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Abstract— This paper focuses on the development of a authors investigate the search-and-tracking problem us-
cost-aware Bayesian sequential decision-making stratedgr  ing recursive Bayesian filtering with foreknown targets’
the search and classification of multiple unknown objects positions with noise. The results are extended in [5]

over a given domain using a sensor with limited sensory for d - h b d f d habl
capability. Under such scenario, it is risky to allocate allthe Or dynamic search spaces based on forward reachable

available sensing resources at a single location of intefes S€t analysis. In [6], the author proposes a Bayesian-
while ignoring other regions in the domain that may contain  based multisensor-multitarget sensor management scheme.

more critical objects. On the other hand, for the sake of The approximation strategy maximizes the square of the
finding and classifying more objects elsewhere, making a gynected number of targets. In [7], the problem of finding

decision regarding object existence or its property basedro ¢ t with forek | fi inf fi .
insufficient observations may result in miss-detecting or riss- a target with some forexnown location information in

classifying a critical object of interest. Therefore, a desion- the presence of uncertainty and limited communication
making strategy that balances the desired decision accurgc channels is discussed. The probability of target existence

and tolerable risks/costs is highly motivated. The strateg s defined as a cost function to determine the vehicle’s
developed in this paper seeks to find and classify all unknown optimal path
objects within the domain with minimum risk under limited . ) . . . .
reSOUTCes. It is worth noting that in the above literature there is
no explicit decision-making strategy for search and track-
I. INTRODUCTION ing/classification. To remedy this, the authors developed

In many domain search and object classification protft d€terministic decision-making strategy for search \@rsu
lems, the effective management of sensing resources is K&§cking in [1], and extended the results to a probabilistic
to mission success. In a search task, the objective is to fil@mework in [2] and [3]. The deterministic strategy
every unknown object in a domain and fix its position.pm'ooseqI in [1] guarant_ees the detection Qf _all objects and
In a classification task, the objective is to take enougi€ racking of each object's state for a minimum amount

measurements to determine the nature of the object. (3 ime .. In [2] and [3], a probabilistic Bayesian version
one hand, a sensor may give a false alarm while theRJ this algorithm was developed for unknown object search

is actually none, or may miss detecting a critical Object\(ersus classification as two com_p(_ating tas](s. In this work,
Similarly, the sensor might report incorrect classificatio W& focus on a cost-aware decision-making strategy for

results. On the other hand, taking exhaustive observatiofigarch and clz_;\ssification _under _th_e proba_lbilistic framg-
at one particular location may miss the opportunity tdVork- A Bayesian sequential decision-making strategy is
find and classify possibly more critical objects. This igProPosed to minimize the Bayes risk (to be formally

especially true when the mission domain is large-scale, gefined in Section 1V), which is based on both the error
the number of objects is far more than that of sensors mgrobabllmes of the decisions made and the observation

[3]. Under these scenarios, a sensor has to decide whet/§@8t: The proposed strategy guarantees a desired detection
to move and look for other objects, or stop and keeﬁnd classification uncertainty level everywhere within the

taking observations at a specific location. To accomplisfiomain with minimum risks.

these competing tasks with minimum risks under limited S€duential detection [8] allows the number of obser-
sensory resources, there is a strong motivation to develgﬁt"?r_‘ samples to vary in order to achieve an optimal
a real-time decision-making strategy that chooses the tag_ﬁc's'on' Due t‘? Fhe randomness of pbservatlons at e_ach
to perform based on an overall risk assessment associalfge Step. a decision may be made with a few observation

with the decision. This is the problem addressed in thiS2MPles, whereas for other cases one would rather take
paper. more samples for a possibly better decision. The Baysian

We first review some related literature. Coordinated€duential detection method used in this paper is such that

search and tracking in probabilistic frameworks has bedfi® Bayes risk is minimized at each time step.
studied mainly for optimal path planning. In [4], the The paper IS orga_nlzed as folloyvs. We introduce the
sensor model in Section Il. In Section lll, the Bayes up-
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The search metric is related to a dynamic observatiooy

cost used for the decision-making strategy. In Section VI, Bio ify=0

a sensor motion control strategy is developed for multi- frwlX@©)=i)=4q Bu ify=1, (2)

cell domains and a full-scale simulation is presented. We Biz ify=2

conclude the paper with a summary of our current andihere Z?:o Bi; = 1, Y corresponds to the ternary

future work in Section VIII. random variable ang is the dummy variable. Because
Il. SETUP AND SENSORM ODEL the statesX (c) are spatially i.i.d., the observation§(¢)

A. Problem Setup taken at every celt within the mission domairD are

9 o . . spatially i.i.d. and hence the probability distributiorr fo
Let D c R* be the domain in which objects to be everyé € D follows the same structure.

found and classified are located. We discretize the domain Conditioned on the actual stalé() at a particular cell

'tﬂto N‘O‘t Cillls'fl‘eﬁg bDe ?n alri'tr]"’\‘]ryfill D atrr:dc: Itsl ¢, let ¢t be the time index, the observatiohs(c) taken
€ centroid of cefle. DEliN€ L = No = Mot @S € 10111514 time are temporally i.i.d. LeE, (&), Zi(¢), and

number of objects angb; as the position of objecy, - . N
both of which are unknown beforehand. Assume that chQ(C) be the number of times that observatibiic) =

. S " 8, 1, and 2, respectively, appears during a window of
objects are i.i.d distributed ové?r, and the partition of the I time steps. The quantitieo(c), Zi(€), and Z» (&)

domain is fine enough so that at most one object can exg} : . . =
) . : e integer random variables that sat@y? Z =
in a cell. Without loss of generality, we assume that a 9 k=0 Z1(¢)

object can h‘av’e one of two properties, either Prop_erf[y I%(’(E)Zk:((;) thee p[roc;bL a].bil-il;:/]%rferl:gz/?ﬁ gg(;\ézg r\?;ti ;a(:’tll?[ ::ate
or Prqperty G - LetSy be‘th'e set of all cells containing in a window of L time steps follows a multinomial
an object having Property ‘F’ anfl; be the set of all cells distribution
containing an object having Property ‘G’. L& and Py - N N N
be the initial probability of a cell having an object with Prob(Zo(€) = 2o, Zl(cl =21, 25(8) = 2|X(€) =1)
Property ‘F’ and Property ‘G’, respectively. Hencd, L! 320 g7 g2 Zz .y 3)
is a binomial random variable with parameté¥g, and ~ zlz;lzo! 1071 727 prt A
P, = Pp+ Pg, whereP, gives the initial total probability The sensor probabilities of making a correct observa-
of object present at a cetl and is i.i.d for allc € D. The tion areBq, 511 and3s,. For the sake of simplicity, here
expected number of objects i is given by we assume that the values are some constants greater than
E[No| = NiotPp. (1) 3. For the sensor's probability of making an erroneous
Let X(¢) be a ternary state random variable, wher@bservations;;, i # j, we use a simple linear combination
0 corresponds to object absert,corresponds to object model 8;; = A\;(1 — Bi), i # J, Z?:o Bij = 1, where
having Property ‘F’, and ‘2’ corresponds to object having); is some weighting parameter that satist%i A=
Property ‘G’. Note that the realization of (¢) depends 1, 0 < ); < 1.
on the cell being observed:
1 é€8p I1l. BAYES UPDATES FORSEARCH & CLASSIFICATION
X(@)=¢ 2 ceS¢
0 otherwise
Since bothSr and S are unknown and randon¥ (¢)
is a random variable with respect to evdarye D. This
paper focuses on the case where objects are immobi
therefore, X (¢€) is invariant with respect to time.

Based on the sensor model, in this section, we employ
Bayes’ rule to update the probability of object absence,
and its classification property at a single céll Under
he i.i.d. assumption, the Bayesian updates equations de-

gloped in this section will be deployed to the multi-cell
domain in Section VI and VII.
B. Sensor Model Given a single observatioki;(¢) = j, j = 0,1,2 at

In this work, we assume a sensor is able to obseni#ne stept, according to Bayes’ rule, for eaéh we have
only one cell at a time. Other sensor models that am(X (¢) = i|Yy(¢) = j;t + 1) = ;i P(X(€) = i;1),(4)
capable of observing multiple cells at the same time (e.gihere P(X (¢) = i|Yi(¢) = j;t + 1), i = 0,1,2 is the
the sensor models with limited sensory range proposed fosterior probability of the actual state beidgc) = i
[1]-[3], [9]-[16]) can be used. We consider the extremét time stept + 1, P(X (€) = 4;¢) is the prior probability
case in which the resources available are at a minimum @ being state typeX(¢) = i att, and a; serves as
single sensor as opposed to multiple cooperating ones)a normalizing function that ensures that the posterior

To be consistent with the state model, we defin@robabiliiesy"; | P(X(€) = i|Y;(¢) = jit + 1) = 1.

a ternary observation random variab¥é(c), where 0

corresponds to an observation indicating object absent at
cell ¢, 1 corresponds to an observation indicating that there
exists an object having Property ‘F’, aBccorresponds to In this section, we will extend the standard binary
an observation indicating an object having Property ‘G’.Bayesian sequential detection method [8], [17], [18] from

Given a stateX(¢) = 4, ¢ = 0,1,2, the probability signal detection theory [8], [19]-[21] into a ternary cost-
mass functionf of the observation distribution is given aware Bayesian sequential decision-making strategy.

IV. COSTFAWARE BAYESIAN SEQUENTIAL
DECISION-MAKING



Assuming a Uniform Cost Assignment (UCA) [8], we measurement, itp, = 1, the sensor stops taking fur-
define the decision cost components(gs = 1 if i # j, ther observations. Define the stopping time /é&p) =
andCy; = 0. Here,C}; is the cost of deciding when the min{k : ¢, = 1}, which is a random variable due to the
state isj. Leti = 0, 1, 2 represent ‘deciding object absent’,randomness of the observations. The expected stopping
‘deciding object having Property ‘F”, and ‘deciding objecttime under stateX (¢) = i is then given byE;[N(¢)] =
having Property ‘G”, respectively, angl corresponds to E[N(¢)|X(¢) = i].
state X (¢) = j. Since now we assign a cog&jys for each observation,

Let RO(E,L, A), L > 1, be the conditional Bayes risk the conditional Bayes risks (5,6) under UCA over> 0
of deciding there is an object having Property ‘F’ or ‘G’ observations can be modified to be:
at ¢ given that there is actually none over at least one R;(¢,L,A) = Prol(decideX (¢) # i|X(¢) = 1)
observation, +cobsEi [N ()], i =0,1,2. @)

Ro(¢, L, A) = coAby, co=[Coo Cro C20],  (5) If L > 1, A has explicit matrix form and we can
where ¢, contains the costs of deciding object absentyther rewrite the above equations as:
having Property ‘F' and ‘G’ when there is actually nothing p. (& 1., A) = ¢;Ab; + copsEi[N(4)], i =0,1,2.  (8)
atc. The quantityb, is the first column of the general con-  pefine the Bayes risk as the expected conditional

of B is N x 3. The numbe# is the number of possible e A:

decisions. The quantityv is the total number of different r(&,L,m,m, A) = (1 — 1 — m2)Ro(€, L, A) +
observatlon_comblnatlon&q,zl,;g) t_hat. the_ sensor can TR (6, L, A) + maRa (&, L, A), L >0, )
take according to the multinomial distribution (3) over a - -

) . . wherem; = P(X(¢) = 1;t = t,) andmes = P(X(¢) =
window of L time steps. The elemedt;; gives the prob- . . . .

. : A . S 2t = t,) are the prior probabilities of object having
ability of having theiy, kind of observation combination Property ‘E' and Property ‘G’ respectively. at cedl
out of N given statej. Note thathV:f)lBij = 1. The perty perty =5, P Y,

quantity A is a deterministic decision rule. Fdr > 1, andry = 1—m —m gives the prior probability of
. . . " object absent. Herg,, is the time instant whenever an
A is a3 x N matrix. The matrix elemenA? can be

. 1 am no o observation is taken at call Fix a pair of (m1, m2) under
either0 or 1, andy ;o A? = 1. WhenA? = 1, it means the constraints; € [0, 1] ande:1 m; < 1, the minimum

decisioni is made given that the observation type is n th%ayes risk surface at this particular cell has the minimum
nt column. WhenL = 0, i.e., there are no observauonsr value over all possible choices @ with L > 0. We

taken, decisions will be made regardless of observations . : .-
: - . want to sequentially make optimal decisions based on all
and there is no explicit matrix form foA.

Similarly, the conditional Bayes risk A under L > 0 such that the Bayes risk is minimized

Ri(&,L,A) = ¢;Ab;, ¢;=[Coi Cii Cuoi, i=1,2, (6) at each time step.

. : L If the sensor does not take any observatiohs=( 0)
gives the cost of making an erroneous decision given and directly make a decision, the Bayes risk8 different
that the actual state is eithéf(¢) = 1 or X (¢) = 2 over y ’ Y

) decision rulesA are as followsr(¢, L = 0,7, m, A =
L 2 1 observations. decide object absent 7y + w2, r(¢, L = 0,71, m2, A
Therefore, under UCA, there is no cost if the deci-, . ) oY 12, A T2
L . . decide Property ‘H' = 1 — my, 7(¢,L = 0,71, m2, A =
sion is the actual state, and the conditional Bayes risk” . A
ecide Property ‘G =1 — mo.

Ro, 1, I, can be interpreted as the error probability o™ ' on o takes an observationtat 0 (L =1),
making a wrong decision under a certain decision ele - . : .
over I observations at cel. th.e minimum Bayes risk over all possible choices/of
. . . with L =1is

Now let us assign an observation cesgs each time - . -
the sensor makes a new observation. In this section, wgmi“(c’L = Lm,me) = Acdy moRo(€, L =1,4)
assume it is a constant. In Section VI, a dynamig(t) +mR1(¢,L=1,A) +mRa(¢,L =1,A) > cops,
is developed to relate the observation cost with the taskhereG; is defined as the set of all deterministic decision
metrics for multi-cell domains. rules that are based on exacllyobservations (Herd, =

For each cell at every time step, the sensor has to.
choose among: (i) deciding object absent, (ii) deciding Following the same procedure, we compute the mini-
object having Property ‘F’, (i) deciding object having mum Bayes risk functions,,;, (¢, L, 71, 72) under differ-
Property ‘G’, or (iv) taking one more observation. Thisent observation numbers > 0 and then find the overall
same decision procedure is repeated until the cost afinimum Bayes risk,
making a wrong decision based on the current observation . (¢,m,m2) = ming—o1,2,.. "min(€, L, 71, 72).
is less than that of taking one more observation for a The basic idea of the cost-aware Bayesian sequential
possibly better decision. The cost-aware Bayesian sequetecision-making strategy is as follows: With initial prsor
tial decision-making strategy is such that the Bayes risk; = P(X(¢) = 1;t = 0) andm = P(X(¢c) = 2;t =
at each time step is minimized. Let = {¢x}32, be 0), check the corresponding;;, value in the overall
the stopping rule. Ifg, = 0, the sensor takes anotherminimum Bayes risk surface. if* . is given by the risk

min



plane withL > 1, the Bayes risk is lowered by taking anthe observations unddr = 0™ r(¢,L = 0,71, 72, A =
observationY;_q(¢). Compute the posterior probabilities decide Property ‘G'= 1 — 7.

P(X(¢) = i]Y;=0(¢);t = 1) according to Equation (4) Risk Plane 4.This plane corresponds to the decision rule
and again check the corresponding minimum Bayes risknder L = 1. The general conditional probability matrix
r*. to make decisions. The process is repeated usirigr L = 1 is given as

these posteriors as the new priors until the Bayes risk of Boo  Bio B0
taking one more observation is higher than the cost of B(L=1)= |Bo1 P11 Ba|,
making a wrong decision. Boz Bz Bao

Let us illustrate the details of the above scheme vi#here the rows correspond to the observatigns =
the following preliminary simulation for a single cell. 1,21 = 0,22 = 0), (20 = 0,21 = 1,22 = 0), and

(z0 = 0,21 = 0,29 = 1), respectively. Let us consider
V. SIMULATION FOR A SINGLE CELL the following decision rule,
1 0 0

In this simulation, we fix a celé, and assume that the
sensor is located at the centroid of this cell. The sensing

parameters are chosen as follows: That is, decide the actual state according to the only
Boo = 0.8, for = 0.1, oz = 0.1, one observation that was taken. Thereforés, L =
P10 = 0.2, 511 = 0.7, f12 = 0.1, (10) 1,7, m,A = Ay) is given directly by Equations (8)
B20 = 0.1, Bo1 = 0.15, Bag = 0.75. and (9)
The observation cost is set ag,s = 0.05. Figure 1 Risk Plane 5.This plane gives the decision rule under
shows the overall minimum Bayes risk.. (¢,m1,m). L = 2. The general conditional probability matrix is given
It is constructed by taking the smallest value of allas

Ap=1(0 10
0 0 1

Tmin(€, L, 71, m2), L > 0 under each fixed prior proba- 5(;0 @o ﬁgo
bility pair (71, m2). Here, we only list the expressions for 5(%1 551 551
the risk planes of decision rules that constitufg, as B(L =2) = B Bia Bas
annotated by the numerals- 10 in Figure 1. The Bayes 2B00fo1 - 2P10B11 2B20821
risk functions under more thas observations > 3) 2B00foz 2610612 2f20P22
have larger values and do not contribute tg,;, for the 2B01Boz 2B11P12  2f21P22

where the rows correspond to the observations =
2,21 = O,ZQ == O), (ZQ == O,Zl = 2,22 == O),

(Z() = O,Zl = O,ZQ == 2), (ZQ = 1,21 == 1,22 == O),

(ZQ =1,21 =0,20 = 1), and(zo =0,z21 =1,20 = 1),
respectively. Risk Plane 5 corresponds to the following
7 (Back) d @acky decision rule,

particular choice of3 andcgps here.

S
i

03 100 1 1 0
g 001000
a SRR Following the same procedure as above, we can get
RSN & r(¢,L = 2,m,m2, A = Ag;) according to Equation (9)

RO

without difficulty.
1 Risk Plane 6-10.These planes also give the decision rules

underL = 2. The corresponding decision rules are,
oo 000 o 100010
Aypy=]10 1 0 1 0 1 | (Risk Plane 6
Fig. 1. The overall minimum Bayes risk surfagg; is composed of L 00 1000 4
the enumerated risk planes described in this section. 1 0 0 0 0 O
Ayz=10 1 0 1 0 1 | (Risk Plane 7
Risk Plane 1. This plane represents the decision rule 00 1.0 1 0
“decide no object at the cell regardless of observations 100110
under L = 0”. According to Equations (7) and (9), the A2=|{ 0 1 0 0 0 0 | (Risk Plane §
Bayes risk is*(¢, L = 0,7, m2, A = decide no objegt= 00 1.0 0 1|
1+ 1. 100000
Risk Plane 2.This plane represents the decision rule A2s = | 0 1 0 1 0 0 | (Risk Plane 9
“decide there is an object with Property ‘F’ regardless of |00 1 0 11
the observations undet = 0" r(¢,L = 0,7, 72, A = 1001 00
decide Property ‘B'=1 — ;. Ayws=1]0 1 0 0 0 0 | (Risk Plane 10
Risk Plane 3. This plane represents the decision rule 001 011
ks follow as above.

“decide there is an object with Property ‘G’ regardless ofl N Bayes risks f



Whenr} . is given by Risk Plané, 2 or 3, the sensor where v > 0 is some constant. At the outset of the
stops taking observation and makes the correspondingission, the observation cost is high since there are
decision, otherwise, it always takes one more observatiostill many uncovered regions in the domain. The cost-
aware Bayesian sequential decision-making strategy tends
to make a decision with a few observations, which may
In this section, we define the uncertainty maps basege|d large number of wrong decisions, but increase the
on the posterior probabilities derived in Section Ill asyotential of rapidly detecting more critical objects. When
well as the metrics for the search and classification taSlfﬁe sensor has Surveyed more regionS, the uncertainty
in general multi-cell domains. We also relate the taskeve| for all the visited cells is reduced, and both the
metrics with a dynamic observation cost for the Bayesiagearch cost function and the observation cost decrease.
sequential decision-making strategy in multi-cell donsain The process will be repeated ungii(t) — 0, H; — 0,
and H, — 0, V¢ € D, i.e., all the unknown objects of
interest within the domain have been found and classified
For the search task, we use the information entropy t@ith a desired uncertainty level.
construct an uncertainty map for a multi-cell task domain
[22]. Let the probability distributionP(¢,¢) for object

VI. THE UNCERTAINTY MAP AND TASK METRICS

A. The Uncertainty Map

VII. FULL-SCALE DOMAIN MOTION CONTROL &

absent and present at call at time ¢ be P(¢,t) = SIMULATIONS
{P(X(¢c) = 0;t),1 — P(X(¢) = 0;t)}. We define the In this section, we consider a sensor motion control
information entropy for the distributio® (¢, ¢) as: strategy over the mission domain that seeks to find all

Hy(P(e,t)) = —P(X(¢) =0;t) In P(X(¢) = 0;1t) objects inD with a desired confidence level (i.e., achieve
—(1 = P(X (&) =0;t))In(1 — P(X (&) = 0;1)). (11) j — 0). For t_he_ sake of simplicit_y, we assume that there
Hy(P(&,t)) measures the uncertainty level of object exIS N0 speed limit on t_he sensor, i.e., the sensor is able to
istence at celE at timet. The greater the value off,, MoVve to any cell _W|th|rlD from its current location.
the larger the uncertainty is. Note th&k (P (¢,t)) > 0. First, we define the seQp(f) = {¢ € D :
The desired uncertainty level ifo(P(€,t)) = 0 and &rgmaxHo(P(¢,1))}. Next, letq.(t) be the centroid of
its maximum attainable value iy max = 0.6931 when the cell that the sensor is currently located at and define
P(X (&) = 0;t) = 0.5. See [2], [3] and references thereinth® subsetQa(t) C Qu(t) as Qu(t) = {¢ € Qu(t) :
for more detailed properties of the uncertainty function2'dMin[|a.(t) — ql}, whereq is the centroid ofc. The
The information entropy distribution at time stepover S€tQa(t) contains the cells which have both the shortest
the domain forms an uncertainty map at that time instan@listance from the current cell and the highest search
Similarly, we can build uncertainty mapd; and H. uncertainty. When the sensor finishes taking observations

for state X (&) = 1, 2, Vé € D, respectively, to evaluate N @ current cell via the Bayesian sequential decision-

the sensor’s confidence level for classification. making strategy and decides to move to a new cell, it will
choose the next cell to go to from,(¢). Note thatQ,(t)
B. Task Metrics may have more than one cell. Latyy be the number of

When the observation cost is low, the Bayes risk i€€!lS in Qa(?), the Sensor will randomly pick a cell from
minimized by taking more observations, the sensor WiIQd(t) with probability Na* .
decide not to proceed searching for more objects, but to 'VeXt let us demonstrate the cost-aware Bayesian se-
stop and take an observation at the current cell. Und@f"ent'al decision-making strategy over a full-scale damai

this scenario, we define the cost of not carrying on furthefi@ @ simulation. We consider 20 x 20 square domain
search as follows: D. For eachc € D, we assume an i.i.d. prior probability
>cep Ho(P(&, 1))

distribution with P(X (¢) = 0;¢t = 0) = 0.8, P(X(¢) =

T == — (12) 1.4 — 0) = 0.1, and P(X(¢) = 2;¢ = 0) = 0.1
where Ap is the area of the domain. The cogt is The number, locations and properties of the objects are
proportional to the sum of the search uncertainty &er randomly generated. The radius of the sensor is shown
According to this definition, we have < 7(¢) < 1. If by the black circle in Figure 2. The black dot represents
Hy(P(¢,ts)) = 0 at somet = ¢, for all ¢ € D, then the position of the sensor. The sensing parameteys
J(ts) = 0 and the entire domain has been satisfactorilare the same as in Equation (10). The constafdr the
covered and we know with 100% certainty that there arebservation cost in Equation (13) is set @85 and the
no more objects yet to be found. desired uncertainty for every cell is= 0.02.

Similarly, We useH; and Hs, as the classification The number of objects turns out to B2 (the expected
metrics. When the classification uncertainty of a cell imumber of objects i80 according to Equation (1)) with
within a small neighborhood of zero, the classification taslocations indicated by th&7 white dots (objects with

is said to be completed. Property ‘F’) and35 magenta dots (objects with Property
Now let us associate a dynamic observation eggtt) ‘G’) in Figure 2. Figure 2 shows the evolution df.
with the search cost functiof (¢), At t = 1023, Hy = 1.1 x 1072 < ¢ has been achieved

Cos(t) = T (t), (13) everywhere withinD.



geometries will also be addressed. Objects with non i.i.d
distributions over the domain will be investigated, where
decision-making at one cell is affected by all the decisions
made at other cells. Sequential Probability Ratio Test
(SPRT) method will also be investigated for the cases

(1]

(2]

(31

(4]

(d)

Fig. 2. Uncertainty map (dark red for highest uncertaintg dark blue
for lowest uncertainty) at (&) = 1, (b) ¢ = 200, (c) ¢ = 620, and (d)
t = 1023 (with initial uncertainty Ho(P(¢,0)).

(5]

(6]
Figure 3(a) shows the evolution ¢f (¢) and can be
seen to converge to zero. Figure 3(b) shows that objedf]
6 (located at(2,11)) has Property ‘F’ with classification
uncertaintyH; = 0.0074 < e at time stepl030. The result
is consistent with the simulation setup. The properties of8]
other objects are also satisfactorily classified and can bE]
shown like Figure 3(b).

[20]

§04 —~ 0 200 400 + 600 800 1000 [11]
0.3 !
. NEJ
0.1 l\g
o)
0 200 400 + 600 800 1000 q, o 200 400 + 600 800 1000 [12]
(@ (b)
Fig. 3. (a) Evolution of7(t), and (b) Probability of objecé having

Property ‘F’ and the corresponding uncertainty functiéin. [13]
The total number of missed detections during the entirﬁ4]
missions is 16, and that of false detections is 5. The
number of misclassifications of Property ‘G’ given ‘F’,
and Property ‘F’ given ‘G’ is 1 and 0, respectively. Notef!
that the numbers of erroneous decisions are small relative
to the total number of cells within the domain. This[16]
suggests that the cost-aware Bayesian sequential decision
making strategy is efficient in making good decision$i7

given limited available observations. 18]

VIII. CONCLUSION [19]

In this paper, a cost-aware decision-making strategyo]
was developed for the detection and satisfactory classifi-
cation of all objects in a domain via sequential Bayesia
risk analysis. Future research will focus on the trackinge2]
and classification of mobile objects using multiple au-
tonomous vehicles. The question of unknown environment

where no prior information is available.
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