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I. INTRODUCTION

In many domain search and object classification

problems, for example, aerial search and

rescue/destroy, surveillance, space imaging systems,

mine countermeasures, and wildfire control, the

effective management of limited available sensing

resources is key to mission success [1, 2]. In a

search task, the objective is to find every unknown

object in a mission domain and fix its position. In

a classification task, the objective is to take enough

measurements to determine the nature of the object.

On one hand, with limited available observations

in the presence of sensor errors, a sensor may

give a false alarm of object presence while there

is actually none, miss detecting a critical object,

or report incorrect classifications. However, taking

exhaustive observations at one particular location

of interest may result in losing the opportunity to

find and classify possibly more critical objects at

other locations within the domain. For example, in

search and rescue, a sensor-equipped robot may come

across a human victim and, at the cost of missing it,

decide to continue to search and classify other objects.

Conversely, locating and analyzing a nonhuman object

may come at the cost of delaying the detection of or

altogether missing a live human victim.

Therefore, it is crucial to choose whether to

search and classify more unknown objects over a

domain with probably lower accuracy, or to keep

taking observations at a certain location until full

certainty. This decision is especially critical when the

mission domain is too large to be covered by statically

distributed sensors with limited sensory ranges, or

the number of unknown objects is far more than that

of the available sensors [3—5]. To accomplish these

competing tasks under limited sensory resources

with minimum costs, in this paper, we develop a

decision-making strategy that dynamically chooses

the task to be performed based on an overall risk

assessment associated with the decision.

We first review some related literature on

probabilistic object search, classification, and tracking,

which has been studied mainly for optimal path

planning and state estimation. Note that classification

of stationary objects and tracking of mobile objects

both require observations associated with a single

detected object. However, we focus on classification

in this paper and future work will extend current

research to mobile object tracking. Inspired by

work on particle filtering, in [6] the authors develop

a strategy to dynamically control the relative

configuration of sensor teams in order to get optimal

estimates for target tracking through multi-sensor

fusion. In [7], [8] the authors use the Beta distribution

to model the level of confidence of target existence

for an unmanned aerial vehicle search task. The

minimum number of observations required to achieve
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a probability threshold is derived. In [9] the authors

investigate search-and-tracking using recursive

Bayesian filtering with foreknown targets’ positions.

The results are extended in [10] for dynamic search

spaces, where a target might not be within a static

search space at the next time step. In [11] the author

proposes a Bayesian-based multisensor-multitarget

sensor management scheme. The approximation

strategy maximizes the expected number of targets.

In [12] the target existence probability gain from

searching a point is defined as a cost function used

to determine the vehicle’s optimal path.

It is worth noting that in the above literature there

is no explicit decision-making strategy for search and

classification/tracking. To remedy this, the authors

developed a decision-making strategy for search

versus tracking within a deterministic framework

in [3] and extended the result to a probabilistic

framework in [4] and [5]. In [3] the model describes

how “aware” the vehicle fleet is of events over a

given domain. The proposed strategy guarantees the

detection of all objects of interest and the tracking of

each object’s state for a minimum guaranteed amount

of time. In [4] and [5] a probabilistic Bayesian

counterpart was developed for unknown object search

versus classification treated as two competing tasks.

A probabilistic framework is desirable as it takes

into account sensor errors, as well as allows for

future incorporation of other tasks such as object

tracking, data association, data/decision fusion, sensor

registration, and clutter resolution [4, 5, 13]. In the

probabilistic setting, in this paper information entropy

is utilized to model the uncertainty level of the search

and classification tasks. Some related work can be

found in the literature of statistics for optimal data

selection. In [14] the variance of posterior density

is used as a criterion for active data selection and

a confidence measure for test point rejection. It is

shown that high confidence level (i.e., small variance)

is achieved when the training data are near the test

data. The work in [15] provides a brief discussion of

the optimum or effective sampling methods based

on information entropy. The observation sample

with maximum entropy is chosen. The proposed

method therein may be used in either a search or

a classification mission (treated as independent

problems). However, note that the key aspect of the

problem tackled in this paper is the treatment of

search and tracking as competing tasks.

Sequential detection [16] allows the number of

observations to vary in order to achieve an optimal

decision. The Bayesian sequential detection method

used in this paper is such that the Bayes risk (to

be formally defined in Section IV) is minimized at

each time step [17]. Two types of costs are taken

into account in the risk calculation: 1) the cost of

making a wrong decision, i.e., the probability of

missed/false detection, or incorrect classification,

and 2) the cost of taking more observations for a

possibly better decision. The observation cost is

computed in real time based on the progress of the

task. Due to the randomness of observations and

the dynamic observation cost, a decision may be

made with a few observation samples, whereas for

other cases one would rather take more samples to

minimize risk. In [18] a sequential Bayes classifier

is utilized for the real-time classification of detected

targets under a neural network based framework,

however, without consideration of observation costs.

Another sequential detection method is the sequential

probability ratio test (SPRT) [16, 19] based on

binary Neyman-Pearson formulation where no prior

probability information is required. On average

a smaller number of observations are needed to

make a decision in SPRT compared with an equally

reliable method with a predetermined fixed number of

observations [20]. The change-point detection theory

[21, 22] is a generalization and modification of SPRT.

It detects a change in the probability distribution of a

stochastic process or time series. Existing techniques

include the Shyriaev-Roberts (SR) [21, 23] and the

cumulative sum control chart (CUSUM, a.k.a. Page

test) [24] tests. We focus on Bayes risk analysis with

prior information in this paper and will investigate

other solution approaches in future work.

In the literature, sequential decision-making

via tradeoffs between exploration and exploitation

has been investigated in a risk-neutral context. The

work in [25], [26] and references therein provide

an overview of techniques that trade off between

expected information gain (or equivalently, rewards)

and the cost incurred by applying a control action

for partially observable Markov decision process

(POMDP). The planning problem is addressed under

no constraints of decision error, and is hence, risk

neutral.

In this work we focus on a cost-aware Bayesian

sequential decision-making strategy for search

and classification in the presence of sensor errors.

The contribution of this paper is the real-time

decision-making for object existence and its

classification with minimum Bayes risks under limited

sensory resources. It is shown that the real-time data

collection and optimal decision-making strategy is

robust to sensor errors. A key novelty in this paper

relative to previous work lies in the treatment of

search/classification and taking observations as tasks

competing for the same limited resources while

seeking to minimize the combined risk of decision

errors and observation costs.

Figure 1 shows the block diagram of the proposed

strategy and the organization of the paper. At time

t, the sensor takes an observation at a cell c̃j in the
search domain based on a ternary sensor model

proposed in Section II. Next, the posterior probability

of object existence or its classification at c̃j gets
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Fig. 1. Block diagram of cost-aware Bayesian sequential decision-making strategy.

updated via the Bayes update equations formulated in

Section III. In Section IV we introduce the Bayesian

sequential detection method for a single cell c̃j , which

depends on the sensor model as well as the dynamic

observation cost. Its output is the minimum Bayes

risk surface at cell c̃j . Combined with the updated

probabilities, the sensor makes a decision (whether

or not to take one more observation at c̃j) that

minimizes the Bayes risk at time t. In Section V an

uncertainty map is constructed based on the updated

probabilities of every cell within the domain. If the

desired certainty level has not been achieved yet, a

task metric is developed to formulate the dynamic

observation cost. Finally, we combine the results

from Sections IV and V: if the decision is to stop

taking observation at the current cell c̃j , a sensor

motion control scheme is provided in Section VI,

which drives the sensor to the cell c̃k that has the
maximum uncertainty in the domain. This process is

repeated over time until the uncertainty level over the

entire domain is satisfactorily low. To illustrate the

performance of the proposed strategy, we provide a

simulation-based study in Section VII. The paper is

concluded with a summary of current and future work

in Section VIII.

II. SETUP AND SENSOR MODEL

We introduce the problem formulation in this

section. For the sake of clarity, Table I summarizes

a list of key variables used in this paper.

A. Problem Setup

Let D ½ R2 be the domain in which objects to be
found and classified are located. We discretize the

domain into Ntot cells. Let c̃ be an arbitrary cell in D
(we omit the subscript j with the understanding that

TABLE I

List of Key Variables

D Mission domain

c̃ A cell in D
q̃ Centroid of c̃

Pp Initial probability of object presence at c̃

X(c̃) Ternary state variable at c̃

Yt(c̃) Ternary observation variable at c̃ at t

¯ij Probability of observing Y(c̃) = j given state

X(c̃) = i

L Observation length

Zj(c̃) Number of times observing Y(c̃) = j during

L observations

Cij Cost of deciding i given state X(c̃) = j

cj [C0j C1j C2j]

¢ Deterministic decision rule

t Time index

B General conditional probability matrix

bj jth column of B

cobs Observation cost

R̃j Conditional Bayes risk without cobs

Rj Conditional Bayes risk with cobs

Ej[N(Á)] Expected stopped time given state X(c̃) = j

¼j Prior probability of state being X(c̃) = j

r Bayes risk

r¤
min

Minimum Bayes risk

H Uncertainty function

° Observation cost weighting parameter

Qd(t) Set of cells with highest H and shortest

distance to the current cell

² Desired uncertainty level

c̃ represents a single unique cell in D) and q̃ is the
centroid of cell c̃. Define 1·No ·Ntot as the total
number of objects in D and the position of the static
object Oj , j 2 f1,2, : : : ,Nog, as pj . Both No and pj
are unknown beforehand. Assume that the objects
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are independent and identically distributed (IID) over

D, and the partitioning of the domain is fine enough
so that at most one object can exist in a cell. An

object can be assigned as many property types as

needed, but without loss of generality, we assume

that an object can have one of two properties, either

property “F” or property “G”. Let NFo (NGo ) be the

(unknown) number of objects with property F (G),

with NFo +N
G
o =No. Let SF (SG) be the set containing

those cells and PF (PG) be the corresponding initial

probability mass function. Hence, No is a binomial

random variable with parameters Ntot and Pp = PF +PG,

where Pp gives the initial total probability of object

present at a cell c̃ and is identical for all c̃ 2D and
independent. Therefore, the probability of k cells in

the domain containing an object is given by

Pr(No = k) =

μ
Ntot

k

¶
Pkp (1¡Pp)Ntot¡k

where k = 1,2, : : : ,Ntot and the expectation of No
is equal to the number of total cells multiplied by

Pp, i.e.,
E[No] =NtotPp: (1)

Similarly, the probability of k cells within the domain

containing an object with property F (G) follows a

binomial distribution with parameters Ntot and PF (PG).

Let X(c̃) be a ternary state random variable at cell

c̃, where 0 corresponds to object absent, 1 corresponds
to object having property F, and 2 corresponds to

object having property G. The realization of X(c̃)

depends on the cell c̃ being observed, i.e.,

X(c̃) =

8><>:
1 if c̃ 2 SF
2 if c̃ 2 SG
0 otherwise

:

Since both SF and SG are unknown and random, X(c̃)
is a random variable with respect to every c̃ 2D.
Because we assume that the objects are immobile,

X(c̃) is invariant with respect to time.

B. Sensor Model

For the sake of illustrative clarity, we make the

following assumptions for the sensor model.

1) A sensor is able to observe only one cell at

a time. Extension to other sensor models that are

capable of observing multiple cells at the same time

(e.g., the sensor models with limited sensory range

proposed in [3]—[5], [27]—[33]) is straightforward.

2) A sensor is able to move to any cell

within the domain. Other motion schemes,

such as gradient-based, awareness-based, and

information-driven control laws ([3—5, 27—33]), can

be adopted without difficulty.

3) We consider the extreme case in which the

resources available are at a minimum (a single sensor

as opposed to multiple cooperating ones).

Fig. 2. Model showing how unknown state at particular cell c̃

and observations obtained by sensor are related.

Let Y(c̃) be a ternary observation random variable,

where 0 corresponds to an observation indicating

object absent at cell c̃, and 1 (2) corresponds to an

observation indicating that there exists an object

having property F (G).

The sensor model follows a ternary discrete

probability distribution. For a cell c̃, given a state

X(c̃) = i, i= 0,1,2, the probability mass function f
of the observation distribution is given by

fY(y j X(c̃) = i) =

8><>:
¯i0 if y = 0

¯i1 if y = 1

¯i2 if y = 2

(2)

where
P2

j=0¯ij = 1, Y corresponds to the ternary

random variable and y is the dummy variable.

Because the states X(c̃) and the observations Y(c̃) are
spatially IID, the probability distribution for every

c̃ 2 D follows the same structure. Figure 2 shows
the relationship between the unknown state X(c̃)
and an observation Y(c̃). This is a simplified but
reasonable sensor model because it abstracts away

the complexities in sensor noise, image processing

algorithm errors, and lays a foundation for decision

fusion in multiple sensor systems [34, 35].

Conditioned on the true state X(c̃), the

observations Yt(c̃) taken along time are temporally IID
Define an integer random variable Zj(c̃), j = 0,1,2 as

the number of times that observation Y(c̃) = j appears

during a window of L time steps. The quantity Zj(c̃)

satisfies
P2
j=0Zj(c̃) = L, Zj(c̃) 2 [0,L]. Therefore,

given state X(c̃) = i, i= 0,1,2, the probability of
having observation (z0,z1,z2) in a window of L time

steps follows a multinomial distribution

Pr(Z0(c̃) = z0, Z1(c̃) = z1, Z2(c̃) = z2 j X(c̃) = i)

=
L!

z0!z1!z2!
¯z0i0¯

z1
i1¯

z2
i2 ,

2X
j=0

zj = L: (3)

The sensor’s probabilities of making a correct

observation, i.e., the detection probabilities, are ¯00,
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¯11, and ¯22. Here we assume that the sensor is

“good” and restrict these values to be ¯00,¯11,¯22 >

0:5. This implies that the sensor is able to better

distinguish the true state from the other two states and

returns a higher likely observation of the true state at

that location. More general values within [0,1] can

be considered, however, introducing extra analytical

complexity does not contribute any new insights.

REMARK

1) If we have more than two possible classification

properties, one can extend the current ternary sensor

model to a more general M-ary model without

difficulty.

2) A key feature of the proposed approach is

that the sensor may have a limited range. Existing

literature on cooperative coverage control for the

sensor redeployment problem usually assumes infinite

sensory range [36—38]. This assumption is not made

here. This is very important in applications where

D is large scale (i.e., too large to be optimally or
suboptimally covered by a single set of static sensors).

The application of limited-range sensors is consistent

with previous work for dynamic coverage control of

multi-sensor network with flocking and guaranteed

collision avoidance [27—29, 31], awareness-based

coverage control and decision-making for search

versus tracking using multiple autonomous

vehicles with intermittent communications [3, 33],

Bayesian-based binary decision-making for search

versus characterization/classfication [4, 5], and

underwater effective coverage [30, 32].

III. BAYESIAN UPDATES FOR SEARCH AND
CLASSIFICATION

Based on the ternary sensor model, in this section,

we employ Bayes’ rule to update the probability of

object existence and its classification at a single cell

c̃. Under the IID assumption, the Bayesian updates
equations developed in this section are deployed to

multi-cell domain in Sections V, VI, and VII.

According to Bayes’ rule, given a single

observation Yt(c̃) = j taken at cell c̃ at time step t, we
have

P(X(c̃) = i j Yt(c̃) = j; t+1)
= ®jP(Yt(c̃) = j j X(c̃) = i)P(X(c̃) = i; t),

i,j = 0,1,2 (4)

where P(X(c̃) = i j Yt(c̃) = j; t+1) is the posterior
probability that the true state is X(c̃) = i at time step
t+1, P(Yt(c̃) = j j X(c̃) = i) is the probability of the
particular observation Yt(c̃) = j being taken given

X(c̃) = i, which is determined by the ternary sensor
model (2). P(X(c̃) = i; t) is the prior probability of
being state type X(c̃) = i at t, and ®j serves as a

normalizing function that ensures
P2

i=0P(X(c̃) =
i j Yt(c̃) = j; t+1) = 1. According to the law of total

probability, ®j is given as follows,

®j =
1

P(Yt(c̃) = j)

=
1

¯0jP(X(c̃) = 0; t)+¯1jP(X(c̃) = 1; t) +¯2jP(X(c̃) = 2; t)

and thus we can get the posterior probabilities by

substituting the value of ®j into (4).

Remark about Extension to Multiple Sensors:

When we have multiple sensors, each sensor will

give its own observation for a certain cell c̃. Hence,

there are 3m different combinations of unordered

observations at each time step if we have m sensors

in all. Under the IID assumption, a general update

equation for the posterior probabilities can be obtained

by using the products of the sensing capability

functions ¯ij of each sensor. Current research focuses

on the development of decentralized decision criteria

and sensor data/decision fusion for the search and

tracking of multiple mobile objects using a team of

mobile sensors.

IV. COST-AWARE BAYESIAN SEQUENTIAL
DECISION-MAKING

In this section we use a ternary cost-aware

Bayesian sequential decision-making strategy to

determine the state at a cell c̃ with minimum Bayes

risk. It is extended from the standard binary Bayesian

sequential detection method [16, 20, 39] in signal

detection theory [16, 40—42]. Instead of deriving an

optimal detector given a fixed number of observations

as in classical Bayesian, minimax, or Neyman-Pearson

hypothesis testing methods [16, 40—42], the Bayesian

sequential detector takes observations until a decision

can be made with lowest Bayes risk. This results in a

random number of observations.

A. Conditional Bayes Risk without Observation Cost

Bayes risk is the expected value of the sum of two

types of costs: decision cost and observation cost.

Here, we first investigate the conditional Bayes risk

without taken into account the observation cost, that

is, the cost of making a wrong decision.

Assuming a uniform cost assignment (UCA) [16],

we define the decision cost components as

Cij =

½
0 if i= j

1 if i 6= j
where i= 0,1,2 represents the decision: “deciding

that the state at c̃ is X(c̃) = i” and j corresponds to the
true state X(c̃) = j. Hence, Cij is the cost of deciding
i when the state is j. Note that the cost generally

depends on the cell c̃ being observed. For the sake

of simplicity, we assume that the cost is IID over the

domain and omit the argument c̃ throughout the paper.

Let R̃j(c̃,L,¢), j = 0,1,2, L¸ 1, be the conditional
Bayes risk of deciding X(c̃) 6= j given that the true
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state is X(c̃) = j,

R̃j(c̃,L,¢) = cj¢bj (5)

where

1) cj = [C0j C1j C2j].

2) ¢= [¢(i,n)] is the deterministic decision rule:

Let N be the total number of possible observation

combinations (z0,z1,z2) that the sensor can take

according to the multinomial distribution (3) over a

window of L time steps. The matrix element ¢(i,n),

i= 0,1,2, n= 0, : : : ,N ¡ 1 can be either 0 or 1,
and

P1
i=0¢(i,n) = 1. When ¢(i,n) = 1, it means

that decision i is made given that the observation

combination corresponds to the nth column of ¢. For

L¸ 1, the dimension of ¢ is 3£N because there are

three possible realizations of the states. For L= 0,

i.e., there are no observations taken, ¢ could be

“always decide there is no object,” “always decide

there is an object with property F” or “always decide

there is an object with property G,” regardless of

the observations, and there will be no explicit matrix

form.

3) bj is the jth column of the general conditional

probability matrix B = [Bij] for L¸ 1. The element
Bij gives the probability of having observation

combination i given state j. According to the

probability axiom,
PN¡1
i=0 Bij = 1, j = 0,1,2. For L¸ 1,

B is an N £3 matrix.
Therefore, under UCA, there is no cost if

the decision is the true state, and the conditional

Bayes risk R̃0, R̃1, R̃2 can be interpreted as the error

probability of making a wrong decision under a

certain decision rule ¢ over L observations at cell c̃.

Remark about “Reasonable” Deterministic Decision

Rules: As mentioned in Section II-B, in this paper,

we assume that the sensor is a “good” one. That is

to say, the detection probability is higher than the

error probability of the sensor, i.e., ¯ii >
1
2
. Under

this assumption, there are only a small number of

reasonable deterministic decision rules that need

to be considered. Given L observations, the set of

reasonable deterministic decision rules is the set of

all rules of the type

¢(i,n) =

½
1 zi =max(z0,z1,z2)

0 otherwise

where i= 0,1,2, n= 0, : : : ,N ¡1. This means, take
L= 2 for instance, we only need to consider decision

rule matrices such as

¢=

2641 0 0 1 1 0

0 1 0 0 0 1

0 0 1 0 0 0

375 but not

¢=

2640 1 0 0 0 1

1 0 1 0 1 0

0 0 0 1 0 0

375

where the columns correspond to observation

combinations (z0 = 2,z1 = z2 = 0), (z1 = 2,z0 = z2
= 0), (z2 = 2,z0 = z1 = 0), (z0 = z1 = 1,z2 = 0),

(z0 = z2 = 1,z1 = 0), and (z0 = 0,z1 = z2 = 1)

respectively. Note that reasonable decision rules grow

with L and dominates any other type of decision rules

with the same value of N.

B. Conditional Bayes Risk with Observation Cost

Now let us assign an observation cost cobs each

time the sensor makes a new observation. This cost

could be based on energy, amount of observation time,

etc. Here, we assume it is a constant. In Section V,

a dynamic cost function cobs(t) is developed to relate

the observation cost with the task metrics for real-time

decision-making in multi-cell domains.

We first define Á= fÁkg1k=0 as the stopping rule
and ± = f±kg1k=0 as the intermediate decision rule.
If Ák = 0, the sensor takes another measurement, if

Ák = 1, the sensor stops taking further observations.

At every time step k, ±k can be either one of four

intermediate decisions: 1) deciding object absent,

2) deciding object having property F, 3) deciding

object having property G, or 4) taking one more

observation and postpone making a decision to the

following time step. Let the stopping time be the

minimum amount of time it takes to make a final

decision, i.e., N(Á) = minfk : Ák = 1g, which is a
random variable due to the randomness of

the observations. The expected stopping time

under state X(c̃) = j is then given by Ej[N(Á)] =

E[N(Á) j X(c̃) = j].
Since now we assign a cost cobs for each

observation, the conditional Bayes risk (5) under UCA

over L¸ 0 observations can be modified as
Rj(c̃,L,¢) = Pr(decide X(c̃) 6= j j X(c̃) = j) + cobsEj[N(Á)],

j = 0,1,2: (6)

If L¸ 1, ¢ has explicit matrix form and we can

further rewrite the above equations as

Rj(c̃,L,¢) = cj¢bj + cobsEj[N(Á)], j = 0,1,2:

(7)

C. Bayes Risk

We now define the Bayes risk as the expected

conditional Bayes risk under decision rule ¢ over L

observations at cell c̃:

r(c̃,L,¼1,¼2,¢) = (1¡¼1¡¼2)R0(c̃,L,¢)
+¼1R1(c̃,L,¢)+¼2R2(c̃,L,¢),

L¸ 0 (8)

where ¼j = P(X(c̃) = j; t= tv), j = 0,1,2 is the prior

probability of state being X(c̃) = j at time instant

tv when an observation is taken at cell c̃. At each

cell c̃ at every time step t, given a fixed pair (¼1,¼2)
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Fig. 3. (a) Bayes risk functions under 0, 1, 2 observations. (b) Minimum Bayes risk function r¤
min
. Overall minimum risk surface is

composed of several enumerated risk planes, each of which is described in this section.

under the constraints ¼i 2 [0,1] and
P3
i=1¼i = 1, the

sensor chooses a combination of (L¸ 0,¢) that yields
the minimum value of the Bayes risk r. This same

procedure is repeated until the cost of making a wrong

decision based on the current observation is less than

that of taking one more observation for a possibly

better decision.

D. Bayesian Sequential Detection

We now elaborate on the decision-making

procedure. If the sensor does not take any

observations (L= 0) and directly make a decision,

according to (6) and (8), the Bayes risks of 3 different

decision rules ¢ are as follows

r(c̃,L= 0,¼1,¼2,¢= always decide object absent)

= ¼1 +¼2

r(c̃,L= 0,¼1,¼2,¢= always decide object having

property F) = 1¡¼1
r(c̃,L= 0,¼1,¼2,¢= always decide object having

property G) = 1¡¼2:
If the sensor decides to take an observation (L¸ 1),

the minimum Bayes risk over all possible choices of

¢ with L observations is

rmin(c̃,L¸ 1,¼1,¼2) = min
¢2GL

(1¡¼1¡¼2)R0(c̃,L¸ 1,¢)

+¼1R1(c̃,L¸ 1,¢) +¼2R2(c̃,L¸ 1,¢)
¸ Lcobs

where GL is defined as the set of all deterministic
decision rules that are based on exactly L

observations.

Following similar procedure, we compute the

minimum Bayes risk functions r¤min under different

observation numbers (L¸ 0) and find the overall
minimum Bayes risk over all possible combinations

of (¢,L),

r¤min(c̃,¼1,¼2) = min
L=0,1,2,:::

rmin(c̃,L,¼1,¼2):

The basic procedure of Bayesian sequential

detection is summarized as follows. With initial priors

¼j = P(X(c̃) = j; t= 0), check the corresponding r
¤
min

value. If r¤min is given by the risk function with L¸ 1,
the sensor takes an observation Yt=0(c̃). Compute the

posteriors P(X(c̃) = j j Yt=0(c̃); t= 1) according to (4)
and again check r¤min to make decisions. The process
is repeated using these posteriors as the new priors.

The key is that an observation is taken if and only

if rmin(c̃,L¸ 1,¼1,¼2)<min(¼1 +¼2,1¡¼1,1¡¼2).
When r¤min = rmin(c̃,L= 0,¼1,¼2), the sensor stops
taking observations and a decision is made at c̃.

E. Simulation for a Single Cell

Let us illustrate the proposed scheme via the

following preliminary simulation for a single cell. We

fix a cell c̃ and assume that the sensor is located at

the centroid of this cell. The sensing parameters are

chosen as follows:

¯00 = 0:8, ¯01 = 0:1, ¯02 = 0:1

¯10 = 0:2, ¯11 = 0:7, ¯12 = 0:1

¯20 = 0:1, ¯21 = 0:15, ¯22 = 0:75:

(9)

The observation cost is set as cobs = 0:05. Figure 3(a)

shows all the Bayes risk functions r under L= 0, 1

or 2 observations under the constraints ¼i 2 [0,1],
and

P2
i=1¼i · 1. Figure 3(b) shows the overall

minimum Bayes risk surface r¤min(c̃,¼1,¼2), which is
the minimum value of all r(c̃,L,¼1,¼2,¢), L¸ 0, under
each fixed prior probability pair (¼1,¼2). Here, we
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only provide a brief derivation of the risk planes that

constitute r¤min. The Bayes risk functions under more
than 3 observations (L¸ 3) have larger r values and
do not contribute to r¤min(c̃,¼1,¼2) for the particular
choice of ¯ and cobs here.

Let us interpret each of these risk planes in

Fig. 3(b) annotated by the numerals 1—10.

Risk Plane 1. r(c̃,L= 0,¼1,¼2,¢= always decide

there is no object) = ¼1 +¼2.

Risk Plane 2. r(c̃,L= 0,¼1,¼2,¢= always decide

object present with property F) = 1¡¼1.
Risk Plane 3. r(c̃,L= 0,¼1,¼2,¢= always decide

object present with property G) = 1¡¼2.
Risk Plane 4. This plane corresponds to the

decision rule after taking one observation. The general

conditional probability matrix for L= 1 is given as

B(L= 1) =

264¯00 ¯10 ¯20

¯01 ¯11 ¯21

¯02 ¯12 ¯22

375
where the rows correspond to the observations

(z0 = 1,z1 = 0,z2 = 0), (z0 = 0,z1 = 1,z2 = 0), and

(z0 = 0,z1 = 0,z2 = 1), respectively. Risk plane 4

corresponds to the following decision rule,

¢11 =

2641 0 0

0 1 0

0 0 1

375 :
That is, decide the state according to the only one

observation taken. This is the only reasonable decision

rule for L= 1. Therefore, according to (7), we have

R0(c̃,L= 1,¢=¢11) = ¯01 +¯02 + cobs, R1(c̃,L= 1,

¢=¢11) = ¯10 +¯12 + cobs, and R2(c̃,L= 1,¢=

¢11) = ¯20 +¯21 + cobs. Hence, r(c̃,L= 1,¼1,¼2,¢=

¢11) is given directly by (8).

Risk Plane 5—10. These planes give the decision

rules after two observations. The general conditional

probability matrix for L= 2 is given as

B(L= 2) =

266666666664

¯200 ¯210 ¯220

¯201 ¯211 ¯221

¯202 ¯212 ¯222

2¯00¯01 2¯10¯11 2¯20¯21

2¯00¯02 2¯10¯12 2¯20¯22

2¯01¯02 2¯11¯12 2¯21¯22

377777777775
where the rows correspond to the observations

(z0 = 2,z1 = 0,z2 = 0), (z0 = 0,z1 = 2,z2 = 0), (z0 = 0,

z1 = 0,z2 = 2), (z0 = 1,z1 = 1,z2 = 0), (z0 = 1,z1 = 0,

z2 = 1), and (z0 = 0,z1 = 1,z2 = 1), respectively. The

corresponding decision rules are,

¢21 =

2641 0 0 1 1 0

0 1 0 0 0 1

0 0 1 0 0 0

375 (risk plane 5)

¢22 =

2641 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 0 0

375 (risk plane 6)

¢23 =

2641 0 0 0 0 0

0 1 0 1 0 1

0 0 1 0 1 0

375 (risk plane 7)

¢24 =

2641 0 0 1 1 0

0 1 0 0 0 0

0 0 1 0 0 1

375 (risk plane 8)

¢25 =

2641 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1

375 (risk plane 9)

¢26 =

2641 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 1

375 (risk plane 10):

The Bayes risks follow according to (7) and (8).

When r¤min is given by risk plane 1, 2, or 3,
the sensor stops taking observation and makes the

final decision, otherwise, it always takes one more

observation. Note that according to the remark about

reasonable decision rules, there should be 23 = 8

reasonable decision rules for L= 2, but there is one

decision rule with higher Bayes risks parallel to risk

plane 4 (L= 1), and another one overlapping with risk

plane 10.

We now give a simple example of how to

utilize the minimum Bayes risk surface r¤min for
decision-making. At a cell c̃, assume we start with the

priors P(X(c̃) = 0; t= 0) = 0:7, P(X(c̃) = 1; t= 0) =
0:1, and P(X(c̃) = 2; t= 0) = 0:2. The corresponding

minimum Bayes risk for the prior pair (0:1,0:2) is

given by risk plane 8 (L= 2). So the sensor takes an

observation, and if the observation is Yt=0(c̃) = 0, the

posterior probabilities are updated according to (4).

The posteriors are P(X(c̃) = 0; t= 1) = 14
15
, P(X(c̃) = 1;

t= 1) = 1
30
, and P(X(c̃) = 2; t= 1) = 1

30
. Now r¤min is

given by risk plane 1 (L= 0). Therefore, the sensor

decides not to take any more observations and decides

that there is no object at c̃ with an associated Bayes

risk of r = r¤min =
1
15
.

V. THE UNCERTAINTY MAP AND TASK METRIC

We have discussed the mechanics of the Bayesian

probability updates (Section III) and sequential

decision-making (Section IV) for a single cell. In

this section, we define the uncertainty map based on

these posterior probabilities and the metric for the
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search and classification tasks in general multi-cell

domains. We also relate the task metric with a

dynamic observation cost for the Bayesian sequential

decision-making strategy in multi-cell domains.

A. The Uncertainty Map

We use an information-based approach to construct

an uncertainty map for a multi-cell task domain. The

uncertainty map is used to guide the sensor to regions

of high uncertainty in the domain. The information

entropy function of a probability distribution is

used to evaluate uncertainty [43]. Let P(c̃, t) be
the probability distribution for object absent and

its classification at cell c̃ at time t and is given by
P(c̃, t) = fP(X(c̃) = 0; t),P(X(c̃) = 1; t),P(X(c̃) = 2; t)g.
We define its information entropy as

H(P(c̃, t)) =¡
2X
j=0

P(X(c̃) = j; t) lnP(X(c̃) = j; t):

(10)

If P(X(c̃) = j; t) = 0, we set the term P(X(c̃) = j; t)

¢ lnP(X(c̃) = j; t) = 0 by convention because there
is no uncertainty about object existence or its

property. It also follows that limP(X(c̃)=j;t)!0P(X(c̃)
= j; t) lnP(X(c̃) = j; t) = 0. H(P(c̃, t))¸ 0 measures
the uncertainty level of object existence and its

classification at cell c̃ at time t. The greater the
value of H, the larger the uncertainty is. The desired

uncertainty level is H(P(c̃, t)) = 0. Defining Hmax
as the maximum uncertainty value attainable by

H(P(c̃, t)), we have Hmax = ln(3) when P(X(c̃) = j; t)
= 1

3
. The information entropy distribution at time

step t over the domain forms an uncertainty map at

that time instant.

The initial uncertainty distribution f1¡Pp,PF ,PGg,
8c̃ 2 D, reflects the certainty level at the outset of the
mission and is consistent with the assumption of IID

objects. Other initial uncertainty distributions may

be used such that it reflects any previous knowledge

of regions with higher likelihood of object presence.

Such distributions affect the probabilities of object

existence and its classification at other cells within the

domain whenever a decision is made at a certain cell.

When the sensor is taking observations at a cell

c̃, the value of H(P(c̃, t)) varies with P(X(c̃) = j; t),
which is updated according to Bayes rule (4) in

Section III. When the sensor makes a decision and

leaves c̃, H(P(c̃, t)) remains constant until the sensor
comes back when possible. This is repeated at each

cell in the domain and is iterated until the uncertainty

level of each cell is within a small neighborhood of

zero. At that moment, the search and classification

mission is said to be completed.

B. Task Metric

When the observation cost is low, the Bayes risk

may be minimized by taking one more observation

with possible reduction in decision errors. Under

this scenario, the sensor will decide not to proceed

searching for and classifying more objects but,

instead, to stop and take an observation at the current

cell. We define the associated cost of not carrying

further search and classification as follows:

J (t) =
P
c̃2DH(P(c̃, t))
HmaxAD

: (11)

The cost J is proportional to the sum of uncertainty

over D. To normalize J (t), we divide this summation
by the area of the domain AD multiplied by Hmax.
According to this definition, we have 0·J (t)· 1.
Initially, we have H(P(c̃,0)) =¡(1¡Pp) ln(1¡Pp)¡
PF lnPF ¡PG lnPG, 8c̃ 2 D, this is the uncertainty
level before any observation is taken, then 0·
J (0) =H(P(c̃,0))=Hmax · 1. On the other hand,
if H(P(c̃, ts)) = 0 at some t= ts for all c̃ 2D, then
J (ts) = 0 and the entire domain has been satisfactorily
covered and we know with 100% certainty that there

are no more objects yet to be found and classified.

Now let us associate a dynamic observation cost

cobs(t) with the cost function J (t),
cobs(t) = °J (t) (12)

where ° > 0 is some positive weighting parameter.

At the outset of the mission, few regions in the

domain have been covered, therefore, the cost, J ,
of not searching and classifying anywhere else is

high. Equivalently, taking an observation at the

current cell is “expensive,” i.e., cobs(t) is large.

In this case, the cost-aware Bayesian sequential

decision-making strategy tends to make a decision

with a few observations, which may yield a large

number of wrong decisions (however, it still gives

the minimum Bayes risk over all decisions given

the limited available observations), but increase the

potential of rapidly detecting and classifying more

critical objects in the domain. When the sensor stops

taking observations, makes a decision, and leaves the

current cell, it will move to another cell and again

take an observation there. Because the uncertainty

level associated with that cell changes (see (4), (10)),

the values for J (see (11)) and cobs (see (12)) over

the entire domain differ accordingly. Additional

information is gained by changing the cell to be

observed. When the sensor has surveyed more regions

in the domain, the uncertainty level at all the visited

cells is reduced with respect to the initial uncertainty,

and hence both J and cobs decrease. The process

will be repeated until J (t)! 0, i.e., all the unknown

objects of interest within the domain have been found

and classified with a desired uncertainty level in a

small neighborhood of zero. Note that the observation

cost is assigned according to the real-time progress

of the search and classification task and facilitates
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Fig. 4. Uncertainty map (dark red (a) for highest uncertainty and dark blue (f) for lowest uncertainty) at (a) t= 1, (b) t = 167,

(c) t= 334, (d) t= 501, (e) t= 668, and (f) t= 835 (with initial uncertainty H0(P(c̃,0)) =¡(1¡Pp) ln(1¡Pp)¡PF lnPF ¡PG lnPG, where
Pp = 0:7, PF = 0,1, PG = 0:1.)

real-time decision-making based on the available

observations.

Remark about the Weighting Rarameter °: A

small value of ° corresponds to the case where the

sensor will stay in a cell until a high certainty about

the object existence or its classification at this cell

is achieved before moving on. A large value gives

the opposite case, i.e., the sensor will not linger long

in any cell until it has had a chance to survey more

regions in the domain.

VI. SENSOR MOTION CONTROL

In this section we consider a control strategy

for the sensor motion over the mission domain

D. Combining with the Bayesian sequential
decision-making strategy, it seeks to find and classify

all objects in D with a desired confidence level (i.e.,
achieve J ! 0) under a dynamic observation cost

and the minimum Bayes risk at every time step. As

mentioned in Section II-B, we assume that there is

no speed limit on the sensor, i.e., the sensor is able to

move to any cell within D from its current location.

Consider the set

QH(t) = fc̃ 2D : argmaxc̃H(P(c̃, t))g
which is the set of cells with highest uncertainty level

H within D at time t. Next, let q̃c(t) be the centroid
of the cell that the sensor is currently located at and

define the subset Qd(t)μQH(t) as
Qd(t) = fc̃ 2QH(t) : argminc̃kq̃c(t)¡ q̃kg

where q̃ is the centroid of c̃. The set Qd(t) contains
the cells which have both the shortest distance from

the current cell and the highest uncertainty.

When the sensor finishes taking observations

in a current cell via the Bayesian sequential

decision-making strategy and decides to move to a

new cell, it will choose the next cell to go to from

Qd(t). Note that Qd(t) may have more than one cell.
Let NHd = jQd(t)j, the sensor will randomly pick a cell
from Qd(t) with probability 1=NHd.
VII. FULL-SCALE DOMAIN SIMULATIONS

In this section we provide a detailed numerical

simulation that illustrates the performance of the

decision-making strategy, and a Monte-Carlo

simulation comparison between the proposed strategy

and the classical fixed-sample Bayesian hypothesis

testings. All the simulations are implemented on a

2.80-GHz, i7-860m processor with 4.0 GB RAM, and

Matlab-compiled codes.

A. Simulation Example

We consider a 20£20 square domain D. For each
c̃ 2 D, we assume an IID prior probability distribution:
P(X(c̃) = 0; t= 0) = 0:7, P(X(c̃) = 1; t= 0) = 0:1, and

P(X(c̃) = 2; t= 0) = 0:2. The number, locations, and

properties of the objects are randomly generated. The

initial position of the sensor is also selected randomly.

The diameter of the sensor (one grid length) is shown

by the black circle in Fig. 4. The black dot represents
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Fig. 5. Evolution of the search cost J (t).

the position of the sensor. The sensing parameters ¯ij
are the same as in (9). The observation cost weighting

parameter ° in (12) is set as 0.05 and the desired

uncertainty for every cell is ²= 0:02.

The number of objects generated for this

simulation turns out to be 125 (the expected number

of objects is 120 according to (1)) with locations

as indicated by the 64 white dots (objects with

property F) and 61 magenta dots (objects with

property G) in Fig. 4. Figure 4 shows the evolution

of H. At t= 835, H = 0< ² has been achieved

everywhere within D. Figure 5 shows the evolution
of the search cost function J (t) and can be seen to
converge to zero.

Figure 6(a) shows the number of missed and

false detections versus time. The total number of

missed detections during the entire mission is 10,

and that of false detections is 4. Figure 6(b) shows

that the number of times that property F has been

decided given property G is 3, and property G has

been decided given property F is 1. Note that the

number of missed detections is much larger than that

of false detections or incorrect classifications. This

Fig. 6. (a) Number of missed detections and false detections. (b) Number of times that property F is decided given property G, and

property G is decided given property F.

is because the initial priors P(X(c̃) = i, t= 0), i= 1,2

that we start with are much closer to zero than one. If

the sensor makes an erroneous observation Y(c̃) = 0

given there is actually an object, according to the

Bayes probability updates (4), the posterior probability

of object absent increases and the sensor tends to

make a wrong decision of object absent. Another

reason that the number of incorrect classifications is

relatively smaller is because the number of objects

is smaller compared with the total number of cells

in the domain and only the wrong decisions between

X(c̃) = 1 and X(c̃) = 2 are taken into account. In both

figures the numbers of erroneous decisions are small

relative to the total number of cells within the domain.

This suggests that the cost-aware Bayesian sequential

decision-making strategy is efficient in making good

decisions given limited available observations. It is

also shown in the figures that as time increases, the

number of errors decreases.

Figure 7(a) shows that object 25 (located at (4,17))

has property F with classification uncertainty H = 0

< ² at time step 835. Figure 7(b) shows that object 66

(located at (10,12)) has property G with classification

uncertainty H = 0< ² at time step 835. The results are

consistent with the simulation setup. The properties of

other objects are also satisfactorily classified with the

desired uncertainty level less than ² and can be shown

like Figure 7(a) and 7(b) without difficulty.

Table II shows the mean percentage of

missed detections, false detections, and incorrect

classifications during time period 1—200, 201—400,

401—600, and 601—800, respectively. 100 runs are

carried out in 800 time steps with the same parameter

settings as above. From the table, most of the errors

occur at the earlier stage of the mission and the

number of errors decreases with time. This implies

that we can balance between the number of errors
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Fig. 7. (a) Probability of object 25 having property F and corresponding uncertainty function H. (b) Probability of object 66 having

property G and corresponding uncertainty function H.

TABLE II

Mean Percentage of Missed Detections, False Detections, and

Incorrect Classifications During Time Period T1 : 1—200,

T2 : 201—400, T3 : 401—600, and T4 : 601—800, Respectively

Mean Percentage (%) T1 T2 T3 T4

missed detection 40.43 34.51 17.35 7.71

false detection 43.49 25.43 21.64 9.44

incorrect classification 42.09 24.48 18.52 14.91

within the tolerance range and the limited time we

have to decide when to stop.

B. Monte-Carlo Simulation Comparison

Now we perform a Monte-Carlo simulation to

compare the performance of the proposed Bayesian

sequential strategy and the classical fixed-sample

Bayesian hypothesis testing [16, 42, 43]. Under UCA,

the fixed-sample Bayesian hypothesis testing is the

maximum a posterior (MAP) estimator. That is, the

optimal decision corresponds to the state that gives the

maximum posterior probability after L observations.

Note that this is an off-line batch technique where

a decision is made if and only if all the fixed L

observations have been taken. Here we use it as a

benchmark performance criterion.

From the simulation results, the expected number

of observations taken at each cell under the Bayesian

sequential method is 1.988. Therefore, it is reasonable

that we compare the statistics of this method with

1—4 fixed-sample Bayesian hypothesis testing. Five

metrics are considered: the final achieved maximum

uncertainty Hmax,tf , the final value for the cost functionJ (tf), the total number of missed detections nm, the
total number of false detections nf , and the total

number of incorrect classifications ni. For each case

100 runs are carried out. For the sake of comparison,

we use same settings for object number, positions,

properties, and initial position of the vehicle. All the

other parameters are the same as in Section VII-A.

Figures 8(a)—(e) show the comparison of the

metrics, respectively, and Table III summarizes

the statistical results. In order to achieve a similar

small amount of decision errors, the fixed-sample

hypothesis testing method requires L= 4 observations

at each cell. The cost-aware Bayesian sequential

decision-making strategy outperforms the classical

methods by 1) reducing decision errors, and

2) minimizing observation numbers. Therefore,

according to (7) and (8), under UCA, the proposed

strategy leads to minimum Bayes risk with a same

performance level.

VIII. CONCLUSION

Built on a probabilistic framework, a cost-aware

decision-making strategy was developed to seek the

detection and satisfactory classification of all objects

in a domain using Bayesian sequential risk analysis.

The proposed strategy guarantees the detection and

classification decisions made with minimum Bayes

risk in the presence of sensor errors under limited

sensory resources. Detailed numerical simulations

are provided to demonstrate the performance of the

strategy. Current work includes the investigation of a

generalized choice of the observation cost weighting

parameter ° and task metrics to guarantee zero

uncertainty convergence. Future research will focus

on the following aspects:

1) tracking and classification of mobile objects

using multiple autonomous sensor vehicles,

2) exploration in unknown environment

geometries (i.e., unknown D),
3) non IID object distributions over the domain,

where decision-making at one cell is affected by all

the decisions made at other cells,

4) SPRT method for the cases where no prior

information is available, and

5) SR and CUSUM tests for change-point

detection.
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Fig. 8. Performance comparison in terms of (a) Hmax,tf
, (b) J (tf ), (c) nm, (d) nf , and (e) ni between fixed-sample Bayesian hypothesis

testings with 1, 2, 3, 4 observations and Bayesian sequential detection.

TABLE III

Comparison Between Fixed-Sample Hypothesis Testing and

Sequential Detection under Bayes Framework

Hmax,tf
J (tf ) nm nf ni

L= 1 1.68E-2 2.85E-3 64.49 30.99 20.51

L= 2 5.08E-3 1.7E-4 18.72 12.09 8.48

L= 3 1.07E-3 2.55E-5 12.02 7.43 2.91

L= 4 6.85E-4 4.39E-6 6.41 4.63 2.74

Sequential 1.18E-3 8.86E-5 9.07 3.98 2.15

Different from Bayesian sequential detection, the main

focus of SPRT, SR, and CUSUM is to minimize the

expected number of observation samples instead of

the overall risk, and there is no explicit risk-based

analysis available in the literature for these methods.

For the purpose of risk analysis, the exact missed/false

detection rates at the stopping times, which will

probably overshoot the preset thresholds, need to be

derived.
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