 ∆t 0 1
2
∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t

0 0 0 0 1 0
0 0 0 0 0 1

xt−1

+

1
2
∆t2 0
0 1

2
∆t2

∆t 0
0 ∆t

1 0
0 1

at

(4)

with at ∼ N (0, σa
2).

3) Coordinated Turn Model: The coordinated turn model has

nearly constant speed and turns at a constant rate. Its state vector

in R
2 is X =

[

xt yt vxt v
y
t ωt

]⊤
. We have the turns

ẋ = v cos(h), ẏ = v sin(h), where ḣ = ω and we obtain ẍ = −ωẏ

and ÿ = ωẋ, where ω is the turn rate for modeling sharp maneuvers

and simulating high coordinated turn rates for short time periods. The

dynamics are given by

xt =

1 0 sin(ω∆t)
ω

− 1−cos(ω∆t)
ω

0
0 1 cos(ω∆t) − sin(ω∆t) 0

0 0 1−cos(ω∆t)
ω

sin(ω∆t)
ω

0
0 0 sin(ω∆t) cos(ω∆t) 0
0 0 0 0 1

xt−1

+

1
2
∆t2 0 0
0 1

2
∆t2 0

∆t 0 0
0 ∆t 0
0 0 1

at.

(5)

with at ∼ N (0, σa
2).

B. Kalman Filter and Extended Kalman Filter

For a linear state-space model with Gaussian noise and known

process and measurement noise covariances, the optimal solution

is provided by the KF with the standard recursive prediction and

update equations that calculate estimates and predictions [16]. Since

KF literature may be familiar to the readers, we briefly describe the

main ideas. Further details can be found in [9], [17], [18], [19], [20].

1) The prediction step consists of projecting the previous state

estimate, x̂t|t, forward one step via the linear transformation

x̂t+1|t = Ft+1x̂t|t.

2) The final update performs a linear combination of x̂t|t and

measurement residual z̃t, where the relative weighing is deter-

mined by Kalman Gain matrix Kt and the observation matrix

Ht.

3) During both the prediction and update stages, the covariances

of both state estimates is also calculated.

The EKF is based on linearization of the nonlinear dynamic and

measurement equations about the current state estimates using Taylor

Series expansions. Assuming initial a priori estimates x̂0|0 and

P0|0 = Π0, just as in the KF, we have an additional linearizing

step with the continuous time update equation x̂t|t−1 = f(x̂t−1|t−1)
with fT

t = ∇xf
⊤(x) at x = x̂t|t and other steps similar to KF.

C. AEKF

A detailed description of the AEKF, along with a comparison to

other deep learning-KF hybrid models, appears in [9], [10]. Here

we present a brief overview and some details on the training of the

AEKF.

In the AEKF, shown in Figure 1, the actual measurements are

now represented by φ, which is mapped via a composition of neural

network layers to two new variables: zt and Rt. These comprise the

input measurements and associated measurement noise covariance

passed to the KF. The output of the KF, ẑt, is then mapped back to

the measurement space via the decoder portion of the AEKF. Here the

output, φ̂, is a filtered version of the original input φ. At this point

the question of how to train the AEKF may arise. Since the encoder

and decoder portions of the AEKF are trained via back propagation,

the cost function should compare φ and φ̂ in some way. However,

since the actual ground truth is not known this appears problematic.

The solution to this is to train with simulated data where the ground

truth is known. In the context of deep learning, this technique is

known as domain randomization [21], [9], [10].

In the context of domain randomization, the loss function for this

architecture is given by the following.

L = min
θ

∑

i

∥

∥

∥
φ

(g)
i − φ̂i(φi−1,φi−2, . . .)

∥

∥

∥

2

F
(6)

where i indexes the training sample, φ
(g)
i is the ground truth,

φ̂i(φi−1,φi−2, . . .) the AEKF’s estimate of φi and θ represents

the parameters learned by the encoder and decoder portions. We

propose to leverage domain randomization as done in [9], [10] which

allows training over a range of parameter values in simulation, thus

overcoming the need to have knowledge of the real-data ground truth

to train a deep learning model.

D. Interacting Multiple Model

We consider the problem of tracking the states of the systems with

two or more dynamic models. We summarize the algorithm briefly

here and direct the reader to [1] for a detailed treatment.

Considering the state model in (2), we can model the behavior at

each mode as a time-invariant Markov chain with a transition proba-

bility matrix (TPM). The IMM is an iterative algorithm that estimates

the blended states and covariances at each step given measurements

from two or more KFs using their initial conditions, states and their

associated covariances. For the state xi−1
t−1|t−1, covariance P i−1

t−1|t−1

at a given mode i ∈ 1, . . . , Nr , each step of the IMM filter performs

the following:

1) Calculates mixing probabilities {µij

t−1|t−1}
Nr

i,j=1, mixed esti-

mates {x̂0i
t−1|t−1}

Nr

i=1 and covariances {Σ0i
t−1|t−1}

Nr

i=1.

2) Calculates predicted estimates and covariances from mixed

estimates in the previous step for ith model, i ∈ 1, . . . , Nr .

3) Calculates updated estimates and covariances from the pre-

dicted estimates for ith model, i = 1, . . . , Nr and calculates

the updated mode probability.

4) Calculates output state and covariance estimates.

E. AEIMM

The AEIMM is conceptually similar to the AEKF in that the

KF portion of the AEKF is replaced by an IMM, as shown in

Figure 2. Both the AEKF and AEIMM address the issue of estimating

measurement noise covariances. However, in the case of the AEIMM,

we allow the encoder portion to learn different measurements and

their associated measurement noise covariances for each of the two

KFs in the AEIMM, represented by zA, zB and RA,RB respectively.

The primary motivation for this feature is that learning different

measurements and associated measurement noise covariances for

each KF in the IMM will assist the Markov Decision Process (MDP)

mixer in weighting the appropriate KF. This, in turn, will help

the IMM weight the system dynamics appropriately. The multiple

encoder outputs are passed to two KFs which output x̂A, PA and

x̂B , PB respectively. These are then passed into a Markov Decision

Process mixer that returns x̂M , PM . Lastly, x̂M , PM are (a) passed

back to the IMM for the next iteration and (b) passed to the decoder,

which maps these values to the final output φ̂.

F. LSTM

An LSTM is a type of recurrent neural network (RNN) initially

developed to solve the vanishing gradient problem in RNNs [13].

As they are able to learn long term temporal dependencies, LSTMs

are well suited for time series classification, prediction and state

estimation. For our purposes, the LSTM is included for comparison

as the AEKF and AEIMM both leverage deep learning.

G. Model Justification

Here we would like to take a moment and provide some justifica-

tion for designing a neural network-Kalman Filter hybrid algorithm

as opposed to (a) a purely neural network-based algorithm and (b)

other state estimation algorithms such as particle filters. Note, the

comments below apply equally to the AEIMM.

First, as we demonstrate below, the AEKF or AEIMM outperforms

an LSTM in both single and multiple turn simulated tracking prob-

lems. Similar results were also observed for different state estimation

problems involving Gaussian and non-Gaussian noise in [9], [10].

Additionally, with the AEKF we are training a neural network to

learn a measurement noise covariance matrix for each element of a

time series, and not simply a single measurement noise covariance

matrix for the entire signal. This is the key to the AEKF’s ability

to outperform standard Kalman Filter algorithms and an LSTM.

Furthermore, we were able to derive a theorem that explains how

the encoder portion of the AEKF should behave in the context of

learning the measurement noise covariance matrix. This was due to

the fact the Kalman Filter can be analyzed with standard matrix

analysis. From the point of view of the LSTM, it is difficult to

determine what part of the algorithm is analogous (if anything) to

the Kalman Filter’s measurement noise covariance matrix, making

such an analysis problematic. In the context of the AEIMM, if we

know how a given problem’s model dynamics vary (as we do in

the examples herein) we can input these dynamical models into the

AEIMM’s IMM. In the case of the LSTM, how does one introduce

this domain knowledge? In the larger scheme of things, the AEKF

benefits from a mutually supportive combination of the power of a

neural network and mathematically and physically principled domain

knowledge.

The question of why we did not consider a non-linear extension

of the Kalman Filter to deal with the non-linear domain is related

to our use of a neural network. By introducing a neural network the

AEKF can be trained for each given application domain. That is,

the encoder and decoder portions of the AEKF will learn different

transformations for different problems and/or datasets. Thus it is more

adaptive than an Extended Kalman Filter, while more structured than

a particle filter.

Lastly, while the Kalman Filter is known to be optimal when

the random variables involved are Gaussian, this requires a cor-

rectly chosen state transition matrix, observation matrix, process

noise covariance matrix and measurement noise covariance matrix,

represented by F, H, Q and R respectively. Thus, even in the case of

all processes involved being Gaussian, the Kalman Filter performance

is still constrained by how well the choices of F, H, Q and R match

the real problem domain. The addition of a neural network in the

AEKF allows for the possibility that the z and R learned by the

AEKF are transformed in such as way as to improve Kalman Filter

performance given fixed F, H and Q.

III. RESULTS

A. Test Protocol

We test our approach on simulated flight paths consisting of

constant velocity segments interspersed with coordinated turns. All

simulated flight paths begin with constant velocity motion in the

horizontal direction. At each turn, the corresponding turn radius is

chosen randomly (within a predefined range), along with the turn

direction (clockwise or counter clockwise). Gaussian noise is then

added to these smooth ground truth flight paths. Using these noisy

simulated flight paths, we compare the state estimation capabilities of

the following models: KF, IMM, AEKF, AEIMM and LSTM. Each

model’s state estimation is then compared with the actual ground

truth and the corresponding RMSE is reported for each model. Note

that in this phase, the ground truth is used only for model evaluation

and does not affect each model’s state estimate in any way. As the

Fig. 3. Sample Simulated Two-Turn Flight Path with Gaussian Noise.

state estimate and ground truth are two dimensional, the RMSE is

calculated by taking the square root of the Frobenius norm between

the state estimate and ground truth.

The simulated flight paths are based on physical models according

to the kinematics equations for constant linear motion and coor-

dinated turns. The (discrete) time evolution position and velocity

vectors for the linear model are defined as

r(t+ dt) =
(

x(t) + vxdt
)

î+
(

y(t) + vydt
)

ĵ (7)

v(t+ dt) = vx î+ vy ĵ (8)

where r(t) = (x(t), y(t)) is the position vector at time t and v0 =
(vx, vy) is the initial velocity vector at the beginning of the segment.

The coordinated turn model is similarly defined by

r(t+ dt) = R cos
(‖v0‖ (kdt)

R

)

î+R sin
(‖v0‖ (kdt)

R

)

ĵ (9)

v(t+ dt) = −v0 sin
(‖v0‖ (kdt)

R

)

î+ v0 cos
(‖v0‖ (kdt)

R

)

ĵ (10)

where R is the radius of the turn and k indexes the increment of the

full turn. That is, for a turn with an angle θ, dividing the turn into

N equal increments gives θ = Nδθ. Since θ = v0t

R
we can express

the total angle turned through at the kth increment as kδθ = v0
R
kδt

with k = 0, 2, ..., N − 1. Note that (9) and (10) assume rotation

about the origin starting from θ = 0. Thus, appropriate translation

and rotations were applied to the results of (9) and (10) to ensure the

turns occurred at the correct location and were continuous, up to the

first derivative, with their incoming and outgoing linear segments. A

sample flight path with Gaussian noise is shown in Figure 3.

While we use simulated flight paths to demonstrate the efficacy of

the AEIMM, it should be noted the AEIMM is designed in a general

manner to make it applicable to any application or scenario where

an IMM is appropriate.

B. Single Turn Results

Here we present results for single turn flight paths with an initial

velocity in the horizontal direction of 100 m/s, a turn radius uniformly

selected between 200 and 300 meters and added Gaussian noise

N (0, 20). Each of the three flight segments lasts 10 seconds with a

600 700 800 900 1000 1100 1200 1300
x (m)

−600

−500

−400

−300

−200

−100

0

100

(m

)
KF

Ground Truth
State Estimate
Nois Measurements

600 700 800 900 1000 1100 1200 1300
x (m)

−600

−500

−400

−300

−200

−100

0

100

(m

)

IMMEKFCT

Ground Truth
State Estimate
Nois Measurements

600 700 800 900 1000 1100 1200 1300
x (m)

−600

−500

−400

−300

−200

−100

0

100

(m

)

LSTM

Ground Truth
State Estimate
Nois Measurements

600 700 800 900 1000 1100 1200 1300
x (m)

−600

−500

−400

−300

−200

−100

0

100

(m

)

AEKF

Ground Truth
State Estimate
Nois Measurements

600 700 800 900 1000 1100 1200 1300
x (m)

−600

−500

−400

−300

−200

−100

0

100

(m

)
AEIMMKF

Ground Truth
State Estimate
Nois Measurements

Fig. 4. Turn segment from a test set sample trial. Here the KF, IMM and LSTM estimates are, generally, less smooth than the AEKF and AEIMM estimates.
Furthermore, the KF, IMM and LSTM have more difficulty estimating the ground truth on the turn than the AEKF and AEIMM. Note the RMSE increases
monotonically from KF, IMM, LSTM, AEKF through AEIMM.

sampling frequency of 10 Hz. The transition probabilities for models

involving the IMM are 0.95 and 0.05.

We compare five models: KF, IMM, AEKF, AEIMM and LSTM.

The KF and AEKF models consist of NCV models with process noise

covariance given by the second term in (3). The IMM consists of

NCV and CT models, with the process noise covariance given by the

second terms in (3) and (5) respectively. Lastly, the AEIMM consists

of NCV and NCA models, with the process noise covariance given

by the second terms in (3) and (4) respectively. The reason the CT

model was not used in the AEIMM is the dimensions of the Kalman

Filters in both the AEKF and AEIMM were R
8. This is a direct

result of the fact the actual measurements in R
2 can be mapped to

and from R
8 via the encoder and decoder portions of the AEKF and

AEIMM. As the standard CT model is defined in R
2, generalizing

this to R
8 proved difficult.

The test set consists of 1000 simulated single turn flight paths. For

each model, the reported RMSE is computed by averaging the RMSE

on each of the 1000 test paths computed using the ground truth and

state estimates. Results are shown in Table I, where the RMSE ratio

is the ratio of each model’s RMSE to the KF’s RMSE. Here the

models, from highest to lowest RMSE, are KF, IMM, AEKF and

AEIMM. The fact that the IMM shows better performance than the

KF is not surprising. However, both these models show improvement

when combined with a neural network. For visualization, an example

TABLE I
SINGLE TURN TEST RMSE RESULTS.

Model RMSE Ratio

KF 10.90 1.00

IMM 10.68 0.98

LSTM 11.15 1.02

AEKF 9.49 0.87

AEIMM 8.19 0.75

of one test trial with the ground truth, noisy simulated measurements

and state estimate is shown in Figure 4.

C. Multiple Turn Results

The multiple turn flight path results were based upon the same

parameters as the single turn results apart from what is presented

below. In the case of the multiple turns, the turn radius was between

120 and 180 meters with each of the flight paths (three constant

velocity segments and two turn segments) lasting 6 second with a

sampling frequency of 10 Hz.

The parameters for the KF, IMM, AEKF, AEIMM and LSTM,

the number of sample curves in the test set and model evaluation

procedures were the same as in the single turn case apart from using

multiple turn flight paths. Similar trends to the single turn case were

TABLE II
MULTIPLE TURN TEST RMSE RESULTS.

Model RMSE Ratio

KF 13.54 1.00

IMM 10.27 0.76

LSTM 14.72 1.09

AEKF 10.68 0.79

AEIMM 10.00 0.74

found among the each model’s performance on the test set and are

shown in Table II.

IV. CONCLUSION

We introduce a new deep learning Kalman Filter hybrid framework

the Autoencoder-Interacting Multiple Model, as an extension to the

Autoencoder-Kalman Filter, to solve challenging maneuvering target

tracking problems. We provide a proof-of-concept demonstration with

simulated flight tracking data and compare it against state-of-the-

art methods in tracking such as the Interacting Multiple Model,

traditional deep learning methods such as Long Short-Term Memory

RNN along with the Autoencoder-Kalman Filter. Generally, our

results indicate the combination of deep learning and traditional

filtering techniques outperform traditional approaches by themselves.

Specifically, we demonstrate, among the five methods considered, the

Autoencoder-Interacting Multiple Model shows the best performance

on both the single and multiple turn datasets.

Given the success of the AEIMM presented in this paper, some

pertinent future research questions are:

1) If we replace the IMM’s MDP with a neural network and keep

the KFs intact, does the neural network mix or augment the

outputs from the IMM’s bank of KFs?

2) Is it better to use two neural networks on the encoder side,

one for each dynamic model that output zA,RA and zB ,RB

respectively instead of a single encoder?

REFERENCES

[1] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan, Esti-

mation with Appications to Tracking and Navigation, Wiley, New York,
2001.

[2] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model
algorithm for systems with markovian switching coefficients,” IEEE

Transactions on Automatic Control, vol. 33, no. 8, pp. 780–783, 1988.

[3] Pravas R Mahapatra and Kishore Mehrotra, “Mixed coordinate tracking
of generalized maneuvering targets using acceleration and jerk models,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 3,
pp. 992–1000, 2000.

[4] Michael Roth, Gustaf Hendeby, and Fredrik Gustafsson, “Ekf/ukf
maneuvering target tracking using coordinated turn models with po-
lar/cartesian velocity,” in 17th International Conference on Information

Fusion (FUSION). IEEE, 2014, pp. 1–8.

[5] M. E. Farmer, Rein-Lien Hsu, and A. K. Jain, “Interacting multiple
model (imm) kalman filters for robust high speed human motion track-
ing,” in Object recognition supported by user interaction for service

robots, 2002, vol. 2, pp. 20–23 vol.2.

[6] Cédric Richard, José Carlos M Bermudez, and Paul Honeine, “Online
prediction of time series data with kernels,” IEEE Transactions on Signal

Processing, vol. 57, no. 3, pp. 1058–1067, 2008.

[7] Amrit Singh Bedi, Alec Koppel, Ketan Rajawat, and Brian M Sadler,
“Nonstationary nonparametric online learning: Balancing dynamic regret
and model parsimony,” arXiv preprint arXiv:1909.05442, 2019.

[8] Amir-massoud Farahmand, Sepideh Pourazarm, and Daniel Nikovski,
“Random projection filter bank for time series data,” in Advances in

Neural Information Processing Systems, 2017, pp. 6562–6572.

[9] M. Weiss, R. C. Paffenroth, J. R. Whitehill, and J. R. Uzarski, “Deep
learning with domain randomization for optimal filtering,” in 2019 18th

IEEE International Conference On Machine Learning And Applications

(ICMLA), 2019, pp. 1779–1786.
[10] M. L. Weiss, R. C. Paffenroth, and J. R. Uzarski, “The autoencoder-

kalman filter: Theory and practice,” in 2019 53rd Asilomar Conference

on Signals, Systems, and Computers, 2019, pp. 2176–2179.
[11] K. Vedula, R. Paffenroth, and D. R. Brown, “Joint coding and

modulation in the ultra-short blocklength regime for bernoulli-gaussian
impulsive noise channels using autoencoders,” in ICASSP 2020 -

2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2020, pp. 5065–5069.
[12] B. Beşbınar and A. A. Alatan, “Visual object tracking with autoencoder

representations,” in 2016 24th Signal Processing and Communication

Application Conference (SIU), 2016, pp. 2041–2044.
[13] Sepp Hochreiter and J Urgen Schmidhuber, “Long Short-Term Memory,”

Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[14] Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J Gordon, and

Boyue Li, “Predictive state recurrent neural networks,” in Advances in

Neural Information Processing Systems, 2017, pp. 6053–6064.
[15] C.T. Chen, Linear System Theory and Design, Oxford series in electrical

and computer engineering. Oxford University Press, 2013.
[16] Steven M. Kay, Fundamentals of Statistical Signal Processing: Estima-

tion Theory, Prentice-Hall, Inc., USA, 1993.
[17] Brian D.O. Anderson and John B. Moore, Optimal Filtering, Dover

Publications, 1979.
[18] R E Kalman, “A New Approach to Linear Filtering and Prediction

Problems,” Transactions of the ASME Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[19] Dan Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlin-

ear Approaches, Wiley, Hoboken, 1st edition, 2006.
[20] Peter A. Ruymgaart, TSu T. Soong, and Tsu Soong T., Mathematics

of Kalman-Bucy Filtering, vol. 136, Springer-Verlag, Berlin Heidelberg
New York Tokyo, 1st edition, 1985.

[21] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel, “Domain randomization for transferring deep neural
networks from simulation to the real world,” in 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS). IEEE,
2017, pp. 23–30.

